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Use of combinatorial algebra for diffusion on fractals
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The use of combinatorial algebra for understanding diffusive motion on a geometrically ordered
fractal lattice is demonstrated. The specific example of the fractal lattices used are the Pascal-
Sierpinski gaskets of prime orders of which the well-known Sierpinski gasket is a special case. It is
shown that the conclusions obtained from such an analysis can be meaningfully interpreted in physi-
cal terms.

Renormalization procedures' have been widely em-
ployed recently for understanding diffusion on the
Sierpinski gasket, and with great success. For example,
Guyer' has pointed out that comparison of calculated and
experimentally obtained results will make sense only if the
length-scale and the time-scale regimes coincide; and
O'Shaughnessy and Procaccia' have confirmed the validi-

ty of a scaled diffusion equation. The techniques used for
obtaining these and other results can hardly be considered
simple. It is surprising, therefore, that the use of com-
binatorial algebra has not been made in investigating dif-
fusion on geometrically self-similar fractal lattices, partic-
ularly when this algebra is very well known. By its very
nature, combinatorial algebra is particularly suited for
analyzing such fractals because these fractals can be
thought of as structures of structures, not unlike the con-
cept of arrays of arrays put forward in 1943 by
Schellkunhoff. It is the object of this report to introduce
the use of combinatorics for this purpose by considering
diffusive motion on the Pascal-Sierpinski gaskets, of
which the Sierpinski gasket is a special case. Some results
derived by this approach are given with emphasis on
physical interpretation.

The Pascal-Sierpinski gaskets (PSG's) are constructed
on a symmetric triangular grid, in which the nth row,
n =0, 1,2, . . . , contains n+1 number of sites In, m„I,
m„=0, 1,2, . . . , n. Attached with each site is the binomi-
al coefficient I ![n!m( nm„)!] '

J, so that the resulting
map of the binomial coefficients forms the famous
Pascal's triangle. Now, all sites whose binomial coeffi-
cients are multiples of some prime lti, %&1, should be
made to vanish. The first N'L+" rows of the surviving
sites form a PSG of order N which has evolved to a stage
L, L & 1. The similarity fractal dimension of these PSG s
has been shown to be4

d„=in[(1y2yr(X+1)]nn(W,

and for % =2 the PSG generated is the same as the
Sierpinski gasket. The PSG of order 5, thus generated, is
shown in Fig. 1.

The diffusion experiment to be performed on a PSG is
now described. Let a particle enter the PSG at the site
IO, OI and move on downwards. Let the (vertical) distance
between successive rows be c, and let the (horizontal) in-
tersite distance between adjacent sites on the same row be
21. The rules applicable to its motion are as follows: (a)
it can move downwards one rom at a time, and it can nev-
er move either upwards or laterally; (b) there cannot be
more than two sites available in the next row, one im-
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FIG. 1. The first 64 rows of the Pascal-Sierpinski gasket of
order X =5.
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mediately to the right at a horizontal distance of d, and
the other immediately to the left at the same horizontal
displacement from its present position; (c) if there are two
possible paths permitted by rules (a) and (b), it can move
leftwards with a probability p & 1, or to the right with a
probability q =1—P; (d} if there is only one permitted
path, it surely takes it; and (e) if there is no permissible
path, then that site is a sink into which the particle falls
and is removed from the gasket. In Fig. 2 these various
possibilities have also been illustrated. The object of this
experiment to determine the chance a particle has of mak-

ing its way up to some specified site in the PSG.
Parenthetically, we observe here that the prescribed set

of rules has some basis in reality. Messier and Yehoda7
have shown that the morphology of vapor-deposited thin
Alms, in which the condensing atoms aggregate in a ran-
dom ballistic fashion, form a cauliflowerlike structure.
The random ballistic aggregation process leads to cluster-

ing, with the variously sized clusters competing for
growth. The boundaries between the resulting growth
cones, commonly called voids, form a random array of
cones, which themselves cluster to form yet larger cones.
These void boundaries are known to be related to dif-
fusion. For instance, films with a lower density always
etch chemically fasters' and the etching proceeds pre-
ferentially along the void networks. '0 Also, hydrogen in

an electrochemical cell configuration is known to have

high diffusion through tungsten oxide films, and that the
diffusion is predominantly along the void boundaries. " A
mathematical description of the void network, when cou-
pled to a realistic diffusion description, would be a signifi-
cant contribution to quantitative preparation-morpho-
logy-property relations in thin films.

The use of combinatorial algebra is best illustrated by
an example, like the one shown in Fig. 3 for the N =2
gasket. For this purpose, the basic gasket unit is made up
of its first N rows. In Fig. 3 the arrival probabilities on
the sites of the second row are, leftmost first Ip, q ]. Then,
the arrival probabilities on the four sites of the last row of
the stage L =1 are (pIp, q j,qIP, qj)=(p,pqpq, q ). Next
the arrival probabilities on the eight sites of the last row
of the stage L =2 are

0

P

PP

(t))

(c)

4 'V IS»qI qIS»ql»q'9 IP qI qIS»ql)]

=(S' p'q p'q S'q' p'q' pq', Sq' q'»
and so on. The chance of arrival at other sites can also be
computed in this recursive fashion. Thus, it becomes
clear that the arrival probabilities for the sites of stage
L +1 are simply related to those for the sites of the stage

Based on studies done on the PSGs in this manner,
some remarks applicable to diffusion on these fractal
structures can now be made.

Remark¹.1. The probability of arrival at any site on
the last row of the Lth stage is given by

PQ (N, L)= (p +q) ff
i =1,2, . . . , I.—1

'X —1

yi(N —i) i(N —))]+g

FIG. 3. To illustrate the use of combinatorial algebra on the
PSG of order N =2. (a) Arrival probabilities for the first N
rows of the PSG, to be used for calculating (b) the arrival proba-
bilities for stage L = 1, which, in turn, are used for computing
(c) the arrival probabilities for stage L =2.

(2a)

This remark has been stated without proof here, but it can
be easily derived by following the combinatorial procedure
given above for a general PSG of order ¹ In particular,
if P= —,', then

Pg (N L) 2 N(N~ L —i)— —
(2b)

FIG. 2. Probabilities for elementary diffusive motions on a
PSG.

and it becomes clear from (2a} that as L increases, the
chance of the particle getting lost in sink sites increases.

Remark No, 2. The probability of arrival at the left-
most site of the last row of the Lth stage is given by

P(NL)=p( " =[P(N L —1)] (1
also the probability of arrival at the rightmost site of the
same rom is given by
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Q(N, L) =q' " =[Q(N, L —1)] (1 . (31)

To prove this remark, one needs to extract the highest ex-
ponent of either p or q in (2a), which turns out to be

(N 1}—1+(N —1) (N') =(N —1)N .

which implies that, because p, q & 1, the probability of ar-
rival at the leftmost or the rightmost sites on the last rows
of comparably sized order N gaskets decreases with in-
creasing N. This is because the number of sink sites is
less when N is higher, and that the sink sites are concen-
trated towards the median of the gasket, away from its
sides.

I.et us also compute PQ(N, L) with P = —,
' for the two

PSG's under investigation. Then,

(3c)

The cumulative effect of these two remarks can be dis-
cussed qualitatively now. Since it is impossible to find
primes Ni and Nz and integers L i and L2, such that

~1' =%2", (4)

an exact comparative study is not possible. However, a
PSG of order 3 and stage 4 contains 243 rows, and a PSG
of order 2 and stage 7 contains 256 rows: They may be
considered roughly equal in size and compared with each
other. It is seen from Eqs. (3a) and (31) that

P(3,4) p P(2, 7); Q(3,4)=q Q(2, 7),

crease. Finally, with regard to counting the number of
various types of sites, the following remark can be made.

Remark ¹.4. There are exactly 8(N, L) branching
sites in a PSG of order N and evolutionary stage L where
the diffusing particle has a choice of two downward
paths, and this number bears a direct correspondence with
the similarity dimension of the PSG. This number is
given by

8(N, L)=( —,')N'(N' —1)[(—,)N(N+1)] -' . (Sa}

To prove this statement, consider that the first N rows of
the gaskets contain exactly ( ,' }N(N——1) such sites. In
the first stage this primitive structure comprising the first
N rows is contained ( —,

' }N(N + 1) times; so

8(N, 1)=(—,
'

)N (N —1) . (Sb)

But each PSG of stage L ) I contains ( —,
' }N(N+1) of

PSG's of the previous stage L —1. Hence, B(N,L)
=(T')N(N+1)8(N, L —1), and the formula (Sa). In ad-

dition, the ratio

B(N,L)/8(N, L —1)=(—,')N(N+1)=N ",
as per Eq. (1). This means that a gasket containing only
the branching sites of a PSG of order N is also a geome-
trically ordered fractal possessing the similarity dimension
dN. This is interesting, since the total number of sites of
all kinds can be enumerated as

T(N, L)=[(-,' )N(N+1)]'+',

PQ(3,4) =2"PQ(2,7), (6} whence

which means that the probability of reaching any one of
the sites on the last rows of comparably sized gaskets in-
creases with increasing N. Again, the number of sink
sites explains this conclusion easily.

As a result of Eqs. (5) and (6) it becomes apparent that
as N increases, the tendency of the particle to travel to-
wards the median of the gasket increases. To examine
this contention further, the following remark can be
IDade.

Remark¹.3. The probability of arrival at the central
site of the last row of the Lth stage is given by

C(N, L)= t(N —1)![(N/2——,
' )!] I

+'

x(

T(N, L)/T(N, L —1)=N ", (10b)

the right-hand side of Eq. (101) being identical to that of
Eq. (9).

In the same vein as of the previous remark, two further
statements can be made, one regarding the number
S(N,L) of sink sites, and the other for the number
0(N, L) of sites from which only one downward path is
possible. Without giving any proofs for them (which can
be found using procedures similar to that for Remark No.
4), they are as follows.

Remark¹.5. The number of sink sites in stage L, in-
cluding those in the last row of the stage, can be comput-
ed recursively as

the formula being valid only for the odd primes N. The
proof for this remark can be obtained simultaneously with
that for Remark No. 1. It can be easily seen that the ratio

with

S(N,L)=S(N, L —1)(N ")+2(N —1), (1 la)

C(N, L)[P(N,L)Q(N, L)]
= [(N —1)![(N/2 ——, )!] I

+' (71)

increases unboundedly as X increases. Consequently, the
tendency to diffuse towards the median increases with in-
creasing N. In light of the previous three remarks, it
should be noted that the probabilities of arrival on a given
site are symmetric about the median axis of the PSG's if
p = —,'. If P ~ —,

'
(respectively, p (—,'), the chances of ar-

rival in the left (respectively, right) half of the gaskets in-

S(N, 1)=(N —2)(N ")+2(N —1) . ( 1 lb)

0 (N, L)=0 (N, L —1)(—,)(N —N —4)—2, (12a)

0(N, 1)=2( —, )(N —N —4) —2 .

In the limit that I. is large, the ratio

(12b)

Remark No. 6. The number of sites in stage L, includ-
ing those in the last row, from which only one downward
path is available can also be computed recursively as
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0 (N, L )IO (N,L —1)= (N ")—(N —2) (14)

in the same limit. For N =2, the gasket made up of the
single-path sites of the PSG, though not exactly self-
similar, does certainly tend to have a fractal dimension
close to d~. For very high N, say N & 23, a similar con-
clusion can also be drawn.

In summary, it has been shown here by the use of com-

S(N, L)/S(N, L —1)= (N "),
implying that although a gasket made of the sink sites of
a PSG is not exactly self similar, it is still a fractal struc-
ture whose fractal dimension is close to dz. On the other
hand, from Eq. (12a), the ratio

binatorial algebra on the Pascal-Sierpinski gaskets, that
this simple algebra can be employed to glean some under-
standing of diffusive motion on geometrically ordered,
self-similar fractals. Fractal lattices different from the
ones employed here can be considered, and different rules
for diffusive motion can be prescribed, along with the in-
corporation of stage-dependent and position-dependent
probabilities. Since this approach requires effort on only
the primitive structure (for a PSG, the first N rows),
while the evolution of stages can be analyzixl recursively,
the use of combinatorial algebra appears to be promising.
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