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Propagator for the time-dependent three-dimensional charged harmonic oscillator
in a time-varying magnetic field
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%e evaluate the exact propagator for the time-dependent three-dimensional charged harmonic os-

cillator in a time-varying magnetic field. %'e show that such a propagator can be obtained from that
for a charged particle in a constant magnetic field.

Despite the vast range of the operational versatility of
Feynman's path integration, the evaluation of the propa-
gator for certain time-dependent systems, if carried out in
a straightforward manner, can become much more diffi-
cult than to obtain the solution to the corresponding
Schrodinger equation.

As an example of the state of the art, we point out the
recent, formidable calculation of the propagator for the
time-dependent forced harmonic oscillator with damping
by Cheng, ' via a generalized version of a method intro-
duced by Montroll. z In contrast, the exact solution to the
corresponding Schrodinger equation can be found in a
much simpler way. In another illustrative example„ the
exact evaluation of the propagator for a charged particle
in a time-varying electromagnetic field was possible to be
carried out only for the case of a constant cyclotron fre-
quency.

It would be, therefore, somewhat discouraging to
proceed further on applying the aforementioned path-
integration techniques for other more elaborated time-
dependent problems. Rather, they appeal for alternative,
versatile methods for the evaluation of propagators
without undergoing to tedious and lengthy calculations, in
such a way to make Feynman's path integration aestheti-
cally more attractive.

In this paper, by generalizing an earlier work, 5 we set
forth an alternative protocol which makes it possible to
evaluate the exact propagator for the time-dependent
three-dimensional charged harmonic oscillator in a time-
varying magnetic field. Overall, we show that such a
propagator can be obtained from that for a charged parti-
cle in a constant magnetic field.

We begin by writing the Hamiltonian of our system as
'2

H ( p, x, t) = 1
p+ +A(t)

2m (t) c

the corresponding Schrodinger equation reads

.„Bi( «', «, «) B@ Bq

+ —,'m(t)[Q (t)(x +y )+co (t)z ]g, (2)

x=—(x,y, z) and xo—= (xo yo, zo)

This K (the kernel or propagator) gives us the solution
for any arbitrary initial state, f(xo, to):

f(x, t) = J K(x, t;xp, tp)g(xp tp)dxpdypdzp . (5)

For t p to, K is defined as the amplitude to go from
(xp, tp) to (x, t), and for t & tp K is zero. So, we may write

B «i', «tco. (t} B B
iA—+ V' — y —x

Bt 2m (t) 2i Bx By

——,m(t)[Q (t)(x +y }+co (t)z ] K =0. (6)

Following Feynman' and others "we seek the propa-
gator (for quadratic potentials) with the structure

where 0 (t):co (t)+—,'co, (t), w—ith co(t) and co, (t)
[=qB(t)lm(t)c] being the harmonic and cyclotron fre-
quencies, respectively.

Let a special solution of Eq. (2) be of the form9

f(x, t) =K(x, t;xo, tp),

subject to

lim K(x, t;xp tp) =5(x—xp),
f—+fp

+ —,m(t)co (t)(x +y +z ), K(x, t;xp, tp) =P(t, tp)exp —S(x,t;xo, tp)

where the time-varying magnetic field B(t) is applied
along the z axis and the gauge is chosen such that the vec-
tor potential A is given by [—,'B(t)y, —,'B(t}x,0] —Then, .

where S(x,t;xo, tp) is Hamilton s two-point characteristic
function defined as the action along a real path connect-
ing (xp, tp) to (x, t), and the preexponential inodulating
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function p(r, to}, depending only on time, is determined
such that K satisfies Eq. (4).

After the substitution of Eq. (7) into Eq. (6) and some
rearrangements, we obtain from its real and imaginary
parts, respectively,

t
4(r ro)=go(&o)exp ——,

' J di', V'S
m(r')

(14}

In turn, Eq. (9) can be integrated in an ordinary way to
give

BS 1

ar 2m(r)
+

or

m (t)ro, (r)
+ — X +

jp 2 g

+ —,
'

m (t)coz(t)[xz+y2+zz] =0, (8a)

where the constant Pp(to) is introduced in Eq. (14) in or-
der to match the initial condition Eq. (3}.

By differentiating Eq. (8) with respect to x and using
definitions (11) and (12) [or by applying the variational
method on Eq. (13)],one obtains

~+{m/m)~+co ~=co,p+ [oi, +co, (m /m)]p/2,

(15a)

ji+(m Im)p+co p= co,~ —[6,+—co,(mlm)]~/2,
S =L [x(t),x(t), t]

2S18$ 1

"dr 2m (r}

where we have defined

L [x(&),x(t),&]=—,
'

m (t) I x '(r)+y '(t)+'z z(r)

+co,(t)[x (t)y'(r }—y (r)x (t)]

—ro'(r)[x '(t)+y'(r)+z'(r)] I,

(gb)

j'+(mlm) j+co g=0 .

Let the following space-time transformations

~( t) =~(r)/t(r),

p( &) =~(r)y(~),

g(r) =o(r)~(r),

where ~ is related to t through

r(t fIp(A)dk. [dr pIt}dt] . =

(15b)

(15c)

(16a)

(16b)

(16c)

—=—+v.V
dt Bt

m (t)ai, (r)
V= +

m {r) Bx

m (r)co, (r)
'ay 2

«(t =t)=x=(x,y,z)

with

~(t'=to): xo=(xo—~yo, zo)

The path of the particle

~(&')= [~(t '),p(t '),g(r ')]
is assumed to obey

(1 la)

(1 lb)

(12a)

(12b)

The functions o(t),p, (t) are chosen in such a way to reduce
the set of Eqs. (15) to a desired simpler form.

Analogously to Eqs. (12), the following notations are
understood:

P=—/t(r'=~) Po—=/t(&"=&0)

s:o(t'=t—) so=&(i =to),

p'( )=rdlt(r')/—dr' ~,

fi"(w):—d p(w )Id& 2
~

a(t) =do(t')/dt' ~,
&(&)=—d o(&')/d&"

) ..
s =o(r)~ sp =9(rp),

and so on.
After substituting Eqs. (16) into Eqs. (15), we obtain5

~(&' = r ) =x= (x,y,z)— (12d)
It =pip y

tt I

(17a)

(17b)

representing the initial and end points, respectively. The
canonical momentum, in turn, is denoted as p= VS.

Integration of Eq. (Sb) along the path ~(r') of the par-
ticle yields

S(x r xp rp)=S[m( )]r

where we have made

:-P=c]/9 pl2 (18a)

x, f=I dr'L [~(r'),~(r'), r'] . (13)
m ~e+—+

~c c
——C2ja m,2
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i+—i +aP(t)~=0.
PPl

(1gc)
0

Pl$2 2 2 ~P$PS=s+ ( +g + ) — (xo+yo+ o) .
2$ 2$p

The constants of integration are relabeled as c& ——mo and

cq —m—otoo, (rno and coo, are also arbitrary constants), im-

plying that to, (t) =too,ij(t).
From the set of Eqs. (17) one may readily infer their as-

sociated Hamilton-Jacobi equation

2

Next, from (14) and (20e) we obtain

$( t, to) =$(&,&o)/(s)

(20e)

(21a)

as 1

a. +2
aS ~o as ~o

ap 2 ati 2

(19a) P(r, ro) =—Po(ro)exp — f d~'V S
70

(21b)

and the associated classical action

S=f dr*L Q(r'),p'(r')],
~0~ ~0

where

(19b)

with

-2= a' a' a'
2+ 2+

ap aq ar

LQ(r),/('(r)]= [ /~'( r) +q'( r) + '(r)
2

Then, from Eq. (7) the full propagator E can be ob-
tained from E

+too, [/t(r)y'(r) —y(r)/t'(r)]] „

with

P(r') =Q(r'), y(r*),~(7')],
and

8(& =&o):—po = (po Co~ ro )

(19c)

(19d)

(19e)

Ptl p$p
(xo+Xo+~o)

2$p
(22a)

/k( r =1 ) =P = (P, tl, r ) .
K =P(~,ro) exp —S (22b)

Now, since the variations 5S =0 and 5S=0 are
equivalent [that is, Eqs. (15) and (17) are equivalent], their
corresponding Lagrangians [Eqs. (10) and (19c)] differ
only by an additive total time derivative of some function
f. This may be seen through

is the propagator for a charged particle in a constant mag
netic field, whose path is governed by Eqs. (17).

With the help of the solution of the set of Eqs. (17), for
p(r'=r)=p and+(7 =1O)=po, one may find that

S =S+[f(x, t) —f (xo, to )] (20a)
S= —,

'
motoo ( —,

'
I cot[coo, (r—ro)/2] I

(5f—=0, since f is a function of the initial and end points
only) or

f dt"L =f p(t*)dt'L —f dt*(df/dt'),

which implies

mo(r ro)'—
+ 2(r —ro)

(23)

From Eqs. (21b) and (22b) we get

& [(e —~o)'+(p —po)']+(poe —Cop))

L(~,~,t*)=p(t')L(/s~') ~„ dt* (20c)

Thus, by substituting Eqs. (10), (19c), and (16) into Eq.
(20c), and after some manipulations, we arrive at

2$o(~o) coo, (~—~o)/2 l
3/2 exp —5

sin[~~(r —ro)/2]

(24)

df d mB
(

2 2 2)~+g +g

such that we have

(20d) In turn, the constant factor Po(ro) can be obtained by
imposing the boundary condition (4) on (22). This yields

Po ——(too, /2)(mo/2+i miso)
~

Hence, the fu11 propagator reads off
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K(x, r;xo, ro) = P?l O

2ni disso(r r—o)

3/2
coo, (r—ro)/2 kmo(r —ro )

exp
sin[coo, (r—ro) /2] 2'(r —ro)

I PlS
&&exp (& +y +i ) — (xo+yo+zo)

iln O~o I'"[~ «—& )/2] I [(q —qo)'+(p —po)']+(poq —qop)) (2S)

wh. ere p, q, r, s, and r are related to the original variables through Eqs. (16) and (18). En conclusion, we point out that,
th«ugh s&mPie calculations, one can reduce our final result [Eq. (2S)] to some related particular cases found in the litera-
tore 5,6, 8, 12—15
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