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In this comment we study the problem of the stimulated recombination in an open system from a
stochastic point of view. %e set up the bivariate master equation for the number of photons and
ions inside the system. Then we perform a systematic expansion, with the system volume as an ex-
pansion parameter, and we obtain the fluctuations of the number of photons and ions around its
macroscopic values in the linear noise approximation; the stationary solution is also investigated.

I. INTRODUCTION

Recently Lami and Rahman' studied stimulated recom-
bination from a stochastic point of view. In their in-
teresting work they made a theoretical study of the stimu-
lated recombination and photoionization processes in an
isolated, closed macroscopic system. Their study was
based entirely on the statistical mechanics of stochastic
processes. This kind of research is interesting because it is
now possible to envision powerful lasers with photon fre-
quencies at which single photoionization can occur.

The present study is devoted to the atomic photoioniza-
tion and stimulated recombination case, but can be easily
extended to the molecular photodissociation and stimulat-
ed molecular recombination. We consider (i) stimulated
atomic recombination

e +X++h v~X+2h v

and (ii) photoionization

X+hv~e +X+ .

This paper extends the development of Ref. 1 to open sys-
tems, i.e., to systems where photons are introduced (for
simplicity) at a constant rate, and which loses the photons
at a rate which depends on the photon population inside
the system. It is interesting to remark here that because
the photon population inside the system is a stochastic
variable, the loss rate is not constant and must be studied
from a stochastic point of view.

This brief report is organized as follows. In Sec. II we
derive the bivariate master equation for the number of
photons and the number of ions inside the system, and we
justify the reasons which lead to this equation. Then we
perform a systematic expansion of the master equation;
to this end it is necessary to know how the coefficients of
the master equation depend on the expansion parameter

which we have chosen equal to the system volume. In
Sec. III we deduce from the systematic expansion the two
macroscopic equations for the time evolution of the aver-
age number of photons and ions inside the system. Then
we deduce the Fokker-Planck equation in the linear noise
approximation. This equation can be easily solved in this
approximation, and we show that the fiuctuation parame-
ters obey a set of coupled integro-differential equations.

II. BIVARIATE MASTER EQUATION
AND SYSTEMATIC EXPANSION

We follow here the nomenclature of Lami and Rah-
man. ' In the case of an open system we have only one
conservation law, instead of two as in Ref. 1. The conser-
vation law of the number of particles is expressed as

0+0 =A (2)

where a and a+ are the number of atoms and ions,
respectively, and A is a constant. %e assume also charge
neutrality. This means that the total number of electrons
n,, is equal to a+. The second conservation law used by
Lami and Rahman does not apply in our case because
photons escape from the system at a rate which depends
on the number of photons inside the system which is a
stochastic variable.

Let us consider the number of photons n and the num-
ber of ions a+ as the unknown stochastic time-dependent
variables; the rest of the variables are related to these.
The system that we consider is the same as Ref. 1, except
that photons are pumped into the system at a constant
rate 5 and leave the system at a rate which depends on the
number of photons inside the system. %e denote by
P(n, a, t) the distribution function at time t, or probabil-
ity to have n photons and a+ ions at time t. Using the
probability balance technique, it is very easy to deduce
the bivariate master equation, which is given by
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dt
=a(n + l)a [a+—1]P(n + l,a+ —l, t)+(A(n —1)(a++1) +y(a++1) )P(n —l,a++ l, t)

+5P(n —l,a+, t)+P(n +1)P(n + l,a+, t) —(5+ana [a+]+dna+ +Pn+y(a+) )P(n, a+, t)

where we use the square brackets to signify the functional dependence of a on the number of ions a+. The physical
meaning of the different terms and coefficients on the right-hand side of Eq. (3) can be better understood with the help
of Fig. 1, where r„ is the probability per unit time that a jump occurs from (n, a+) to (n —l,a+). In our case r„=pn,
where p is the loss coefficient for the system; g„ is the probability per unit time that a jump occurs from (n,a+) to
( n + l,a+ ). In our case g„=5, where 5 is the rate at which photons are pumped into the system. gr (n, a+ ), is the prob-
ability per unit time that a jump occurs from (n, a+ ) to ( n + l,a+ —1). In our case gr (n, a+) = dna+ +ya+, where A,

and y are the stimulated and spontaneous recombination coefficients, respectively. rg(n, a ), is the probability per unit
time that a jump occurs from ( n, a+) to (n —l,a++1). In our case rg (n,a+) =ana [a+]=ctn (A —a+), where a is the
photoionization coefficient.

Now with the help of the step operators E~ and E; for photons and ions, respectively, we can rewrite Eq. (3) as fol-
lows:

dP(n, a+, t)
=a(E&E; ' —l)n (A —a+)P(n, a+, t)+(E~ 'E; —1)(in+y)a+ P(n, a+, t)

dt
+5(E& ' —1)P(n,a+, t)+P(E~ —1)nP(n, a+, t) . (4)

To perform a systematic expansion of the master equation (4), we need to choose some expansion parameter. By physical
considerations, it is easily deduced that the appropiate expansion parameter is the system volume Q. Now following
Van Kampeni and with the help of the considerations of Lani et al. ,

2' we rewrite Eq. (4) as follows:

t I

(EzE; ' —1)n(Qp; —a+)P(n, a+, t)+(E~ 'E; —1) n + a+ P(n, a+, t)

+Qp&(E&
' 1)P(n,a+—, t)+P(E~ —1)nP(n, a+, t), (5)

where

a'=uQ,

A, '=A, Q

y'=yQ,

(6a)

(6b)

n =QP(t)+Q'~'g,

a+=Qf(t)+Q'~ n,
(7a)

(7b)

where n'(t)=QQ and I'(t)=QQ, are the macroscopic
values of the number of photons and ions, respectively, at
time t, and g and n are the new stochastic variables. Now

and p; =2/Q is the initial atomic density per unit
volume, and pz

——5/Q is the rate at which photons are in-

jected into the system per unit volume.
The next step in the expansion is to set

a2
E =1+Q ' + —,Q +'

ag & ag2

22E-'=1—Q-'" +-'Q-' "
ag

' a('
— a'

E;=1+Q ' + —,Q ' +'
an

' an'
22

E,-'=1—Q-'" +-,'Q-' ",—.
an
' an'

(8a)

(8b)

(8c)

(8d)

Now direct substitution of (7a) into the bivariate master
equation (5) yields, after some algebra,

I

if (7a) and (7b) are substituted into P(n, a+, t), we obtain
the distribution function of g and n denoted by II(g, n, t).
Now we consider the following expansions of the step
operators:

all „,aiI dy „,all dy ~ „, a
at ag dt an dt Q ag

a a
ag an

2

(Qy+Q'"g)

&& [Qp, —(Qq+Q'"n)]11

0 ()

an g' 2 an

2
I

(Qp+ Q'~'g)+ ~
Q 0

Qx{Q'P'+2Q'"Pn+Qn')II+Qp, —Q '" + II
a( 2

„,a n-' a'
+P Q-'" + (Qy+Q'"g)il+. . .

ag 2
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In the same way the cancellation of the coefficients of
n'' a11/aq yields

dt
=a'4(p 4—) (10b)

Equations (10a) and (10b) can be written using
(6a)—(6c) in the form

dn

df

dI'

n'I, ' +@I' +5 an—'(A I")—P—n*,

=an '(A I' ) —An—'I.' yI'—

(1 la)

(1 lb)

FIG. 1. Transition probabilities in the state space ( n, a ).

Equation (9) is the systematic expansion of the master
equation which will serve as the starting point for the next
section.

III. THE LINEAR-NOISE APPROXIMATION
AND THE EMERGENCE OF THE MACROSCOPIC LAW

At first sight, Eq. (9) is not a proper expansion for large
0, because several terms of order Q'~ appear. However,
one notices immediately that the terms involving 0'~i are
of two classes: the first one involves II only through
BII/Bg and the second one only through BII/Brt; it is
therefore possible to let them cancel by choosin f and P
such that the coefficients of 0'"a11/ag and 0 ~'t)11/arl
vanish. After some algebra one finds that the cancellation
of the coefficients of 0'~iBII/Bg gives

=~'00'+r'0'+p, a'0(p P)—P4— —

[a 5 +4(Py+A5)a5A]'~ —a5
2(Py+ A,5)

(12)

We observe that the macroscopic equations (1 la) and
(lib) do not give rise to multiple stationary solutions
which one gets in considering closed systems.

The terms of order Q in Eq. (9) yield after some alge-
bra the following bivariate linear Fokker-Planck equation:

Equations (1 la) and (1 lb) form a system of coupled non-
linear differential equations, the so-called macroscopic
equations, but we are really interested in the fiuctuations
around the macroscopic values n" and I' for the number
of photons and ions, respectively. It is interesting to point
out that the macroscopic equations can be deduced direct-
ly from physical considerations without any recourse to
systematic expansion. However, the fact that Eqs. (1 la)
and (1 lb) are the same as are obtained from physical con-
siderations means that we are on the right path.

The stationary point in the phase plane (n', I') is ob-
tained by setting the time derivative of the macroscopic
equations equal to zero. In this way we obtain n"=5/P
and

=[— '(p —4)+~'0'] (II+(a'P+ 2A. 'Pg+ 2y'P)
8 Br/

'2
II+ i[a'4(p 4)+(~'0+—r')4']

&
—

&
fI+ i(p, +&4), +&& W (13)

The solution of Eq. (13) is well known, and is given by

II(g, i), t) =(2~) '(det=)

&&exp[ —2(y' —&y&'):- '(y —&y&)] (14)
(15)

where y, =g and yz ——il;y =[y;], t means transpose, and
is the variance-covariance matrix given by

=;,=(&y,y, &
—&y; & &y, &).

In order to know the distribution function, we need to
calculate the averages (g), (rl ) and the moments,
(g ), (rl ),(fi)) versus time. (g& and &i)& satisfy a pair
of coupled differential equations. The first one is ob-
tained by multiplying Eq. (13) by g and then integrating
over g and i). The second one is obtained by the same
method but multiplying by g. In this way after integra-
tions by parts we obtain

—(a'y+2X'yy+2) y)(q) .

These equations are the variational equations associated
with the macroscopic equations which again confirm the
correctness of the master-equation expansion. In order to
find the set of differential equations satisfied by
(g ), (grl), (rl ), Eq. (13) is first multiplied by g and
then integrated over g and i), and the same procedure is
applied with g'il and il Finally after so. me calculations
one arrives at the following set of coupled differential
equations:
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a, &g'& =2[—a (p, —y)+V+ —P]&g'&

+2(a'P+2A, 'Pg+2y'P) & gg &

+[a'0(p 0—)+(~'0+r')W+p +W]
8, & q'& = —2(a'P+ D,'Pg+2y'g) & g'&

-2[- «;-e)+~V']&&~&

+ [a'0(p 4—)+(~'0+1")A

a, &gq& =[a (p, —y) —X y']&g'&

+( 'C+»'&&+2'V) &"&

+ [—a'(p f)—
+~'0' «'4'+—2~'A'+2x'4) P] & (r—l &

[a'4(p— 4)+(—~'0+r'4'] .

(16a)

(16b)

(16c)

Equations (16a)—(16c) determine the variances and the co-
variances of the fluctuations of n and a+ around the
macroscopic values n

' and I'. To solve this set of equa-
tions it is necessary to know the initial distribution at
some initial time. For instance, if at time r =0, we start
to pump photons into the system, obviously at time 0,

We have solved the set of Eqs. (16a)—(16c) in the sta-
tionary state, and we have found that the correlation be-
tween g and g is negative. This is a direct consequence of
the physical fact that each time we have one stimulated
atomic recombination, n increases and u+ decreases, and
if we have one photoionization process n decreases and
a+ increases; so that in both cases we have a negative
correlation.

We have also found that the variances, « n » and
« a+ » s, for the number of photons and ions inside the
system at the stationary state are not Poisson variances.

Finally, from the stationary solutions it is easily deduced
that the covariance « na+ » should be bigger in abso-
lute value than n, ', i.e., the macroscopic number of pho-
tons at the stationary state.

IV. CONCLUSIONS

In this paper we have studied the problem of the atomic
stimulated recombination and photoionization in an open
system in which photons are pumped into the system at a
constant rate, but which leave the system at a rate which
depends on the number of photons inside the system. We
have seen that in this case we have only one conservation
law instead of two like in Ref. 1. This fact has forced us
to set up a bivariate master equation for the number of
photons and ions, respectively.

Due to the nonlinear character of this master equation,
it is not possible to apply the Kolmogorov methodolo-
gy, and we have used a systematic expansion of the master
equation in terms of the system volume Q. First we have
studied, with the help of the works of Van Kampen and
I.ami and co-workers ' how the various coefficients de-
pend on the volume Q. Then we have set up the master
equation in a suitable form to perform the systematic ex-
pansion. From this expansion we have obtained the mac-
roscopic equations, which are the same ones that are ob-
tained directly from physical considerations. Then we
have obtained in the linear-noise approximation the
bivariate linear Fokker-Planck equation satisfied by the
fluctuation of the number of photons and ions around its
macroscopic values. We have shown that the average of
these fluctuations satisfy the variational equations associ-
ated with the macroscopic equations (10a) and (10b),
which again confirms the validity of the systematic ex-
pansion.
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