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Constant-pressure equations of motion
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Some of the differences among several alternative formulations of constant-pressure molecular
dynamics are described. The formulations all agree in the large-system limit, but differ for small

systems.

Several times during the past year I have been asked to
explain the difference between the Nose-Andersen' 4

"isobaric-isothermal" equations of motion (in which pres-
sure and kinetic energy fluctuate) and the closely related
equations I described in my later work on the Nose oscil-
lator. ' This Brief Report answers that question.

In both cases the motivating idea was the same —to use
equations of motion which can generate the phase-space
density typical of the Gibbsian isobaric-isothermal parti-
tion function. Such a goal is different from that pursued,
at about the same time, by Evans and Morriss and Abra-
ham, who independently developed a third set of equa-
tions which instead make the instantaneous pressure P a
constant of the motion:

P=O, PV= g(pil—m)+ gg(r F)

In Eq. (1) the pressure P is held constant by calculating
an instantaneous infinite-frequency bulk modulus and ad-

justing the volume V to satisfy the condition P=O. In
Eq. (1) the N-particle volume, usually periodic, is D di-
mensional. The first sum runs over all N particles, each
of mass m. The double sum includes each pair of parti-
cles once. The nearest-image convention is used in calcu-
lating the scalar dot product of the pair's separation r and
the force F.

In Gibbsian statistical mechanics the usual "isobaric"
ensembles allow the instantaneous pressure P defined by
(1) to fluctuate around a specified mean value Po. The
probability density in the isobaric-isothermal X —I'0 —T
ensemble is proportional to the exponential of a reduced
instantaneous enthalpy, ( E +Po V)/ktt T, where ktt is
Boltzmann's constant and T is a specified temperature,
around which the instantaneous temperature

g (p /mNDktt) fluctuates. The volume V and the kinet-

ic energy K both vary with time, as do also the coordi-
nates q and mornenta p appearing in the internal energy
E(q,p).

In carrying out any isobaric-ensemble simulation it is
convenient to use D-dimensional vector coordinates x, the
components of which range from 0 to 1 in each of the D
space directions. These coordinates are independent of
the volume V, which changes as a function of time. In
Refs. 1—5 volume is used as an independent variable;
strain, proportional to the logarithm of the volume, could
equally well have been used. Likewise, to describe the

change of the volume with time, either V or the strain
rate e= V/V can be used. Andersen and Nose chose V. I
chose e. Any of the combinations V —V, V e, e e,—an—d
e—V is satisfactory but each of the four sets of variables
leads naturally to a unique set of motion equations. Of
course it is true that any of the four resulting sets of
motion equations could be expressed in terms of any of
the four sets of variables. Thus the chosen independent
variables influence, but do not determine uniquely, the
equations of motion.

One satisfactory complete set of variables for isobaric-
isothermal simulations is x —p —g —V e' —Nose
discovered that by using a new friction coefficient variable

g the isobaric-isothermal ensemble could be generated
with molecular dynamics. In Nose's formulation the mo-
menta change not only through their adiabatic coupling to
the strain rate but also through their coupling to a heat
bath described by g and a parameter Q with units of ac-
tion times time. I showed that a corresponding isobaric-
isothermal phase-space density f(x,p, (,V, e) is propor-
tional to
V 'expI [ 4 K Po V— (—Qg —/2)]/k—tt T —D(e'r)i/2I.

I pointed out in Ref. 5 that the equations of motion

x =p/m V"D,

p =F (0+~)p»—
g=2(K —Kp)/Q,

(2)

V=DE,
when supplemented by an evolution equation for the
strain rate t.

e=(P Po) V/kTH, —

satisfy I.iouville s probability-conservation equation:

0=Of /Bt

+f ( tax /dx +t)p/Bp+ &g/i)g+ & V/& V+ t)&/t)&)

+xaf/ax+paf/ap+j ay/ay+ Vaf/~V+eaf/~' .
(4)

On the other hand, the original Andersen-Nose equations
of motion use V rather than i as an independent variable.
The equation of motion for Vis
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V=(P P—o)/M .

In Eq. (5) M is a parameter with units mass

X (length)2 2 . This equation also leads to a probability
density satisfying an analog of the Liouville equation (4).
But the extended phase-space density is slightly different.
For the Andersen-Nose equations the equilibrium phase-

space density f(x,p, g, V, V) turns out to be proportional
to

and e e—, are equally valid representations of the
isobaric-isothermal ensemble. It is possible that one of
these five formulations might be "best" for systems with
only a few degrees of freedom, but the differences between
the formulations are relatively small, of order (1/Ã. If,
as is usual in molecular dynamics simulations, the center
of mass is kept fixed, then the number of independent x-p
pairs is reduced by 1 and the X in both probability densi-
ties is reduced to N —l.

V+exp[( —4—K —Po V)/k g T)

Xexp[ (Qg —+MDV )/2kqT] .

It is clear that after integrating over the strain rate i the
two probability densities differ by one power of the
volume V, but otherwise give exactly the same phase
space density in the variables, x —p —g —V. Both Eqs.
(3) and (5), as well as the alternatives using the pairs e—V
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