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The dynamics of a cw pumped, multimode dye laser system have been experimentally investigated

by measuring the mode correlation times t ~„ the second-order dimension D2 of the attractor of
the system, and the corresponding second-order entropy EC2. Dynamical instabilities have been ob-
served as discontinuous changes of t ~„D2, and E2 at distinct values of the spectral power density
P/Lk. Over the whole investigated range of I'/hA. , the analysis of the experimental data yields
sufficient conditions for deterministic chaos. The dimensionality of the system and its degree of
chaos have been found to depend on the spectral power density. The contributions of stochastic and
of chaotic processes to the hmited mode correlation time have been unraveled.

I. INTRODUCTION

Deterministic chaos and instabilities in synergetic sys-
tems have increasingly become subjects of advanced in-
terest. ' A fundamental reason for this interest arises from
the fact that both phenomena severely affect our under-
standing of dynamic processes in nature. The concepts of
complete determinism and strong causality are reduced to
the "special-case level" of systems in thermal equilibrium.
These concepts are therefore irrelevant for describing any
evolutionary processes which require situations far from
thermal equilibrium.

Quantum optical systems like lasers are rather suitable
examples in order to study processes which develop far
from thermal equilibrium. Compared with chemical or
even biochemical systems, the complexity of laser systems
is still on an elementary level. However, they are compli-
cated enough that no complete theoretical treatment of
the wide variety of observations is available until now.
Review articles of Abraham et al. (instabilities in laser
systems) and of Ackerhalt et al. (chaos in quantum op-
tics) stress this situation.

From an experimental point of view, there are two pos-
sibilities to get clear evidence for chaotic behavior. The
first one is to observe one of the commonly known transi-
tion scenarios to chaos (i.e., period doubling, intermitten-
cy, or the Ruelle-Takens scenario). For various types of
lasers, observations of these scenarios have already been
reported.

The second possibility to gain information whether a
dynamical system behaves chaotically is to determine in-
variants of the system which directly characterize chaotic
behavior. Two invariants of this kind are easily extract-
able from experimental data.

(1} The dimension of the attractor of the system in
phase space.

(2) The entropy which is connected with the evolution
of the system in phase space.

Of course, these invariants are meant to be temporal in-
variants under constant boundary conditions. They may
change, if some control parameter of the system is varied.

In case of laser systems, the pump power serves as an ap-
propriate control parameter. At certain critical values of
the pump power, the attractor of the system can become
unstable. The system then switches into another attractor
with different dimension and entropy. Such a transition
is called a dynamical instability. It can be understood
analogous to a thermodynamical phase transition, whose
occurrence is limited to situations in thermal equilibrium.

The most important dynamical instability which ap-
pears in laser systems is the lasing threshold, where stimu-
lated emission starts to dominate over spontaneous emis-
sion. By means of this change, coherent radiation in one
of more different cavity modes is established. However,
even within the regime of coherent radiation higher-order
instabilities may occur. General correspondence criteria
for such instabilities in single-mode and rnultimode lasers
have recently been evaluated by t.ugiato and Narducci.

Higher instabilities have been observed in a homogene-
ously broadened ring dye laser by Hillman et al. 5 Not far
above the laser threshold, a discontinuous increase of the
average output power occurred, connected with a simul-
taneous alteration of the mode structure from single-mode
operation to two-mode operation of symmetric sidebands.
A first attempt of a theoretical description of these phe-
nomena has been carried out by Lugiato et al.

In another experiment by Westling et al. a linear mul-
timode dye laser also showed an instability not far above
the laser threshold. This instability was discovered by
measuring the autocorrelation of the total laser output,
which showed a discrete jurnp at a certain pump power.

In a recent paper (hereafter referred to as paper I}, we
proposed a novel method to determine the correlation
times of individual longitudinal modes in a cw pumped
multimode laser by means of intracavity absorption. It
turned out that the mode correlation times in the investi-
gated linear multimode laser generally decrease with in-
creasing spectral power density inside the laser cavity.
However, a detailed observation revealed discontinuities in
the mode correlation times at certain critical spectral
power densities. This kind of instability obviously differs
from the instabilities mentioned above, since the discon-
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tinuities appear as a function of the spectral power densi-
ty, and not as a function of the pump power. We shall
particularly discuss this difference in Sec. IV B.

The investigations described in paper I left the question
open of whether deterministic chaos contributes to the
behavior of the laser system. It is the purpose of the
present paper to give clear experimental evidence that
deterministic chaos plays a significant role in the dynami-
cal behavior of cw pumped multimode laser systems. The
degree of chaos can be classified by the invariants men-
tioned above. The underlying theoretical concepts are re-
viewed in Secs. IIA and IIB. The extraction of the in-
variants from experimental data will be explained in Sec.
IIC. The experimental details are described in Sec. III.
In Sec. IV we discuss the dependence of the mode correla-
tion times, the attractor dimension, and the corresponding
entropy on the intracavity spectral power density. An in-
terpretation will be given which describes the mechanism
governing the observed instabilities. Analogies with ther-
modynamical phase transitions will be considered. More-
over, it wi11 be shown how one can distinguish between
chaotic and stochastic contributions to the correlation
time of individual modes. The results are summarized in
Sec. V.

II. DIMENSIONS AND ENTRQPIES
OF DYNAMICAL SYSTEMS

A. Attractor dimension

The attractor of a dynamical system in phase space can
be suitably characterized by two invariants which we in-
troduce according to Procaccia. He treated the dimen-
sion of the attractor as well as the corresponding entropy
starting from the definition of the qth-order information
Hq.

He = log g p,e .
1

1 —g

The discrete probability p; is defined by p; =N;/N, where
N is the total number of elements in the considered sam-
ple space. Given some partition 4 consisting of the ele-
ments [4i, . . . , 4 I in the sample space, one can count
how many times N~ an element is found in 4;. Accord-
ing to fundamental information theory, we use the loga-
rithm to base 2 throughout this paper.

Now we take the basin of an attractor as a sample space
and consider a finite partition 4(r) with diameter r of
this basin, in which the trajectory X(t ) is situated. Then

H (r)= inf (,)H (4(r))

denotes a qth-order information which depends on the
partition diameter r H&(r) is g.iven by the infimum of
the different informations resulting from all possible par-
titions 4(r ).

With Eq. (2), one can define a quantity D~ of order q,

Hq(r)
Dq ———lim (3)

r~0 logf

which is the (generalized) qth-order dimension of the at-
tractor.

With respect to experimental applications, the most
useful dimensions are of low order. Do li——me OD& is the
fractal dimension of the attractor:

D,=-l logM(r )

r~0 log p

It is determined by M(r), the minimal number of cubes
with edge length r needed to cover the attractor. Equa-
tion (4} is equivalent to Mandelbrot's definition of the
fractal dimension, ' which originates from Hausdorff. "

The first-order dimension Di ——lime iDe is the infor
motion dimension, since it is based on the commonly
known first-order information S(r ):

S(r)
Di = lim

r-+D logf

with

M(r)
S(r)= —g p; logp; .

The second-order dimension

logC(r )
D2 = 11m

r~0 1ogl'

has been introduced as the correlation exponent by
Grassberger and Procaccia. ' It is obtained by the func-
tion

C(r) = lim g 8(r —
~
X;—X

~
) .

8 is the Heaviside function: 8(x ) =0 for x & 0 and
8(x)=1 for x ~0. The function C(r) counts the number
of pairs of those points with a distance

~
X;—XJ ~

smaller
than r The det. ermination of C(r) (and Dq) from experi-
mental data will be described in Sec. IIC. Remarkably,
C(r } is simply the correlation integral

I'

C(r )= J d r'c(r'), (9)

where c(r) is the standard (two-point) correlation function
(d is the dimension of the vector space of r). Higher-
order correlation functions lead to higher-order dimen-
sions D&.

It has been shown' that D2 cD~ &DD. The conditions
for the equality of the dimensions are satisfied, if the
points are distributed uniformly over the attractor. For
several different maps and equation systems, the correla-
tion exponent D2 has been proven to be nearly identical
with Di and Do. In particular, this is true for the Lorenz
system, ' which is formally equivalent with the quantum
optical Maxwell-Bloch equations. ' Therefore, D2 is a
very useful tool for estimating the information dimension
and the fractal dimension of an attractor.

8. Trajectory entropy

The qth-order dimensions of an attractor are staIic in-
variants, since they do not depend on any time scale.
However, the entropy of a system is always a quantity
which has to be specified per time unit (if it is not zero or
infinite). Therefore it is a dynamic invariant describing
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properties of a considered process. On the contrary, the
classical Boltzmann entropy characterizes a state in
thermal equilibrium.

Procaccia has shown how to define the qth-order en-

tropies by means of the qth-order informations given by
Eq. (2). We shall not follow this definition in detail, but
give a result similar to Eq. (3) for the qth-order entropy
of a trajectory X(t) situated in the basin of an attractor.
The considered points X(t) along the trajectory are
separated by a constant time increment r. {In an experi-
ment, ~ characterizes the temporal resolution of measure-
ment. ) The whole phase space is considered to be parti-
tioned into cubes of edge length r No.w, p(i i,i2, . . . , ie)
is the joint probability that X(t=r) is in cube i~,
X(t =2m) is in cube i2, . . . , and X(t =d») is in cube ie
The qth-order entropy is then defined as

K»= —lim lim log g p (ii, . . . , ie) .
r~0 d~m d g —1

~ ~ ~

(10)

This definition includes the fact that K» has the dimen-
sion of sec '. Ko is the topological entropy

The first-order entropy Ki ——lim» iK» is the metric or
Kolmogorou entropy which is a measure far the internal
information production of the system during its temporal
evolution:

Ki ——lim lim g p(ii, . . . ,ie)logp(ii, . . . , ie) .
r~0 deco dr

'1~ . ~'d

sured time series of a single variable of the system. It is
not necessary to measure all n variables X;(t )

(i =0, . . . , n —1) of the system. Moreover, even the
knowledge of the number n of degrees of freedom (NDF)
of the system (i.e., the dimension of the real phase space)
is not required. The measurement of a single variable

Xo{t } is sufficient, because it contains all information on
the other (n —1) variables by means of the derivatives
dXo(t)ldt. i6

Of course, an analytical procedure of this kind would
n0t be very practicable. However, the underlying idea can
be easily realized, if one constructs d additional data sets
fram the original time series Xo(t) instead of its temporal
derivatives. The d additional data sets are obtained by in-
troducing a time delay (kit) for the kth constructed data
set. The resulting data sets Xo(t}, . . . , Xo(t+dht) define
a d-dimensional phase space, if they represent linearly in-
dependent variables. '

We stress the fact that the dimension d of the con-
structed phase space is not identical with the dimension n

of the real phase space of the system. In general, one has
to choose d & n, since the constructed d linearly indepen-
dent data sets do not describe the system as low dimen-
sional as the real variables: they do not give an irreduci-
ble representation. (This is valid for any artificial "basis
set" for physical systems. ) In order to construct linearly
independent data sets, the time delay unit b t may not be
identical with an inverse eigenfrequency of the system.

If each data set contains N values spaced by a time in-
crement ~, the described method reveals the following set
of data sets:

Ki is approximately identical with the sum of positive
I.yapunou exponents of the system.

Similar to the second-order dimension D2, a second-
order entropy K2 can be defined by the correlation in-
tegral C(r) [Eq. (8)]

Xo{ti ) Xo(tx )

Xo(ti+ht} Xo(tt»+dt),

Xo(ti+dbt) . Xo(tN+dbt).

Cg(r )
Ez ——lim lim —log

r oe ~ ~ Cq+i(r)
(12)

%ithin the vector representation

X;=(X,(t;), . . . ,X,(t;+dl) t)) (13)

Its determination from experimental data will be
described in Sec. IIC. In general, K2 &Ki &Ko is valid.
The limiting cases K i

——0 and K i ~ 00 characterize the
situations of regular (e g , perio. d.ic} and stochastic
behavior of the system, respectively. If Ki & 0, the system
shows chaotic behavior. Since K2 &K„Kt& 0 is a suffi-
cient condition for deterministic chaos. Furthermore, Ki
can be used to quantify the degree of chaos.

The Kolmogorov entropy E] is related to the inverse
predictability time (correlation time ~„„)of the behavior
of the system. " If additional stochastic forces are im-
posed on the system, the total correlation time of its vari-
ables can be shorter than v;, which is purely due to
chaotic behavior.

C. Estimation of dimensions
and entropies from a time series

As already indicated in Secs. IIA and IIB, the correla-
tion exponent D2 of an attractor and the corresponding
second-order entropy K2 can be estimated from a mea-

the above given total set becomes

X ]) ptpf (14)

Now, for each j one takes the point XJ from (14} and
measures the distances ~X; —XJ

~

between all the other
points X; and XJ. (Any convenient distance norin is ap-
propriate, we choose the Euclidean norm. )

In this manner one can determine the number of those
pairs of points whose distance is smaller than a given dis-
tance r. %ith this result rve can now directly go into the
correlation integral C(r) given by Eq. (8). C(r) is the
basic quantity needed for the further determination of D2
according to Eq. (7).

The correlation integral C(r) has to be calculated for
several values of r with respect to each particular dimen-
sion d of the constructed phase space. For each dimen-
sion d one plots logC(r) versus logr and obtains a slope v
of the linear range of the resulting curve [because of the
hm, 0 in Eq. (7) this linear range extends towards small
r] Figure 1 illustr. ates the mentioned curves for an ex-
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log C(rI
0-

0
log r

FIG. 1. Log-log plot of the correlation integral C(r) vs the
distance r, providing a linear range of the slope according to Eq.
(7). VA'th an increasing dimension d of the constructed phase
space, the slope converges towards a limiting value. The
analysis was based on the temporal evolution of the mode inten-
sity in a multimode laser, recorded at a spectral power density
of 515 m%/nm. Other parameter values are ht =~=39 @sec
and N =512 points.

perimental situation described in the figure caption.
If the slope v converges towards a finite value for high

d, this value is identical with D2. In Fig. 2 we illustrate
the converging slopes for the curves of Fig. 1, for which
one obtains D2 ——2.66. The errors result from a linear
least-squares fit of the calculated values in the linear
range. The drawn line with v=d represents an example
for divergent behavior of v(d ) which characterizes purely
stochastic behavior. In the general case of stochastic pro-
cesses, v does not reach any limiting value for d ~ ao. If
D2 turns out to be an integer, the behavior of the system
is regular within the considered time scale. Any fractal
(noninteger) Dz is a sufficient criterion for contributions
of deterministic chaos to the behavior of the system as
long as Dz-DO.

If there would be more than one linear scaling region in
each of the curves shown by Fig. 1, it would in principle
be possible to distinguish between different kinds of pro-
cesses occurring in different amplitude ranges of the mea-
sured signal. %ith respect to the discussed procedure,
those different amplitude ranges correspond to different
ranges of r Fo. r the case of a time series with underlying
(stochastic) noise, this has already been demonstrated. '

From the obtained value of D2 it is possible to extract
another very valuable piece of information. As mentioned
above, the dimension d of the constructed phase space is
usually larger than the real NDF of the system. A deter-
mined value D2 ——2.66 by means of the convergence of v
until 0 =10, for example, allows the conclusion that the
investigated process needs only the next higher integer
NDF (i.e., three) to be successfuBy modeled.

Every determination of the dimension of an attractor
by the described procedure provides some statistical error.
This error might possibly prevent a discrimination be-
tween an integer or a fractal value of D~. In this case, the
second-order entropy turns out to be very useful, since it
provides an additional sufficient condition for chaotic
behavior, namely E2 &0 (compare Sec. II 8).

In order to determine Kq by means of Eq. (12), the time
increment w between successive data points within each
data set has to be taken into account besides the correla-
tion integral C(r). (Note the difference between bt and
~. ) According to Eq. (12), Ir'2 can be estimated from the
vertical distances (at identical r) between the curves be-
longing to successive dimensions d. [Now d has got a
concrete meaning compared with the formal introduction
of K» by Eq. (10).] In Fig. 3 we show how E2 turns out
as a limiting value for high dimension d. The indicated
values for each particular d have been calculated from the
mean value of C&(r)!Cd+,(r) over the linear range of r.
Figure 3 refers to the same experimental situation as Figs.
1 and 2.
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FIG. 2. Slope v in the Hncar range of the different curves in
Fig. 1, shown as a function of the dimension d of the construct-
ed phase space. The solid line denoted by v=d illustrates a
completely stochastic behavior where Dq~d. For the analyzed
time series (compare Fig. 1), v reaches a limiting value already
ln a tcn-dlIIlcnslonal phase space. This limiting value ls ldcntl-
cal with the second-order dimension D2 ——2.66+0. 16.

FIG. 3. Mean values of r 'logz[C&(r)/Cd+ r{r)] as a func-
tion of d, obtained from the linear range of the curves in Fig. 1.
According to Eq. (12), the limiting value for large d gives the
second order entropy E2 ——2208%365 sec '. Compared with the
determination of D2, a considerably higher value of d is needed
to reach a convincing convergence.
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TABLE I. Dimensions and entropies as sufficient criteria for
stochastic, chaotic, and regular behavior of a system. Do is the
fractal dimension [Eq. (4)], Dz is the correlation exponent [Eq.
(7)], X~ is the Kolmogorov entropy [Eqs. (11}and (16}],Kz is
the second-order entropy [Eq. (12)], and d is the Euclidean di-
mension of the constructed phase space according to (14).

Regular
Chaotic
Stochastic

Dimension

D2 ——Do integer
D2-6() fractal
D2~d

Entropy

K2 ——I( )
——0

I(2&0
K2~ (x)

For a convenient overview, Table I summarizes the suf-
ficient criteria for stochastic, chaotic, and regular
behavior which are given by means of attractor dimen-
sions and entropies.

III. EXPERIMENTAL

Within the context of paper I, we have investigated how
the correlation times of longitudinal laser modes depend
on the spectral power density P/hA, inside the laser cavi-
ty. At certain critical values of I'/b, A, , discontinuous
jumps of the mode correlation times have been observed.
In order to gain further information about this kind of
dynamical instabilities, we apply the concepts of attractor
dimension and entropy.

As indicated in Sec. IIC, the experimental determina-
tion of the dimension and the entropy of a dynamical sys-
tem is already possible by an analysis of a single-variable
time series. This time series can be used as the data set
Xc(t), from which the total set according to (14) has to be
constructed. In case of a multimode laser system, the
mode intensity is a time-dependent variable which is rath-
er easily accessible from experiment. On the other hand,
it is directly related to the mode amplitude which is
described by one of the Maxwell-Bloch equations. Hence,
the mode intensity is a convenient candidate for the mea-
surement of the required data set.

In addition to the single-variable time series, the corre-
lation times of the longitudinal laser modes have been
measured as a function of the spectral power density. For
the description of the concerning experimental arrange-
ment and of the applied intracavity absorption method,
we refer to paper I. In the following, we treat those de-
tails of the experiment, which are important for the mea-
surement of the temporal evolution of the mode intensity.

The 2-m-grating spectrometer used in order to disperse
the laser emission spectrum, provides a theoretical resolu-
tion of 84000 in first order, corresponding to a resolution
limit of 0.007 nm at a wavelength of 590 nm. Since the
actual resolution is usually smaller than the theoretical
resolution, we assume a value of 0.01 nm at an optimized
entrance slit width of 15 pm. Due to a mode spacing of
250 MHz ( =0.00029 nm), we always observe a superposi-
tion of at least 35 longitudinal modes within the spectral
resolution of the spectrometer. Increasing the exit slit
width of the spectrometer, one can enhance the number of
modes which contribute to the measured multiplier signal.

The mode correlation times have been determined from

05"

lp

20
t (esec)

FIG. 4. Temporal evolution of the normalized mode intensity
I, recorded at the maximum intensity of the broadband laser
emission. Over the total time interval of 20 msec, one notices a
clearly irregular behavior. The sho~n time series has been ob-
tained at a spectral po~er density of 118 m%/nm with a time
resolution of ~=39 psec. The extracted values of D2, and
E2 are given in Figs. 6 and 7.

the depths of particular HzO absorption lines in the laser
emission spectrum. These lines were recorded by means
of a scanning multiplier in the focal plane of the spec-
trometer. On the other hand, the temporal evolution of
the mode intensities was measured at a fixed multiplier
position. For each particular spectral power density, we
observed the mode intensity (i) in the center of an absorp-
tion line, and (ii} around the maximum of the broadband
laser emission.

The measured signal was recorded and digitized by
means of a transient digitizer with a time resolution of
512 channels. The signal was normalized with respect to
the maximum intensity within the considered time inter-
val. A total time window of 20 msec (corresponding to a
temporal resolution of v=39 p,sec) turned out to be a
proper value for the data analysis.

Figures 4 and 5 show two examples of a time series
over 20 msec, as obtained in the laser-emission maximum
at spectral power densities of 118 mW/nm and 208
mW/nm, respectively. With the corresponding data sets
the second-order dimension Dz and entropy Kz can be
determined as described in Sec. II C.

During an extended preanalysis, possible infiuences of
different experimental and numerical boundary conditions
on the obtained values of Dz and Ez have been investigat-
ed.

(1) Reproducibility of Dz (Ez) from different time
series at identical spectral po~er density. For successive
rtx:orded time series at a constant spectral position and
with a constant multiplier slit width, we obtained devia-
tlolls of Dz and Kz which reached about three times the
statistical error of a particular measurement. Therefore, it
was necessary to consider more than one individual time
series for obtaining a reasonable mean value of Dz (Kz).
In order to avoid confusion, we point out that the deter-
mination of Dz (Kz) in Figs. 2 and 3 is based only on one
single time series. In contrast to this, the values discussed
in Sec. IV represent mean values in the sense explained
above.

(2) Dependence of Dz (Ez} on the number of simul-
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IfII)(

2Q
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FIG. 5. Same as in Fig, 4, for a spectral power density of 208
m%/nm. The temporal behavior of the normalized mode inten-

sity I is clearly more irregular than in Fig. 4. The calculated
values of D2,„and K2, ,„can be seen in Figs. 6 and 7.

taneously observed modes. As already mentioned, due to
the limited resolution of the spectrometer the observed
signal represents an average over at least 35 longitudinal
laser modes. Of course, this is a very small number com-
pared with a total number of some thousand modes which
correspond to typical emission bandwidths. Nevertheless,
we tried to find discrepancies in the determination of Di
and Ei due to different numbers of simultaneously
recorded modes. Different numbers of modes could be
realized by different multiplier slit widths at the same op-
timized entrance slit width of the spectrometer. Com-
pared with the error resulting from point (1), no signif-
ican change of Di (Ei) could be detected. For this
reason, we assumed the maximum resolution (35 modes)
to provide an appropriate "single-variable" time series of
the laser system. If a better resolution would have been
necessary, we would expect significantly different correla-
tions C(r) [compare Eq. (8)] in phase space for different
numbers of modes. This would lead to different values of
Di (Ep).

(3) Dependence of Di (Eq) on the temporal resolution r
of the measured time series. Generally, r should be taken
such that a sequence of some data points falls within the
characteristic time scale of the system under investigation.
If r is considerably larger than this time scale, successive
data points can naturally not show any correlation.
Hence, the analysis of the time series will clearly reveal
the criteria for uncorrelated (stochastic) behavior. On the
other hand, if ~ is very small, the influence of counting
statistics on the results of the analysis increases. In this
case, a stochastic behavior may be pretended due to the
statistics of the measuring procedure. In our experimental
situation, the choice of an appropriate r is unproblematic
since the characteristic time scale of the system is experi-
mentally available by the mode correlation time. This
time scale is about some 100 psec. The analysis of several
particular data sets with temporal resolutions v.=9.75,
19.5, and 39 @sec revealed identical values for Di (Ei).
Since r appears explicitly in Eq. (12) which defines Ez, a
constant value of Ei at different r supports the self-
consistency of the applied method. For the final analysis,
v-= 39 @sec has been used. This temporal resolution corre-
sponds to a total time window of 20 msec for each record-
ed time series.

(4) Dependence of Dz (Ei ) on different time delays b, t.
As described in Sec. II C, the original„experimentally ob-
tainai data set Xo(t) is used to construct 1 linearly in-
dependent data sets by means of a time delay At. If ht
would unfortunately equal an inverse eigenfrequency of
the system, the constructed total data set would consist of
linearly dependent variables. Therefore, it would always
give rise to a one-dimensional phase space in which an in-
crease of d (the number of linearly dependent variables)
could never lead to a correlation exponent D2 g 1. Hence,
a correlation exponent Di & 1 is sufficient to exclude the
case of a total data set which consists of linearly depen-
dent variables. We performed the analysis of several par-
ticular data sets for bi =r, 2r, and 3~. In all three cases
the obtained correlation exponent Di & 2 did not remark-
ably change for different ht Fo. r the final analysis we
took ht =~ in order to keep as many data points as possi-
ble for the constructed total data set. For example,
Et=10~ would reduce the original 512 data points to
512—10d data points due to Eqs. (13) and (14). Such a re-
duced data set can offer severe problems in obtaining a
useful linear range of logC(r) versus logr With. a number
of about 500 points which results from b,t=r, we could
carry out the analysis without problems.

(5) Dependence of Di (Ei) with respect to emission
maxima and absorption dips. At high spectral power den-
sities, no significant discrepancies have been observed.
However, in the case of low spectral power densities, the
value of Di,i as measured in the center of an absorption
line always exceeded the value of Di,„as measured in
the laser-emission maximum. Similarly, Ei,i„was signi-
ficantly larger than Ei,„. Hence, at low spectral power
densities it was necessary to take different time series for
the emission maximum and for absorption dips, respec-
tively. In Sec. IV, we shall return to this remarkable
difference.

IV. RESULTS AND DISCUSSION

A. Dimensions and entxopies
as a function of P/4A,

As already indicated in paper I, the investigation of
chaotic properties of multimode laser systems promises an
advanced understanding of the dynamical instabilities re-
ported in paper I. This kind of instability has been ob-
served by means of a discontinuous decrease of the mode
correlation times at certain critical spectral power densi-
ties. Therefore, we determined the attractor dimension
Di and the trajectory entropy Ei over a range of I'/b, A,

in which those instabilities occurred. This range was
selected by means of a quick survey of the mode correla-
tion times as a function of P/AA, . It turned out that two
discontinuities of the mode correlation times appeared be-
tween 110 and 210 m%/nm at the particular cavity ad-
justment. In order to investigate the behavior of Di and
Ei in the mentioned range of P/hA, , four time series have
been recorded and analyzed for each particular spectral
power density. Since the range between 110 and 210
mW/nm contains low spectral power densities, it was
necessary to distinguish between Dz,„(Ez,„) and
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Dz,b, (X2,b, ) as pointed out m Sec. III. The total num-
ber of four time series contained (i) two time series record-
ed at the spectral position of an absorption line, and (ii)
two time series recorded at the spectral position of the
laser emission maximum.

In Fig. 6, we show the mean values of the correlation
exponent D2,„ in the mentioned region of low spectral
power densities together with the corresponding errors
[see point (1) of Sec. III]. On the horizontal axis, the crit-
ical values (P/bA, },„, are indicated as obtained by the
quick survey of the mode correlation times. The two
values of (P/b, k),„,are 135 and 185 mW/nm, both with
an uncertainty of +0.5 mW/nm. These critical power
densities separate three ranges of P/bA, . For each one of
these ranges a mean value for D2,„ is indicated (drawn
as a dashed line) which results from the particular values
of D2,„ in the considered range of P/b, A, . Table II gives
the mean values of Di ~,„ in the different ranges together
with their statistical errors.

The noninteger, fractal values of D2,„are a first indi-
cation of chaotic behavior of the multimode system in the
investigated range of P/hA, . According to the sufficient
conditions for chaos summarized in Table I, we stress the
fact that a fractal Dz is only sufficient if D2 —Do. Ho—w-
ever, generally D2 (Do is valid. Hence, an unequivocal
criterion for chaotic behavior is only provided in realizing
the condition Ei & 0. This will be shown below.

The obtained values of D2,„clearly show discrete
changes at the critical values (P/hA, },which have been
determined by the behavior of the mode correlation times.
The value of D2 ~,„ increases by an amount of approxi-
mately one, if P/b, A, is driven beyond (P/bA, ),„,. This
implies that the minimum number of variables which are
needed to successfully model the system is increased by
one if the system reaches a new structure beyond the in-
stability at (P/hA, },„,. Equivalently, the NDF of the sys-
tem grows by the same amount.

Comparing this result with the tentative interpretation
of the dynamical instabilities given in paper I, we have

200
P/QA (mQ/nm)

FIG. 6. Second-order dimensions D2 at the maximum of
the laser emission in the region of low spectral power densities.
On the horizontal axis, two critical spectral power densities
{Pi'LA,), are indicated as obtained from a quick survey of the
mode correlation times. At the same {P/h, A, ) „D2 in-
creases by approximately 1. The dashed lines show the mean
values of D2,~~ as given in Table II for each of the different
ranges of I' jh,A, which are separated by {8/hA. )

Range 1

Range 2
Range 3

2.83+0.05
3.71%0.11
4.88%0.23

1999+57
2S10%118
2816+69

now much more evidence for the proposed model. Its
essential properties have been illustrated in Fig. 2 of paper
I. This model predicted a discrete change of the gain in-
homogeneity at each (P/hA, ),„,. Such a change was as-
sumed to be connected with a simultaneous alteration of
the number of independently oscillating mode packets.
Each of these mode packets contributes one degree of
freedom to the total NDF of the system. As a conse-
quence, it is very convincing to explain the discrete in-
crease of D2,„by an additional, independently oscillat-
ing mode packet whose formation is initiated at
(P/b, A, ),„,.

A remarkable confirmation of the fundamental relation
between D2 and the NDF of the system arises from the
different values of D&,„and Di,b, at identical spectral
power density. Until now we have only discussed the first
quantity, although we have pointed out this difference al-
ready in Sec. III. Over the total range of P/hA, from 110
to 210 mW/nm, the value of Di,b, exceeds D2, ,„by an
average amount of 0.84+0.37. This implies that D2,b, is
larger than the next higher integer value following D2
for each particular spectral power density. The additional
degree of freedom contributing to D2,b, is easily identi-
fied with the influence of the absorber which is only ap-
parent within the absorption lines in the laser emission
spectrum. In order to describe the emission spectrum in-
cluding the absorption lines, a particular equation is need-
ed to account for the temporal development of the ab-
sorber number density. This parameter represents the ad-
ditional degree of freedom, being responsible for the
enhanced value of D2,b, with respect to D2

The change of D2,„at both critical spectral power
densities is accompanied by a discrete change of Ez as
illustrated in Fig. 7. The different mean values for the
three ranges of P/hA, are indicated in the figure. In
Table II these values are shown together with their statist-
ical errors.

Equivalent to the difference between D2,,b, and Di
the values of E2,b, turned out to be significantly larger
than Kz,„ for each particular spectral power density.
We shall give an interpretation of Ki,b, in Sec. IV C.

Since Ez & 0 at each considered spectral power density,
we have now complete evidence for chaotic behavior. The
investigated laser system develops dissipative structures
which are characterized by deterministic chaos. These
structures become unstable at critical spectral power den-
sities. The corresponding dynamical instabilities give rise

TABLE II. Calculated mean values of D2,„and E&,„ in
three different ranges of I'/hA, . These mean values are shown
by the dashed lines in Figs. 6 and 7. The different ranges of
P/hk. are separated by those critical spectral power densities
which give rise to dynamical instabilities of the mode correlation
times.

&2,max
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8. Analogy with thermodynamical phase transitions

2500-

2000-

I
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FIG. 7. Second-order entropies E2,„ for the same region of
the spectral power density as in Fig. 6. E~,„shows a signifi-
cant increase at (P/dA, )„;,which are indicated on the horizontal
axis. The dashed lines represent the mean values of E2,„(see
Table II) for the different ranges of P/hA. .

to a new structure with a different degree of chaos (quan-
tified by Kz) and a different NDF (quantified by Dz).
The instabilities manifest themselves by a discrete change
of the mode correlation time, of the correlation exponent
Dz, and of the second-order entropy Ez.

Apart from the determination of Dz and Ez at low
spectral power densities where significant instabilities
occur, we also analyzed D2 and K2 at a high spectral
power density of approximately 515 mW/nm. The exam-
ples for the determination of Dz and Ez given in Figs.
1—3 are derived from this situation.

As mentioned in Sec. III, at high spectral power densi-
es we obtained D2, ab — +2,max and +2,ab —+2,max ~

respectively. The value for the correlation exponent at
515 mW/nm as obtained from five successive time series
was Dz ——2.80+0.28. This corresponds to three degrees
of freedom of the laser system at the considered high
spectral power density. Since already five degrees of free-
dom have been obtained in the range between 185 and 210
mW/nm, we conclude that somewhere between 210 and
515 mW/nm there is a spectral power density which pro-
vides a maximal NDF. A further increase of P/hA, again
simp1ifies the system by reducing its NDF. This behavior
can be explained by such gain inhomogeneities occurring
only at elevated spectral power densities. As an example,
one can regard spatial hole-burning effects which are typi-
cal for standing-wave lasers with a linear cavity configu-
ration. They usually cause a strong mode coupling with
increasing spectral power density. Hence, spatial hole
burning might be a reason for the low dimensionality of
the laser system at high spectral power densities.

Moreover, a strong mode coupling could possibly
"enslave" the additional degree of freedom which is given
by the absorber. In this case, the influence of the absorber
can be adiabatically eliminated, thus providing an identi-
cal NDF in an absorption dip and at the maximum of the
laser emission.

The purpose of this section is a detailed discussion of
an important point which we already addressed in the In-
troduction. Usually, instabilities in systems far from
thermal equilibrium appear (i) as a discrete change of an
order parameter during a continuous variation of the con-
trol parameter p of the system, or (ii) as a discrete change
of the derivative of an order parameter with respect to p
during a continuous variation of p. The mentioned cases
can be described analogous to a first- or second-order
thermodynamical phase transition, respectively.

For the investigated laser system, the pump power
Pp p serves as a control parameter, whereas the power
per mode is a measure for the order parameter. ' The
power per mode is equivalent to the spectral power densi-
ty P/bA, .

Figure 4(b) in paper I shows the typical features of in-
stabilities analogous to second-order phase transitions.
The slope of P/b, A, as a function of P~„~ shows signifi-
cant discrete changes. In paper I we have already pointed
out that in those regions of P~„~ where the slope is ap-
proximately zero, the laser emission bandwidth consider-
ably increases together with the total output power. This
behavior gives rise to a constant P/b, A, within a certain
range of Pppmp

Plotting the mode correlation times as a function of
P/b, A, , this range of the pump power appears as a distinct
value (P/bi, ), , It is important to keep this in mind
when considering the discontinuous changes of Dz and
Ez as a function of P/hk. An interpretation analogous
to a first-order thermodynamical phase transition would
certainly be incorrect, since P/hA, cannot be regarded as a
control parameter of the system.

In order to refer to thermodynamical analogies, a repre-
sentation is appropriate which is given by Fig. 4 in paper
I. An order parameter (P/hA, } is shown as a function of
the control parameter Pz„mz of the system. At the first
distinct change of the slope at P~„~=2.00 W, the pump
power seems to be no longer used to increase the power of
already existing modes, but it causes a broadening of the
laser-emission spectrum. At P~ ~

=2.25 %, the system
returns to its original behavior which is characterized by
an increase of P/hi, as a function of growing P~„„.

The changed behavior beyond Pp „=2.00 % can be
regarded as a "redistributed" action of the input power
P~ ~ within a certain range of P~„~. The increase of
the intensity of already existing modes is postponed in
favor of an enhancement of the spectral width, i.e., a for-
mation of additional modes.

Actually, the pump power range corresponding to
(P/hA, },„, represents a state of the system different from
the states below and beyond this range. Hence, if we con-
sider the dynamic invariants of the system as a function
of P/b, A, , we explicitly consider the state of the system
below and beyond (P/bA, ),„,. In these states, the system
behaves according to different chaotic attractors as shown
in Sec. IV A. However, dependent on the pump power the
system clearly occupies a further state between these
chaotic states. This "intermediate" state is entered as well
as left via an instability analogous to a second-order phase
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transition at two critical values of P~„~.
Nevertheless, the representation of the invariants as a

function of P/b, A, instead of P~~~ has a reasonable
motivation. A significant contribution to the limited
mode correlation times is given by purely stochastic ef-
fects. It has been shown that this stochastic contribu-
tion increases continuously as a function of the power per
mode. Since this quantity is exactly characterized by
P/b, A, , a representation of the mode correlation times as a
function of P/b, A, is appropriate to the physical situation.
Indeed, the observed instabilities have been discovered by
means of deviations from the purely stochastic approach.
In Sec. IV C we investigate the different contributions of
stochastic effects and deterministic chaos to the mode
correlation time.

C. Stochastic and chaotic contributions
to the xnode correlation time

The origin of the limited mode correlation times in cw
pumped multimode lasers has already been a subject of
paper I. Briefly repeated, two different concepts have
been proposed. They are based on stochastic and chaotic
contributions to the behavior of the system, respectively.

The stochastic aspect has been characterized by a mean
first-passage time tFp. It represents the average time in-
terval during which the considered system stays within
one of several coexisting basins of attraction. The transi-
tion of the system from one basin of attraction to another
one is triggered by fluctuations. A theoretical treatment
of the mode correlation time within the framework of
purely stochastic behavior has recently been achieved. ' It
predicts a steady decrease of the mode correlation time
with increasing mode intensity. Hence, this stochastic ap-
proach cannot account for discontinuous changes of the
mode correlation time at distinct (P/b, A, ),„,.

Since we have clearly demonstrated the chaotic
behavior of the investigated laser system (Sec. IVA), we
use the properties of deterministic chaos to develop a de-
tailed understanding of the dynamical behavior of the
laser system.

As mentioned in Sec. IIB, the Kolmogorov entropy of
a dynamical system is related to the inverse of the time in-
terval r, during which the behavior of the system is
predictable. In this sense, i.«« is the correlation time of
the system due to its chaotic properties. In particular,

limits the correlation time of a single variable of the
system, as long as stochastic contributions do not prevail.
Therefore, the correlation time r ~, of the mode intensity
is expected to be influenced by the limited chaotic correla-
tion time r„of the system.

The three temporal quantities we deal with are the
mode correlation time t ~„ the mean first-passage time
rpp (caused by purely stochastic effects), and the purely
chaotic correlation time ~„.Two of these quantities are
experimentally accessible: t ~, can be determined by
means of the intracavity absorption method, and r««can
be evaluated from the Kolmogorov entropy of the system.
Hence, we have a unique situation, allowing for a quanti-
tative estimation of the influence of fluctuations on the
behavior of the system. As a first step, we consider dif-

ferent possibilities how ~ and tFp can contribute to

twice
The basis of the concerning considerations reflects the

fact that the experimental observation of each one of the
mentioned time scales extends over a temporal range
which is very large compared with the observed temporal
quantity. Therefore we always observe temporal mean
values of t ~, as well as of r« .

Suppose that the laser system stays in one of several
coexisting chaotic attractors with a correlation time ~„,„.
Moreover, the system shows fluctuations which exist in
any dissipative system far from thermal equilibrium.
These fluctuations cause the system to switch from one
attractor to another after an average time interval rFp.
(The assumption of several coexisting basins of attraction
imposes no restrictions on universality. )

(1) In the case r & tpp, the total correlation time of
the system is governed by rFp since any correlation will

be destroyed by a change of the attractor. The correlation
time v««within one basin of attraction is never reached
in this case. For the observed mode correlation time we
obtain t ~,-tFp on a temporal average.

(2) The situation is somewhat different if r„&tFp.
The total correlation time of the system can obviously not
exceed i.„„.Moreover, if the correlation due to chaotic
behavior vanishes after an interval r„«, the stochastic
time scale further advances. If tFP exceeds r «o lynby a
small amount, one has to consider a superposition of both
time scales for an estimation of the total correlation time
of the system. For tFp »~«, the total correlation time
is well approximated by the chaotic correlation time r„«.

There is a fundamental difference between the cases (1)
and (2). In case (1) both stochastic and chaotic time scales
are simultaneously restarted, since the change of the basin
of attraction after tFP destroys the correlation properties
due to deterministic chaos. In case (2), however, the sto-
chastic time scale is not influenced when ~„ is reached.
The simultaneous renewal of both time scales cannot hap-
pen before tFp is reached.

In order to investigate the contributions of ~ a«nd tpp
to the measured mode correlation times, we estimated r««
from the second-order entropy as obtained in the center of
the particular absorption line which was used for the cor-
responding determination of t ~,. In this manner we ob-
tained t ~, and ~« for an identical experimental situa-
tion. As a result, t ~, turned out to be generally less
than ~ . Only the lowest spectral power densities, t ~,
and v.„agreed within their statistical errors.

For each particular range of the spectral power density,
a mean value of r«„has been calculated. The ratio of
each average ~„and each particular t ~, then
represents a measure for the influence of stochastic contri-
butions.

In Fig. 8, this ratio is shown as a function of P/hA, .
At very low spectral power densities, one notices that
~„ /t ~,-1. In this situation, the mode correlation time
is determined by the chaotic correlation time ~„,while

tFP &~„„.With increasing P/b, A, the mean first-passage
time iFp is reduced due to a growing influence of fluctua-
tions. We obtain ~« lr ~, &1, since tFP decreases and
finally drops below ~„.
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As an important point, we mention that the growing in-
fluence of stochastic contributions in Fig. 8 does not show
the significant steps which are observed in the mode
correlation times. This fact confirms the interpretation of
these steps due to different chaotic correlation times in
the different ranges of P/hA, . Moreover, the steady in-
crease of the stochastic contributions with increasing
P/hA, is completely consistent with the stochastic ap-
proach mentioned above.

At a spectral power density of 515 mW/nm, a chaotic
correlation time r„„=450 psec is obtained from Ez.
This gives rise to a ratio r~~/t ~,——4.77 for tm~, —95
p, sec. In this situation, the stochastic contributions are
clearly dominating. The mode correlation time at high
spectral power densities is due to the mean first-passage
time fpp.

Dynamical instabilities in a cw pumped, multimode-
dye-laser system have been observed by means of three
different key quantities of the system.

The correlation times t ~, of longitudinal modes has
been measured by the intracavity absorption method.
From the temporal evolution of the mode intensity, two
invariants of the system have been extracted. They

FIG. 8. Ratio of the chaotic correlation time ~ „, and the
mode correlation time t ~, as a function of the spectral power
density. In order to determine v „,the mean value of 3 2,'b, has
been taken for each particular range of P/hA, . The value of
t ~ has been taken from each particular spectral power densi-

ty. There are no significant steps of ~ „/t ~, as a function of
At the lowest spectral power densities, we have

= tmode

characterize its trajectory in phase space. These invari-
ants are the second-order dimension Dz of the attractor
and the corresponding second-order entropy E2.

The dynamical instabilities appear as discontinuities of
t ~„of Dz, and of Ez at certain critical spectral power
densities (P/b, A, ),„,.

From the analysis of the experimental data, sufficient
conditions for deterministic chaos have been extracted.
The chaotic behavior extends over the whole investigated
range of the spectral power density.

The NDF of the system at different spectral power den-
sities has been determined by the second-order dimension
D2. At low spectral power densities, the system shows
only a few degrees of freedom. This fact can be explained
by gain inhomogeneities, which cause a coupling of indi-
vidual modes, thus giving rise to only a few independently
oscillating mode packets. Below the lowest value of
(P/b, A, ),„„three degrees of freedom have been found.
Both observed instabilities increase the NDF by an
amount of one, respectively. This has been explained by
the formation of an additional packet of independently os-
cillating modes at (P/hA, ),„,. At high spectral power
densities, the NDF decreases to three again. As a possible
mechanism for this low dimensionality, spatial hole-
burning effects have been discussed which only occur at
elevated spectral power densities.

Moreover, at low spectral power densities the NDF in
an absorption line exceeds the NDF as obtained at an
absorption-free spectral position by an amount of one.
This observation has been described by the infiuence of
the absorber which introduces an additional degree of
freedom.

By means of the second-order entropy Kz, we obtained
a quantitative measure for the degree of chaos at different
spectral power densities. Kz has been used to estimate the
limited correlation time r of the system due to its
chaotic behavior. Comparing the mode correlation time
t ~, and the chaotic contribution r ~, we determined the
infiuence of purely stochastic contributions as a function
of the spectral power density. The theoretical prediction
of a steady increase of this influence with increasing spec-
tral power density could be experimentally verified.
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