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Differential-equation approach to functional equations:
Exact solutions for intermittency
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A differential-equation method to obtain the exact solutions to the functional renormalization-

group fixed-point equation, the deterministic eigenvalue equation, and the stochastic eigenvalue

equation for intermittency is introduced. Application of the method to the one-dimensional case is

explained in detail, and the generalization to two and higher dimensions is immediate.

I. INTRODUCTION

In recent years there has been much interest in the
study of the transition to chaos in dynamical systems.
Various scenarios have been proposed. In particular, the
discovery of universality in the period-doubling route to
chaos has attracted a great deal of attention. ' The formu-
lation of the universality theory in terms of functional
renormalization-group equations has become an impor-
tant and standard method of gleaning useful information
at the onset of chaos.

Unfortunately, not much is known about the structure
of these functional equations or their solutions. However,
in the case of intermittency, a complete set of exact
solutions' was found. Two methods were employed to ob-
tain the exact solutions: resummation of series expansions
and reformulation of the functional equations into impli-
cit recursion relations topologically equivalent to transla-
tions. ' However, neither of these two methods seemed
to lend themselves readily to the solution of intermittency
in higher dimensions. To overcome this obstacle, a third
method of solution was discovered. This method is based
on a differential-equation formulation. Using this
method, we obtained the exact solution to the fixed-point
equation in two dimensions. In this paper we would like
to show how exact solutions to the deterministic and sto-
chastic eigenvalue equations can also be obtained in this
way. The differential-equation method is readily applic-
able to higher dimensions.

The paper is organized as follows. In Sec. II we will il-

lustrate in detail how the differential-equation method
works in the one-dimensional case. In Sec. III we indicate
how the method can be applied to obtain the exact solu-

tions in the two-dimensional case. Some concluding re-

marks are given in Sec. IV.

II. EXACT SOLUTION IN ONE DIMENSION

To illustrate how the differential-equation method
works, we will rederive the exact solutions to the three
one-dimensional functional equations: the fixed-point
equation, the deterministic eigenvalue equation, and the
stochastic eigenvalue equation.

f'(f '(x) )= f'(ax )—,

where a is the universal rescaling factor. The boundary
condition corresponding to tangency is f'(0)=0 and
f"(0)= l. At this point, the saddle-point map can be ex-
panded as follows:

f(x)=x +ax'+ (2)

where the exponent z determines different universality
classes.

If we consider an infinitesimal change, amdt, and
neglect all the higher-order terms in Eq. (2), then we ob-
tain a simple differential equation

We will first show how to find the rescaling factor a of
Eq. (1). Define

w(s) =ax(t(~)),
where

t (~)=2s. .

The equation for w is

dlD =(2a ')w .
dv

The invariant nature of the fixed-point equation dictates
that

2A =1
so that the equations for x(t) and w(r) are the same
under rescaling. %'e have therefore

2 l /(z —1)

A. The fixed-paint equation

The functional renormalization-group equation govern-
ing the universal fixed-point function f (x) for intermit-
tency is
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We proceed to find the fixed-point function f (x). In-

tegrating Eq. (3)

f x-'dx= f'dt,
we obtain immediately the fixed-point function

x'=f'(x)=[x ' "—(z —1)a]

That the global solution can be obtained from the local
differential equation is of course well known in the theory
of I.ie groups. Since intermittency is based on the tangent
bifurcation, the transition is continuous. The underlying
invariance group is simply the one-parameter translation
group. The solutions to the functional equation, which
expresses the recursion relation between x (t +r) and x (t),
can therefore be simply obtained by integrating the dif-
ferential equation.

Now that we have obtained the exact solution to Eq.
(1), it is relatively straightforward to find the exact solu-
tions to the eigenvalue equations, as will be shown in Secs.
na and nc.

B. The deterministic eigenvalue equation

Under a small perturbation to the fixed-point equation,
f'( x)~f'(x) +eh( x), the eigenfunctions h (x} satisfy the
functional eigenvalue equation

f"(f'(x))h (x)+h(f'(x))=(A, ,/a)h(ax),

where A,, denotes a spectrum of eigenvalues.
To apply the differential-equation method to the solu-

tion of this eigenvalue equation, consider a perturbation to
Eq. (3):

Writing y'=x"U', we obtain the eigenfunctions h (x)=y'
of the deterministic eigenvalue equation:

h (x)= [x " "—(g —1)g]
—'/" —')1

2z —n —1

«-(&-)) ( 1) ](2s-n —1)/(s —1)]

(19)

C. The stochastic eigenvalue equation

To study the effect of external noise, 's consider a small
stochastic perturbation to the fixed-point function,
f'( x)~f'( x) +gg( x), where g is a Gaussian random
variable of unit width. Under this perturbation the eigen-
functions g(x) obey the following stochastic eigenvalue
equation:

f" (f'(x))g (x)+g (f'( x))=(Ag ja) gi~( ax), (20)

where A,g denotes the stochastic eigenvalues.
To solve this eigenvalue equation by the differential-

equation method, let us add a stochastic perturbation to
Eq. (3):

dX
=«*+ex "g, (21)

t

(12)

We will again first find the eigenvalues A, In terms of
the variable w (r},Eq. (12) reads

z=w'+e(a' "}w". (13)

It has exactly the same form as Eq. (12) except for a fac-
tor of a' ". The eigenvalues of Eq. (11)are therefore

g(z -n)/(g —1)
I4g

We proceed to find the eigenfunctions h (x). Under an

infinitesimal change «~«+ay, the variation y satisfies
the differential equation

3' z —]. + n

dt

Lettjng y =x U, we obtain the differential equation for U,

where g(t) is a Gaussian random variable satisfying

(g(t)g(t') & =5(t t') . — (22)

x(t+d) —x(t) =x +6« (23)

whe~e ga is a random variable uncorrelated froin time in-
crement to time increment. Furthermore,

&4&=—. (24)

This ensures a finite cumulative effect of the stochastic
contribution to the equations of motion.

In terms of the variable w, Eq. (23}becomes

Due to the singular nature of this random variable, we
have to exercise some care in trying to find the stochastic
eigenv«es kg. It will be clearer to rewrite the stochastic
differential Eq. (21) as a finite-difference equation:

dU =X
dt

w(v+6') w(v )—
2 (25)

Integrating this equation

f" du= f'dtx"
= f" dx x 'x" 5=25',

g =2 (27)

It can be seen easily that b, and gz are related to 6' and

4 by
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Eq. (25) therefore becomes

w (x+5') w—(r), , „,/2
Ql

=N +66K 2 pJ

This stochastic difference equation for w(r) is the same
as that for x(t) except for the factor a' "2 '/, which
gives the stochastic eigenvalues

Since the saddle-point map at tangency has the form

Zf1 (x 1 x 2 ) x ) + (2x 2 +
Z2f2(x),x2)=x2+ax) +

(36)

the differential equation for the fixed-point function is
simply

g(z —Zn +1)/(z —1)2

We now proceed to find the eigenfunctions of the sto-
chastic eigenvalue equation. Under an infinitesimal
change, x ~my,

dX1 z

dt
=X2

dX2 z,—X 1
t,

(37)

df
=zx' 'y+x "g . (30) or, in abbreviation,

Writing y =x'U, we obtain the stochastic differential
equation for u:

Z.

=X) (38)

(31)

The solution to this stochastic differential equation is
' 1/2f X 2(n —z)dt

0
(32)

where g' is another random variable. Working out the in-
tegral, rve get

We will first try to calculate the rescaling factors a;.
Using the same method as applied to the one-dimensional
case, we define

w;(a) =a;x;(t(r)), (39)

—z,.=(2a;al ')w; .
7

(40)

where t( r)= 2,ras previously The. equations for w; are
then

(3z 2n —1)—'/
—(3z —2n —1)~ (X

Therefore,
(z;+ 1)/{z)z2 —1)a;=2 ' (41)

—(z —1) (z I }u](3z—2n —1 )l(z —1)
]

1/2p~

(33)

Writing y'=x "U', we obtain the eigenfunctions,
g (x)=y', of the stochastic eigenvalue equation,

g (x)= 1
tX

—(z —1) (Z 1 }&]
—2z/(z —1)

3z —2' —1

z. +1
0 X. xf dt= f 'dx, (z, +1) ', —C

J

—Z;/(Z;+ 1)

which agree with those obtained by series expansion. '

We now proceed to find the fixed-point function. In-
tegrating Eq. (38), get

—(3z —2n —1)X(X

X
—(z —1) (Z I )& ](3z 2n —1)l(z —1)I—

(34)

where

Z2+1
X1C=
Z2+1

Z +1
X2

z1+ 1

(43)

This completes the derivation of the exact solutions to
the functional equation of intermittency in the one-
dimensional case.

III. EXACT SOLUTIONS IN T%'O DIMENSIONS

We will now indicate how the differential-equation
method can be easily applied to obtain the exact solutions
to the two-dimensional functional equations for intermit-
tency. Since it is a simple extension of the one-
dimensional case, we vvi11 be brief in our presentations.

A. The fixed-point equation

The functional renormalization-group equation for the
fixed-point function in two dimensions read ' (i = 1,2)

f;*(f)(xl,x2),f2 (xl,x2))=(I/a;)f (a)x),a2x2) .

x;(t +k) =f;(x 1 (t),x2(t), A ) (44)

due to the translation invariance of the difference equa-
tions. Since the w;(r)'s satisfy the same equations,

w;(r+A, ) =f;(wl(r), w2(r), A. ) .

As w;(r)=a;x;(t(r)) and w;(r+k)=a;x;(t(r)+2k, ),

a;x; (t +2k, ) =f;(a)x) (t),a2x2(t), A, } .

(45)

The problem of finding the fixed-point function has thus
been reduced to one of evaluating integrals (they generally
give elliptic or hyperelliptic functions). For the case
zl ——1 and z2 ——2, explicit form of the fixed-point function
has been obtained.

We will now show that the solutions to the differential
equations actually satisfy the functional equations. The
recursion relations between the solutions x;(t+A, ) and
x;(t), obtained by integrating the flow equations, will be
of the form
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Thus the ~ variable has been eliminated. Now

x, (2+2', )=f;(xi(i+A), xz(t+)t. ),A)

=f;(f1(x1(i),xz(t), A, ),fz(xi(t), xz(t), A, ),31, ) .

3'1 ni Z2

X1 =Z1X2 X1 P2+X2 X1

z, y2 z, —1 z,
X2 =ZPX1 XP g1dt

Hence,

(50)

This implies that the f; s satisfy the fixed-point functional

equation (35).

B. The deterministic eigenva1ue equation

We apply a perturbation to Eq. (37),

z2 21 —1 zi z2 —1 zi Z2

dt
(x 1 3 1) 1X2 x 1 3 2+z2X1 xz yi +xz x 1

(51)
z z —1 z

1 2 1
z —1 z

1 2—(X23 2)=Z2X1 X23 1+Z1X2 Xl 3 2
dt

Since

z, n,
=X2 +GX2

X2 — '2
=X1

(48)

g2 zi ni z2

dt
(xi yi —xz yz)=xz X1

z2 Z1 2
g

1

x1 (t)yi(t) —xz (t)yz(t) =xi (tp)y, (tp) —xz (tp)yz(tp)

+ t'X ' t'X,'t' . 53
0

Let x;(t) be the solution to Eq. (38), and write the per-
turbed solution in the form x;(t) + ey;(t) Then.

g —1

=Z1X2 P2+X2

Therefore,

x, '(t)yi (t) —xz' (t)yz(t)

2
z

1

xi (tp)yi(rp ) —xz (~0)yz(4)

z2 —1

=Z2X 1 P1

(49) ni+1 ni+1
[xz (t) —xz (tp)] . (54)

711+1

Going back to our original Eq. (49), we have

zi —1

dy 1(t) z,xz (t)

x '(r)

Z2 z2 ni+1 ni+1
x 1 (t)yi(t) —xi (tp)yi(~0)+xz ( pi)y (2r)p— [xz (t) —xz (tp)] +xz (t) .

n+1

Letting yi(t) =x2 (t)U1(t), we obtain
T

z1 dU1(t)
xz'(t)

t
Z] ni+1 ni +1

[xz' (&)—xz' (tp)] +xz'(r);
xz(&) n 1 +1

(56)

n 1+ 1

(&')—xz' (&0) +xz' '(t') dk'.
n1+ 1

(57)

The final integral can therefore be set up. After the in-

tegration is performed, we will obtain the eigenfunctions,
which again consist of in general hyperelliptic or hyper-
geometric functions and their inverses.

Again, it is more convenient to rewrite the equations as fi
nite difference equations,

Xi(t+5) X1(t) z, n—,=Xz +exz

C. The stochastic eigenvalue equation

dxi(t)
dt

dxz(t)
dt

=x 2' (t)+exz' (r)g'(i),

=x (t) 1.

Let us now apply a stochastic perturbation to Eq. (37),

xz(t +6) xz(t)—
=X 1

1
n z —n

1 1 1=~z +eipz &2 4
u12(r+&') —u12(r)

Qt

Introducing the new variables as before, we get
T

u11 (&+&') ip 1 (r)—
Ql

(59)

(60)
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Proceeding in exactly the same way as in the one-

«ilmenslonal can, we obtam

wi('7+ 6 ) —wi(7 )

Ql

w2(v+5') —w2(v)
gl

g z, —n, )~2 n,=wz'+e(az 2 )w2 ga,
(61)

The stochastic eigenvalues can thus be identified

I'z& {@2+2)—Zn &(z2+1)+1]/2(z&z2 —1)
Af —2 (62)

which indeed agree with those obtained by series expan-
sion. ' The eigenfunctions can also be obtained in a way
exactly analogous to the one-dimensional case.

IV. CONCLUDING REMARKS

The functional renormalization-group equations pro-
vide a powerful approach to the study of the universal
scaling properties of dynamical systems at the onset of
chaos. Unfortunately, very little is known about the
structure of these equations or the methods of solving
them. It was indeed very satisfying that a complete set of
exact solutions, at least in the case of intermittency, could
be found. The differential-equation method provides a

simple and elegant approach to the solution of functional
equations. However, the reason that intermittency is
amenable to exact solutions and that the differential-
equation method works is due to the fact that intermitten-
cy is a continuous transition and there exists a one-
parameter translation group. In this sense, the method is
probably not applicable to discrete transitions such as
period doubling.

Finally, it should be noted that the exact solutions to
the functional equations for intermittency are not just of
mathematical interest. As recent studies have shown, they
are relevant to a host of interesting physical problems
such as I/f noise, " superconducting quantum interfer-
ence device (SQUID), ' Josephson junctions, '3' etc.
Moreover, experimental observation of the intermittency
route to chaos has also been found in a variety of experi-
ments including Rayleigh-Benard convection, ' nonlinear
oscillator, ' ' and Belousov-Zabotinsky reactions. '
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