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Fluctuation formulas which are characteristic of the classical isoenthalphic-isobaric ensemble are
derived in a direct and fundamental way. The technique used is adapted from a new method intro-
duced by Pearson, Halicioglu, and Tiller [Phys. Rev. A 32, 3030 (1985)] in their treatment of the mi-
crocanonical ensemble. The application of this new method to other adiabatic ensembles is also dis-

cussed.

I. INTRODUCTION

Pearson, Halicioglu, and Tiller! have made a significant
contribution to the classical theory of the microcanonical
ensemble. For instance, they provide the simplest and
most fundamental way to derive exact fluctuation formu-
las unique to this adiabatic ensemble.>> The purpose of
our paper is to further illustrate their method by applying
it to another adiabatic ensemble* which is gaining prom-
inence by its adaptation’ to constant pressure molecular-
dynamics simulations® of matter.

The basic statistical mechanics of the isoenthalpic-
isobaric ensemble has already been presented by Ray, Gra-
ben, and Haile.” Two fluctuation formulas characteristic
of this adiabatic ensemble were first derived® by
transforming known formulas from other, isothermal en-
sembles. The three basic fluctuation formulas for this en-
semble were derived in Ref. 7 by a method of adiabatic
differentiation of certain potentials. Although this latter
procedure is simple to apply, the elegant and rigorous
method of Pearson et al.! (hereafter designated PHT) ob-
viates such previously used techniques for adiabatic en-
sembles. We also point out in Sec. IV several other adia-
batic ensembles to which the PHT method may be ap-
plied.

II. THE HPN ENSEMBLE

The isoenthalpic-isobaric or HPN ensemble consists of
N identical particles adiabatically confined within a vari-
able volume ¥V which is maintained at a constant pressure
P. Under these conditions the enthalpy H remains con-
stant as well. The phase-space volume Q(H,P,N) and the
ph;lsc—space density «(H,P,N)=(0{/0H)p y are given
by

1
UH,PN)=— [ OH —PV —)dr, (D

1
o(H,P,N)=— [ 8H—PV —5)dr, @

where © and § are the generalized unit step and delta
functions, C is a constant, # is the total Hamiltonian,
and dr is the elementary phase-space volume of the N
particles times dV.

The adiabatically invariant form of the entropy S and
the absolute temperature T, both written as functions of
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H, P, and N, are given by
S =kpInQ, (3)
kpT=Q/0 , 4)

where kg is Boltzmann’s constant.

We now consider the class of particle Hamiltonians in
which the potential energy @ is a function of spatial coor-
dinates only. The momenta enter as quadratic terms in
the kinetic energy K, and integration’ over these coordi-
nates can be carried out in Eq. (1). This calculation pro-
duces the volume of a 3 N-dimensional sphere whose ra-
dius squared is equal to 2m (H — PV —®), where m is the
single-particle mass. These considerations reduce Egs. (1)
and (2) to the forms

1

MH,PN)= Co,T(3N/2+1)

X [ (H—PV —@)?¥0(H —PV —®)d7’ ,

(5)

1
o(HPN)= ormn s

X [ (H—PV —®)N?>~10(H —PV —®@)d7’

(6)

where Co=C/(2mm)*¥/2, T is the standard gamma func-
tion, and d7’ is the elementary spatial volume of the N
particles times dV. Note that Eq. (5) can be obtained
directly from Eq. (1) without recourse to Laplace
transforms, and that Eq. (6) is generated from Eq. (5) by
0=(3Q/3H)p y.

Following similar lines the ensemble average of any
dynamical function of the spatial coordinates g and
volume, 4 (q, V), is given by

1

(4)= wCo'(3N /2)

X [ A(H—PV —®yN~'0(H —PV —®)dr' .

N
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PHT made the simple, but apparently theretofore over-
looked observation that the total dynamic kinetic energy,
which is a function of the particle momenta, can be ex-
pressed in terms of spatial coordinates only (under condi-
tions of constant energy and volume) through the trivial
equation K =FE —®! The extension of this idea to the
present ensemble yields

K=H—-PV—-o. (8)

That is, for constant H and P (and N) the kinetic energy
is expressible in terms of the volume ¥V and the spatial
coordinates of the particles through ®. Upon inserting K
for 4 in Eq. (7) and using Egs. (5), (6), and (4), we obtain
the fundamental connection between kinetic energy and
temperature

(K)=(3N/2)kpT . 9)

III. FUNDAMENTAL FLUCTUATIONS

In this section new derivatives are given of the fluctua-
tion formulas containing the isobaric heat capacity Cp,
adiabatic compressibility «,, and isobaric volume expan-
sivity ap. These calculations in the HPN ensemble serve
to further illustrate the power and simplicity of the PHT
method as well as to verify previous results.

First, we introduce the thermodynamic definitions

Cp=(3H /3T)p , (10)

Vis=—(3V /3P)g
=—(3V/dP)y—V(3V /3H)p , (1

Vap=(dV/3T)p
= —(3S /3P)y +(3S /3H)p(dT /OP)(3H /3T)p ,
(12)

where the subscript N on all partial derivatives has been
suppressed. The corresponding expressions in the HPN
ensemble are

(V)ks=—(3(V)/dP)y —{V3(V)/3H)p , (14)

(V)ap=—(kp/Q)

(3Q/0H)p(3(K ) /3P)y
(3(K)/0H)p

X |(30/8P) g —

(15)

Using Egs. (5), (6), and (7), we obtain in a straightforward
way the exact results:

kp/Cp=1—(1—2/3N){K){K~"), (16)

(VIks=(N/2—1) (VK1) —2(V){VK~")
+{(MXK)), (17)

(VYap/Cp=(N/2) (VK1) —(V)(K~1)). (18)

To derive asymptotic expressions for the foregoing
quantities in the limit N — oo, we make use of the expan-
sion

(K1) =(K)""(1-8K +(8K)*--- ), (19)
where 8K =(K — (K ))/(K ) << 1. The results are

Cg/Nkg=[+—-N((8K)*)]7!, (20)

kgTkg =(V){(8?*) , 1)

kgTap /CF=—(8(KV)) , (22)
where

(8KV)) =((KV) —(K){V))/((K)(V)).

Equations (20) and (21) were derived in Ref. 8 by
transforming known fluctuation equations over to the
HPN ensemble, whereas Egs. (20), (21), and (22) were de-
rived in Ref. 7 by adiabatic differentiation of certain ther-
modynamic potentials. The use of the PHT procedure, as
presented in this section, gives a simple and clear deriva-
tion of these same results and also confirms their validity.

IV. DISCUSSIONS

As seen in the previous section the PHT methods can
be applied to the HPN ensemble to give an improved
derivation of the fluctuation formulas for this ensemble.
An extension of the HPN ensemble which has proven use-
ful for treating solids is the isoenthalpic-isotension or
HiN ensemble.”® Here ¢ is the thermodynamic tension
tensor. The HIN ensemble is an adiabatic ensemble and
fluctuation formulas for the adiabatic elastic constants,
the thermal expansion tensor at constant tension, and the
specific heat at constant tension were derived in Ref. 11.
Also presented in Ref. 11 were fluctuation formulas for
the higher-order elastic constants. Using the PHT
method we could produce an improved derivation of these
same results.

A counterpart to the HtN ensemble is a microcanonical
ensemble in which the size and shape of the system is held
constant. If the matrix h specifies the shape and size of
the system then we are discussing the EAN ensemble.
This ensemble was given a detailed treatment in Ref.10
where fluctuation formulas were presented for the adia-
batic elastic constants, the temperature coefficients of
thermodynamic tension, and the isostrain specific heat.
The fluctuation formulas have been tested in recent
molecular dynamics calculations!> where it was shown
that they furnish a very efficient and convenient method
for calculating elastic constants and other thermodynamic
properties of solids. PHT have rederived the fluctuation
formulas for the adiabatic elastic constants in this ensem-
ble using their elegant method.

Note that Egs. (16), (17), and (18) are exact results for
the (HPN) ensemble based on the entropy definition of
Eq. (3). Such exact results contain the reciprocal kinetic
energy in the ensemble averages. However, in their
asymptotic forms, Egs. (20), (21), and (22), this is not the
case, and these formulas, which may be obtained by
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transformation theory or adiabatic differentiation of po-
tentials, are verified and given a more complete deriva-
tion.

In the method of differentiation of potentials one first
constructs a new potential whose adiabatic differentiation
leads to the relevant fluctuation formula; we refer the
reader to Refs. (3), (7), and (11) for examples of the use of
this method. In the Appendix we show how the PHT
procedure can be used to justify the basic equations of this
method of deriving fluctuation formulas.

In summary, PHT have discovered an important calcu-
lational method which may be used to derive various pre-
dictions and properties of adiabatic ensembles. It is a cu-
rious fact that their important and simple method has lain
undiscovered until this time.

APPENDIX

References 3 and 7 present direct derivations of the pri-
mary fluctuation formulas in the microcanonical ensem-
ble and in the HPN ensemble, whereas Refs. 10 and 11
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contain such derivations in the EnH and H + N ensem-
bles. Each derivation begins by choosing (with foresight)
a newly defined potential. Here, we would like to consid-
er one such potential to illustrate the relationship between
this earlier method and that of PHT.

Let us choose Eq. (7) of Ref. 3 as our starting point.
Casting the equation in current notation gives

1
y=" [ KOE -,

where dr is the elementary 6 N-dimensional phase-space
volume of microcanonical ensemble theory. Upon in-
tegrating over the momenta, we find

Y=w(K?)/(3N/2+1)
=[(3N/2)/3N/2+ DI{K?)Q/{K)

={[14+{(8K)})]/(14+2/3N)}{K)Q .
The asymptotic form (N — o0 ) is

Y°=(K)Q.
Thus, Eq. (10) of Ref. 3 is rigorously justified.

1E. M. Pearson, T. Halicioglu, and W. A. Tiller, Phys. Rev. A
32, 3030 (1985).

2J. L. Lebowitz, J. K. Percus, and L. Verlet, Phys. Rev. 153, 250
(1967); P. S. Y. Cheung, Mol. Phys. 33, 519 (1977).

3J. R. Ray and H. W. Graben, Mol. Phys. 43, 1293 (1981).

4W. B. Brown, Mol. Phys. 1, 68 (1958).

SH. C. Anderson, J. Chem. Phys. 72, 2384 (1980).

6J. M. Haile and H. W. Graben, J. Chem. Phys. 73, 2412 (1980).

7J. R. Ray, H. W. Graben, and J. M. Haile, Nuovo Cimento

64B, 191 (1981).

8J. M. Haile and H. W. Graben, Mol. Phys. 40, 1433 (1980).

9A. Minster, Statistical Thermodynamics (Springer, Berlin,
1969), Vol. I, Chap. 1.

10J, R. Ray and A. Rahman, J. Chem. Phys. 80, 4423 (1984).

113, R. Ray, J. Appl. Phys. 53, 6441 (1982).

12, R. Ray, M. C. Moody, and A. Rahman, Phys. Rev. B 32,
733 (1985); 33, 895 (1986).



