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Coherent trapping in continuum-continuum transitions
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%'e study a quantum model in which transitions occur between structureless continua. The popu-
lation is in one of the continua initially. %'hen the continuum-continuum coupling is very strong,
we show that the continua are decoupled and population trapping occurs.

It is well known that coherent population trapping can
occur in bound-bound transitions. ' Recent studies
show that under certain conditions, population trapping
can be found in bound-continuum transitions. " For
example, in strong laser excitation of an auto-ionizing res-
onance some of the population can be trapped in discrete
states under the so-called confluence condition.

So far all coherent trapping phenomena are associated
with the presence of at least two discrete states. Coherent
population trapping in all models has a universal feature.
Under certain conditions, one can construct a superposi-
tion of discrete states which decouples from the rest of the
system and which traps population. The question arises,
whether it is possible to find population trapping if there
is no discrete state.

In this paper we show that it is possible; population
trapping can exist in pure continuum-continuum (CC)
transitions. In other words, when some of the population
is initially in one continuum, under certain conditions
same of the population will stay in this continuum forev-
er, even though it is strongly coupled to infinitely many
other continua. This is not due ta discrete levels imbed-
ded in the continua. Here we assume that the continua
are completely structureless.

We consider a model, as shown in Fig. 1, which the ini-
tial population is in a certain continuum, say

~
coo) and

that there are ather continua labels
~

to ),
rn =+1,+2, . . .. These continua are coupled through the
transition operator D and we assume each continuum only
couples to its nearest-neighbor continua, i.e., the continu-
um

~
to ) only couples to

~
to +i ).

In the Schrodinger picture one can expand the wave
function of the system as

~g(t))=g f dco C„(to ) .

We now take the Laplace transformation of Eqs. (2).
After dividing both sides of the transformed equations by
(s +iE„),we integrate with respect to co~. We get a set

of equations for K (in the Laplace domain)

Ko erg (s) i—t—rDo iK,——im Do, K

+m ~~Dm, m+ 1+m+1 ~~am, m —1+m —1 ~

(sa)

(5b)

where g (s)= 2i/y—/srl(s +y).
Such a three-term recurrence relation implies that the

ratio K /K i can be expressed as an infinite continued
fraction. The initial condition establishes Ko as special,
so the continued fraction must be derived separately for
m&0

~ ~am, m —1

m'~D

1+
+ID +i, +iI'

+ 0 0 ~

where we have assumed that the continua are flat, i.e.,
that the matrix elements (co +i ~D

~

co ) are independent
of to +i and co . We denote the transition matrix ele-
mentS aS D ~ =Dm m+1.

We assume that the initial probability amplitude distri-
bution of the continuum

~
coo ) is given by

C„,=&(y/~) 1

COp+l P

so we have f dtoo
~ C„, ~

=1, where y is the width of the

initial amplitude distribution.
To solve Eqs. (2) we define K as

K = co C, m =0,+1,+2, . . . . (4)

The equations of motion are then given by'
0

C~o ~E~oc~o ~ ~1DP 1

i f dto iD—o iC„

t f dto~+iD—~ ~+,C„
t f deum —iDm, m —&Ca, ~ rn =+1~+—»

(2a) D-ao

FIG. 1. A sketch of the interconnected continua.
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and for m &0

(6b)

K /K i
——P'/(i~D),

and for m & 0

K /K~+i F/(i—~D),

whei'e

(7a}

= ——,
' [1—(1+4m D')'~'] . (7c)

Note the limiting forms F~m D (D~O) and F +n.D-
(D~ oo ).

The required solutions are then found to be

and

K erg (s)
1+2F

(ga)

(Sb)

where

2i v'y/rr
g S S+f

From the solutions for Ko and K~ we obtain:

—i@a~ m+1
III~1 P)D )2

1+ 2

1+ '

In a few cases' a simple analytic result can be obtained.

Consider the case when all D's are equal, i.e., D~ ~+ i D. —
Then we find for m ~ 0

By substituting Eqs. (10) into Eqs. (11)we find

,
2

1 —2F
1+2F

'/m/ 2
2 F

1+2F ma
(12b}

Perhaps it is worth emphasizing the anti-intuitive char-
acter of these results. The population does not become
equally distributed among the various continua, even as
D —+~.

Inspection of Eq. (7c) shows that Z=HD is the effec-
tive coupling strength parameter. In the strong coupling
limit Z~~l, we have Po ——1 and P =0, m =+1,+2, . . ..
This tells us that when the CC couplings are strong
enough to make Z &&1, the population will be trapped in
the continuum

~
coo), even though all the continua in the

model are strongly coupled and are structureless. %e
have recently shown' that Z ~~1 is also the condition for
CC saturation in intense-laser ionization of atoms.

In Fig. 2 we have plotted Po and P given by Eqs. (12)
with three different Z values. When Z «1(Z =0.01) the
CC transition channels are not "open" and most of the
population will stay where it was at t =0. %'hen the in-
teraction strength is greater, so that Z = 1, from Fig. 2 we
can see that most of the population has left the continuum

~
coo) where the population was initially located. At the

critical value Z = —,
'

one finds Pp =0. However, when the
interaction strength is increased further and Z ~~ 1

(Z =100), almost all the population is trapped in the ini-
tial continuum

~
coo). There is a very small amount of

population that leaves the continuum
~
coo), and it is ap-

proximately equally distributed in all other continua.
The coherent trapping in a bound-bound or bound-

continuum transition model is due to the fact that there
are two transition channels to a given state in the model.
The coherent cancellation of these two channels means
that there is a superposition state which is decoupled com-

1C s+iE
4F &y/m

1+2F s+y (10a) 0-

K
m s+iE„

s +iE„ isa
2i v'y/n. —

1+2F s +y
(10b)

log(o(Pm)

In the long-time limit the photoelectron spectrum for the
mth continuum is given by

W (co )=
~

(s +iE„)C„ (1 la) I I I I I I I I I I I

—6 —4 —2 0 2 4 6

and the total population of the continuum
~

u ~ is

= f ~ (co )dco (1 lb)
FIG. 2. The total population of different continua with three

different Z values where the label m means the mth continuum.
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pletely from the rest of the system. For example, consider

a Lambda system with the interactions
~

1)—
~
2) and

~

2) —
~
3) and a population loss from

~

2) due to the

coupling to a continuum. The two transition channels to

other and a superposition state can be constructed which
is decoupled from

~
2), resulting in the population trap-

ping. This is also the reason that we can find the coherent

trapping in CC transitions. In our model each continu-

um, say
i
m ), is coupled to its nearest-neighbor continua

i
co~~i) and these two channels are represented by the

two terms in Eq. (5b). In the case Zp~l, we have

E i ———K i for all m except m =0 and these twom+1 rn —1 1/2
terms are exactly canceled up to terms of order 1/Z
Therefore the coherent trapping in CC transitions is also

due to the coherent interference of the two transition

channels to a given continuum, making this continuum

decouple from the others.
As we know, 'i if Z(~1 the CC transitions are not

open and roughly speaking the continua are decoupled.

When Z ))1, due to the coherent cancellation of pairs of
CC transition channels, the continua again are decoupled.

Therefore if the initial population is distributed in several

continua in our model, when Z &&1 they will keep their

original distribution. In the discussion above we simply

consider a special case where the initial population is in

one continuum.
If the CC transition matrix elements D +i in an

atomic system represent the dipole coupling term er E
arising from laser irradiation, Z will be proportional to

the laser intensity. In most cases in typical atoms, and at
optical wavelengths, the laser intensity is required to be
above 10' W/cm to make Z))1. Also we know that
far from the ionization threshold the transition matrix
elements D +, are approximately independent of m.
Thus at sufficiently high but achievable laser intensities
CC transitions in an atomic system may exhibit popula-
tion trapping.

For example, consider our predictions in the case of a
fast electron with kinetic energy Eo interacting with an
atom and with a laser field of frequency coL, . In the low-
intensity regime, the laser field does not play an essential
role and only the elastic atomic scattering is significant.
When the laser intensity is increased, the fully elastic peak
will decrease as scattered peaks with energy Eo+ii~l.
appear, which are due to absorbing or emitting n photons
by the electron. When the laser field is increased further
to make Zp)1, our model suggests that the scattered
peaks with energy Eo+nfmL will decrease and the elastic
peak around ED will (almost) recover its initial intensity,
which is due to the population trapping in CC transitions.
It is conceivable that the effect can play a role in
electron-atom scattering.
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