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%'e report a study of the Sturmian expansion of Green's function and its convergence properties
in the complex energy plane. %e take as a model for our study multiphoton ionization of hydrogen.
Convergence difficulties arise from the fact that the stationary wave of the outgoing photoelectron
contains both outgoing and ingoing parts, whereas the Sturmian functions have outgoing wave char-
acter and so do not provide an expansion of the ingoing part of the photoelectron wave. %e show

how this difficulty can be overcome. %e have tested the method for S-photon ionization of hydro-

gen when (N —1)-photon ionization is possible, with N =2—5, and for three-photon ionization

when ordinary photoionization is possible.

I. INTRODUCTION

The radial Coulomb Green's function can be simply
represented by a sum of bilinear products of Sturmian
functions, that is, scaled hydrogenic functions. ' This ex-
pansion has been widely used in the calculation of cross
sections for multiphoton ionization of hydrogen in the
case where no more than the minimum number of pho-
tons required to ionize the atom are absorbed. ' In the
case where additional photons are absorbed, that is, where
photons are absorbed above the ionization threshold, the
expansion, as it stands, diverges. Nevertheless, for two-
and three-photon absorption it has proved possible, using
a variety of techniques, to analytically continue the
Sturmian expansion from an intermediate energy below
threshold to above threshold. Thereby, cross sections for
two- and three-photon absorption, from both ground and
excited states of hydrogen, have been calculated at fre-
quencies where ordinary photoionization is possible.
However, the extension to absorption of an arbitrary num-
ber of photons using these previous techniques, where pos-
sible, may involve considerable difficulties. Recently, a
simplification was suggested, and it will be elaborated on
in this paper. The primary difficulty in using the Sturmi-
an expansion to treat absorption above the ionization
threshold is that the outgoing electron is described by a
stationary wave, consisting of both ingoing and outgoing
waves, whereas the Sturmian functions have outgoing
wave character and thus do not provide an expansion of
the electron wave function. We will see below how this
difficulty can be circumvented. In Sec. II we present a
general analysis of the problem, and in Sec. III we special-
ize to the hydrogenlike ion.

II. GENERAL THEORY

and x the electron coordinate. We assume that V(r) van-

ishes for r —Oo and that V(r) does not change sign over
the interval 0&r & oo. %e use atomic units throughout
this paper. The radial kinetic energy operator Tt is
represented in coordinate space by

1 d l(l+1)
dr 2r

The Sturmian functions S„"t(r)= (r
I
S„"t& are the solutions

to the Sturm-I. iouville eigenvalue problem' posed by the
equation

(Tt+~nt V E)
I

S—nt & =o (2.1)

( S t I
( Tt E)

I S„t& = (S—
„ I

( T E)
I

S" &' . —

Using Eq. (2.1) it follows that

(2.2)

subject to the boundary conditions that the S„"t(r)vanish
at r =0 and r —00. Here E= ——,'k is fixed The b.oun-

dary conditions cannot be satisfied for E real and positive
and for the present we assume that E is real and negative.
Drawing a branch cut along the positive real axis in the
complex E plane, we take that branch of k which is real
and positive when E is real and negative. S„"t(r) is
damped by the exponential factor exp( —kr). We assume
that the potential V is such that the eigenvalues IA,„tI
form a countable infinite set ( n = I +1,/+2, . . . ) and that
the I S„t(r)I form a complete set in the space I.V+' of all
piecewise continuous functions f(r)=(r

I f & for which

(f I
V

I f & is finite and f(r)/r +' is boun/ed for r-0.
We define the scalar product (a

I
b& as I dr a(r)'b(r)

when a one-dimensional integral over the radial coordi-
nate is implied.

Noting that E is real, the operator ( Tt E) is Hermi-—
tian in L.q+' and we have that

A. Sturmian functions ~nl (Sml I
V

I Snl & = ( ~ml ) (Sml I
V

I Snt & (2.3)

Rather than limit our discussion to the Coulomb poten-
tial we consider the electron to move in a local, real,
spherically symmetric potential V= V(r}, with r =

I
x

I

Since (S„"~
I

V
I
S„"t& does not ~anish [recall V(r) does not

change sign] we see, putting m =n, that A,„tis real. Since
the boundary conditions are real it follows that all S„t(r)
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can be chosen to be real. Provided that the eigenvalues
are nondegenerate, i.e., that A, i&A,„"ifor m&n, we also
see that

&s"i
I
v Is.i&=P'i&. (2.4a)

(2.4b)

We may use Eqs. (2.4) to derive a simple expansion of V
in terms of separable potentials:

Vi(r, r')
( x

I
V

I
x'& =g g Fi (x), I'i' (x'),

I m

(2.5)

where Fi (x) is the usual spherical hartnonic and where
Vi(r, r') = (r

n =I+1

Note that closure in I.q+' is expressed as

l=g(1/P„",) IS„",&(P„',
I

.

(2.6a)

(2.6b)

(2.7a)

We assume that V(r) behaves as rs for r -0, where q + 1

is a non-negative integer. The [ i((}„i&]form a complete
set in L i+~i'+s, and closure in L,ry+s is exPressed as

1 =y (I/iS".l ) I
((".i & &s."i

I
(2.7b)

B. Green's function

Premultiplying both sides of this equation by (Q —Ti V)—
and using Eq. (2.1}we obtain

1=+g, [Q—E+(A,",—1)V]is",&(S,', I
.

m p
(2.9)

Now premultiplying both sides of this last equation by
(Snl I

and using Eqs. (2.4) yields

( S„',
I
=g g a, M „(S,', I, (2.10)

where

The resolvent operator in three dimensions is
G(Q}=1/(Q —T V) where —T is the kinetic energy
operator in three dimensions. We can make a partial-
wave decomposition of G (Q) in terms of
gi(Q) =—1/(Q —Ti —V). In coordinate space we have

G(x,x', Q) = (x
i
G(Q)

i

x'&

gi(r, r', Q)
~i (x'»

l m
rr'

where gi(r, r', Q)=(r igi(Q) I
r'& is the radial Green's

function.
Since the eigenvectors

I
S„"i&form a complete set in

Li+' we can expand gi(Q) in terms of these eigenvectors.
We can write

Isk &(Ski

M~. =(Q —E}&s."i
I s~i &+&.m(~ni —1»ni .

Equating coefficients of (Szi I
yields an infinite set of

linear equations for the coefficients ar~:

&pn=gapmM n . (2.12)

Defining matrices A and M whose elements are a and
M „,respectively, we can write Eq. (2.12) in matrix form
as AM=1 where 1 is the identity matrix. Hence the
determination of gi(Q), according to Eq. (2.8), amounts to
the inversion of the matrix M. If V is either a Coulomb
potential or a harmonic-oscillator potential we have
(Sos I s~i & =0 for

I
m n

I

—p 1, and then M is a tridiago-
nal matrix which can be easily inverted; this is the ap-
proach exploited by Heller" and collaborators, and also
Fainshtein et al. If, however, we have Q=E, the matrix
M becomes diagonal for all allowed V and we obtain

a~„=5r„/[P„"i(A,„"i—1)]; (2.13)

the double sum of Eq. (2.8) collapses to a single sum
which is the familiar Sturmian expansion of the radial
Green's function:

S„i(r)S„",(r')
gi(r, r', E)=

n=iii &ni(~ni 1}— (2.14)

(T+v —E) ig&= —vis„",) . (2.15)

A particular solution of this equation is, recalling Eq.
(2.1),

is„",& .
(A,„i—1)

(2.16)

This is, in fact, the unique solution satisfying the boun-
dary conditions that (r

I 1(„i&vanish at r =0 and r- ao.
We next introduce the free-particle resolvent
goi(Q) =1/(Q —Ti). Following the derivation of Eq.
(2.16), it is straightforward to show that

If one of the A,„iequals unity, the Green's function has a
pole, corresponding to the presence of a bound state at en-

ergy E. Note that we have just writte~ (S„i
I

r'& as
S„i(r'), and not its complex conjugate. There is no
discrepancy since we have assumed E to be real and nega-
tive, and have chosen S„"i(r')to be real. We intend, how-
ever, to analytically continue the Sturmian expansion into
the complex E plane, and it is important to remember
that it is S„i(r), and not its complex conjugate, which is
an analytic function of E in the cut E plane.

before proceeding further we give a somewhat different
derivation of the Sturmian expansion, one which il-
luminates the connection with the expansion of V in se-
parable potentials —recall Eqs. (2.5) and (2.6). Note first
that Eq. (2.9}, and therefore gi(Q), are unaffected if we
replace V by Vi. This is simply a consequence of the fact
that gi(Q) is a partial-wave component of G(Q). We
now consider

I P."i
& =—gi«) I

(('."i &

We have
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goi(E) I 6 & =(I/~. i) I S.i & .

We now make use of the relationship

gl(fl) =goi(II)+goi(fl) Vgi(II)

(2.17)

(2.18)

We can replace V by Vi without affecting Eq. (2.18), in
accordance with our previous observation. If, further, we
approximate Vi by a finite sum of separable potentials,
namely,

(I/O."i) 14'i & (4.i I
(2.19)

and use Eqs. (2.16) and (2.17), setting Q=E in Eq. (2.18)
and noting that gi(E) is Hermitian for E real and nega-
tive, we obtain

(2.20)

Equation (2.20), which is exact for N- Oo, expresses in a
simple form the deviation of gi(E) from g»(E). Writing
g»(E) =g»(E)1, and using the closure relation (2.7b) with
Eq. (2.17), we obtain

(2.21)

Letting X- ao, and combining Eqs. (2.20) and (2.21), we
obtain once again the Sturmian expansion of gi(E), name-
ly Eq. (2.14).

C. Analytic continuation

Consider the matrix element

Mi(E) =(a
I gi(E)

I
b), (2.22)

n =1+1
(4) '(S."i

I )14a"i &:

(P'i) '(S."i
I
b)

I P."i& .

(2.24a}

(2.24b)

Substituting for
I
a) and

I
b) in Eq. (2.22), and making

use of Eqs. (2.4a) and (2.16), we obtain Eq. (2.23). The
condition for the convergence of the Sturmian expansion

whgre the scalar product ( a
I
c) is defined as

dr a r c r; we do not complex-conjugate a r . The
Sturmian expansion of Mi(E), obtained from Eq. (2.14), is

(a IS„"i)(S„"iib)
Mi(E) = (2.23)

n =i+i nl(~nl

4'e can attempt to analytically continue this expansion
from the negative real axis into the complex E plane, cut
along the positive real axis, by analytically continuing
each term in the sum. %e now explore, in a heuristic
fashion, the conditions under which the expansion con-
verges.

The I I P„i) I form a complete set in I.', &i'+~, for E real
and negative. Therefore, provided that

I
a) and

I
b) be-

long to I.'iver'+~ we can expand these vectors in terms of
the

I
P„"i):

of Mi(E}, when E &0, is therefore that
I
a ) and

I
b ) be-

long to I.&&&

If
I
a ) and

I
b ) belong to I. i&+i'+~ it is reasonable to

expect that Eqs. (2.24), and hence (2.23), can be continued
off the negative real axis. We write E=

I
E

I
exp(i8),

with 0&8&2@., so that k =
I
2E

I

'~ exp( i—P) where
P=(m. —8)/2 and —n/2&/&m. /2. Note that the ortho-
gonality property, Eq. (2.4a}, may be analytically contin-
ued in the form (P" i I

S„"i)=P„"i5„.A case of special in-
terest is that where a(r) =(r

I
a) and/or b(r) =(r

I
b) are

exponentially damped. Thus suppose that a (r)
=g (r) exp( —ar) where r "+'+s'g(r) is bounded for
r-0 and wherea=

I
a

I exp( iX—) with 0&X&m/2. The
function a (r) is a damped outgoing wave. If we let r take
the complex value

I
r

I
exp(iX in/—2), a(r) becomes a

pure (undamped} outgoing wave whose real and imaginary
parts oscillate infinitely many times, with undiminished
amplitude, as

I
r

I
varies from 0 to ao. [We assume that

g (r) does not dampen the oscillations. ] Now suppose that
we expand a(r) in terms of the P„i(r)and allow k to be
complex, k =

I
k

I
exp( —iP). As we let r approach

I
r

I
exp(iX —iver/2) we obtain an expansion of a pure out-

going wave in terms of (generally damped} waves
that are outgoing if

I
X—P I

& ir/2 but ingoing if
rr& IX—P I

&m/2. Since it is unphysical to express a
pure outgoing wave in terms of (albeit damped) ingoing
waves, we intuit that the expansion of a (r) in terms of the
P„i(r)will converge (in some sense) only for complex k
such that IX—P I

&m/2. We arrive at the same con-
clusion if —m'/2 &X &0, that is, if a (r) is a damped ingo-
ing wave. Note, however, that a damped outgoing wave
can always be expressed as a linear combination of
damped ingoing waves, and vice versa. In other words, if

I
X—P I

& ~/2 we can approximate a (r), to arbitrary ac-
curacy, by a linear combination of waves that have the
character of exp( —ar), where i~= is I

exp( ig), with-
—e/2&( &ir/2,

I
X—g I

&m/2, and
I g —P I

&m/2. A
suitable approximation to a(r) is obtained by putting
k =ir in Eq. (2.24a) and truncating the expansion after a
sufficient number of terms. This approximation to a(r)
can then be expanded in terms of the Pni(r), with k hav-
ing the value of interest. Note that while Rea must be
positive we can let it be infinitesimally small since in any
scalar product involving

I
a) and

I
S„i)we can rotate the

path of integration from the positive real axis into the
complex r plane, thereby ensuring the convergence of the
integral as we let Ren~O.

A similar analysis applies to b(r). In conclusion: If
a (r) and b (r) belong to I.I&V+~ and are damped by fac-
tors exp( ar) and exp( —Pr),—respectively, with
Re(a, P) &0 and Im(a, P) &0, we conjecture that the Stur-
mian expansion of Mi(E) converges as E approaches the
positive real axis from above. [If Ima=O (ImP=O) we
must approximate

I
a) (

I
b)} by a damped outgoing

wave; this is possible provided Rea &0 (ReP&0). ]
In the radial matrix element for two-photon ionization

of hydrogen, a(r) and b(r) are, respectively, the initial
and final radial wave functions of the electron multiplied
by the dipole interaction. Here we restrict E to real (posi-
tive or negative) values, these being the values of interest,
but we add an infinitesimal positive imaginary part i rl to
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lb) =

lb+�&+

lb (2.25)

ensure that positive values of E lie on the upper side of
the cut. We may assume that both a (r) and b (r} are real
functions; b (r) is a stationary wave, consisting of both in-

going and outgoing waves. We decompose l
b ) as

MI(E+iri)= (a
l
gi(E+iri)

l
c )

+(a l gi(E+iri) l
d ), (2.32)

where the real functions c (r)=(r
l
c ) and d (r)

= ( r
l
d ) are defined as

where
l
b+) and

l
b ) are, respectively, the outgoing

d ing»ng parts of
I

b& Wedecompose Ml(E+iri)

c (r)=[1—f (r)]b(r),

d (r)=f (r)b(r) .

(2.33a)

(2.33b)

Mi(E+i~) =Mi+(E+in)+Mt «+in»

M~ (E+-iri)=(a
l
gi(E+iri)

l
b +);-

(2.26a)

(2.26b)

the matrix element Mi (E+iri) does not have a conver-
gent Sturmian expansion and we seek to express it in
terms of Mi+(E+iri} To. do this we use the relationship

gi(E +i ri) =gi(E i ri) —2~i 5—(E —Ti V)—(2.27)

to obtain

Mi (E+iri)=(a
l gi(E iri—) l

b ) 2niJi(—E), (2.28a)

where
larg(g+i le l

) —arg(~) l &m/2. (2.34)

We decompose
l
c~) into outgoing and ingoing parts,

l
c+) and

l
c ), and apply the same analysis as above to

the first matrix element on the right-hand side of Eq.
(2.32). Since b+(r) is multiplied by [1 f~(—r)] in c~(r)
we can, by choosing m sufficiently large, ensure that
c~(r)/r +'+s is bounded for r-0. Hence the Sturmian
expansion «(a la(E+irl) I

c') converges. «
I
&

I
is

the wave number of the outgoing electron, the function
d (r) oscillates for large r as a damped wave
exp( —P) sin(

l
K

l r) The. ingoing part of this wave, and
hence the complete wave, can be expanded in terms of
outgoing waves gi(r) if, according to our previous discus-
sion,

l
'8(E Tl

=( I~.I)(~k lb &e(E), (2.28b)

This condition can be reexpressed as

fRe(a )+
l
E

l
Im(a ) )0 . (2.35)

where
l Rki ) is the (stationary wave) eigenvector of

Ti+ V with eigenvalue E and where e(E}is the Heaviside
step function: 8(E) is zero for E &0 and unity for E pO.
Noting that (r

l
b )=(r

l
b+)', that gi(E —i') is the

complex conjugate of gi(E+iri), and that a (r) is real, we
have

(a
l
gI(E —iri)

l
b )=(a

l gi(E+iri)
l

b+)' (2.29)

and hence that

Mi(E+ i ri) =2 Re[MI+(E+i ri)] 2ni Ji(E) .—. (2.30)

We need therefore consider only Mi+(E+iri) Now.
a (r) is real and exponentially damped (X=0). Therefore
if E&0 we must first approximate a(r) by a linear com-
bination of (damped) outgoing waves before attempting a
Sturmian expansion of Mi+(E+ ill). Moreover, while
b+(r) does have the character of an outgoing wave, in
general its behavior is irregular for r-0 and therefore
b+(r) does not belong to I.i~i'+~. Nevertheless, in the
case where V(r) is a Coulomb potential, and probably
more generally, (S„il a) diminishes sufficiently rapidly as
n increases [provided a(r) is replaced by an outgoing
wave] that the Sturmian expansion of Mt+(E+ig) con-
verges in spite of the behavior of (b+

l
S„i).We can, in

any case, always regularize b+(r) using the following
method. We introduce a function f (r), whose form for
r-0 is 1+0(r +'), where m is a non-negative integer.
A function with this property is

[Note that we require Imx & 0 for P"„i(r)to be an outgoing
wave. ] With d (r) approximated by a finite sum of out-
going waves gl(r}, the second matrix element on the
right-hand side of Eq. (2.32) has a convergent Sturmian
expansion.

The preceding analysis of the two-photon matrix ele-
ment applies also to an N-photon matrix element, if
N —1 photons are required to ionize the atom. Thus a (r}
becomes the product of N —2 Green's functions with in-
termediate energies that are negative, N —1 dipole in-
teractions, and the 'initial bound state; this a(r) has the
properties assumed above. It is straightforward to extend
the analysis when more than one photon is absorbed above
the ionization threshold. Thus, we again decompose

l b)
into

l
b+) and

l
b ), and in the matrix element involv-

ing l
b ) we replace all those gi(E+iri} with positive E

by gi(E ig), usi—ng Eq. (2.27); the analysis continues as
before.

III. COULOMB POTENTIAL

A. General properties

In this section we consider the Coulomb potential
V(r) = Z/r By si—mply .scaling the coordinate as
r~r/A, „& in Eq. (2.1) we see by comparison with the
Schrodinger equation for the hydrogen atom that the
eigenvalues are A,„"i=nk/Z; these eigenvalues are indepen-
dent of 1. The eigenfunctions, normalized so that
P„"i——Z, are given by

f (r) =exp( gr) g-(p)
pt

(2.31)
S„~(r)=A„ifkr) +'exp( —kr) iEi(1+ 1 n;21 +2;2kr), —

where we take g to be real and positive. We now write (3.1a)



ROBIN SHAKESHAFT

2i+' (n +l)!
(21 + 1)! (n —I —1)!

(3.1b)
This last integral is a standard one (see, e.g., Ref. 12) and
me obtain

(In Ref. 9 the normalization was chosen to be
P„"i= Z—k/n ).Note that r appears in the combination
kr in the eigenfunctions. This is a consequence of the fact
that, for the Coulomb potential, Eq. (2.1) is invariant
under the simultaneous transformations r ~r exp(ig) and
k~k exp( i—P) W. e now use this property to investigate
the expansion coefficients of a (r), assuming a {r) belongs
to LI/r Fo.r r and k real (r &0, k &0) we know from
general considerations' that since A,„"i—moo as n~ao the
IP„"i(r)j span L»v, and therefore a (r) can be expanded,
according to Eq. (2.24a), as

(K.) +.„~„,(2L+1}!~-~+-.)

X(g 2 ){n I.—l—)(g 2K)(z/K L ——i)

X,Fi(L +1 n—,L +1 Z/—E;2L +2;g), (3.5c)

A, =g+K+a-,
$=4K'/[(A, —2K)(A, —2a)] .

(3.5d)

(3.5e)

Putting (=0 we recover the expansion of u)rL (r) derived
by Yamani and Reinhardt. ' The condition for the coeffi-
cients a„to vanish as nice is

Re(g) Re(a)+Im(g)lm(~)+
I
K

I
Im(~) &0; (3.6)

this condition is the generalization of Eq. (2.35) to g com-
plex.

We can decompose uxI, (r) into outgoing and ingoing
parts as follows:

uKL(r) uKL(r)+uKL(r) ~

uxL ( r ) = de. (Er ) + ' exp(+Kr)

(3.7a)

(3.7b)X %(L + 1+Z/K;2L +2;+2Kr),

dye, ——( —2i) +'(2n
I
K

I
)

Xexp[+i riI —(mZ/2
I

K
I )], (3.7c)

riL argI'(L +——1 —Z/K); (3.7d)

here )(I)a; iz)) is the irregular Kummer function. 'i These
expressions are useful in the calculation of cross sections
for multiphoton ionization of a hydrogenlike ion. Note
that uxL(r) diverges as r for r-0

In some applications a generalized resolvent G (e„)Q„is
useful, where e„= (Z /2n )—is a bound-state energy of
the hydrogenlike ion and Q„projects out all bound-state
eigenvectors with eigenvalue e„.[Thus Q„removes the
poles of G(E) at I=e„.] By carefully letting E~e„in
Eq. (2.14) we can obtain a Sturmian expansion of
G(e„)Q„.Here we record the result for n =1. The
partial-wave decomposition of G(ei)Q) differs from that
of G(ei) only in that go(r, r';e, ) is replaced by

uxI. (r) = cxI (Kr) +'exp( Kr)—
(3.4a)X )Ei(L +1 Z/K;2L +2;2—Kr),

a (r) = —(1/Z) g (S„"i
I a)P„i(r), (3.2)

n =1+1

where P„"i(r}= (Z/r)S—„"~(r). The coefficients (S„"iIa)
tend to zero rapidly as n ~ oo since the integrand of

(S„i
I
a) =f dr S„i(r)a(r) (3.3)

oscillates many times —S„"(ir) has n —l —1 nodes on the
positive real axis for k real. Suppose that we now choose
k =

I
k

I
exp{ iP) w—here tt)=(m —8)/2. Provided that

a (r) has no singularities in the sector 0& (I/)I)) arg(r) & 1,
and provided that rS„"(ri)a(r) vanishes for r-00 in this
sector, we can rotate the path of integration in the above
integral from the positive real axis to the line
r =

I
r

I
exp(iP). Since S„"q(r)=S„I"( I

r
I

) we see that
{Sat I

a}=exp(ig)(S„II I

I
a'), where a'(r) =a(r exp(iP)).

It follows that (S„~Ia) tends rapidly to zero as n~ao if
(reverting to r real} a'(r) belongs to L»r. This condition,
and a similar condition with

I
a) replaced by

I
b),

guarantee the convergence of the Sturmian expansion of
Mi(E) Note .that if a(r)=exp( ar), w—ith Rea&0, we
require that Re[a exp(i))!))]&0, that is,

I
arg(a)+P

I

& n /2, in accord with the heuristic analysis of Sec. II C.
The Coulomb wave, uxI(r), describing an electron

moving with positive energy —,'K (note—K= i
I
K

I
)—

and angular momentum L (L +1) is

= (2 IK I )
' (2') +'

I
I (L+1 Z/K) I—

Xe x(pm. Z/2IK
I
)/(2L+1)! . (3.4b)

—2Zrr'(3 —Zr)(3 Zr') exp[ Z(r—+r')]—

Sno(r)Sno(r } .
N =3 Z n —1

[Note that in Ref. 9, K appears as
I
E

I
and u)rI(r)

differs from RxL(r) by a factor r ]We have .normalized
uxI (r) on the energy scale. We can expand
exp( gr)u+I (r) in term—s of damped outgoing waves
S„"(r)i, where Re)c & 0, Ima & 0. Thus, we have

This result was recently used' in an application of the
Schwinger variational principle to the treatment of two-
photon ionization of ground-state hydrogen; the presence
of the generalized Green's function partially takes account
of virtual absorption or emission.

uxL(r)=exp(gr) g a„S„"L(r),
n =6+1

(3.5a) 8. Multiphoton ionization of H-like ion

a„=—(1/Z) f dr exp( —gr)u)rL(r)P"„L(r) . (3.5b)

~here the coefficients a„aregiven by the orthogonality
condition:

The generalized differential cross section der~/dQ for
N-photon ionization of a one-electron system by a mono-
chromatic, spatially independent, classically describable
radiation field of frequency co, polarization e, intensity I,
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and photon flux F=I/oi is (recall we use atomic units)

do~/dQ=(2rrp/F )
I Rp I

2; (3.8)

p is a phase-space factor (pdQ is the density of fmal
states per unit energy) and R~ is the transition matrix ele-

ment which, to ¹h order in the dipole interaction

& x
I

1 & = r, (x)u„,,(r) /r, (3.11a)

& x
I f & =4lr g I'I'Lsr(K) ~LM(x»KL(r) I r (3.11b)

and EI,E2, . . . , EN I are the intermediate energies of the
electron. %e write

W = (2n'I/c)'i2('R. x), (3.9)

can be written as

&P ={f I
WG (E~ I ) WG (E~ 1) 6 (E I ) W

I
i ),
(3.10}

where
I
i ) and

I f ) represent the initial and final states

no, l, and m are the quantum numbers of the initial state,
L and M are the angular-momentum quantum numbers
of the final state,

I
E

I
is the wave number of the outgo-

' ~ ~ ~

ing electron, and K its direction of motion (dQ=dK).
Since uKL (r) is normalized on the energy scale,
p=(1/1 &r ) We. obtain

2'lrro

dQ c L,M &w-i ~~-i

2
(N)g &(l~ „.. . , l, ;mN „.. . , m, )M

l),ml

(3.12)

where ll, l2, . . . , lN I and m „m2,. . . , mIv I are the allowed intermediate angular momentum quantum numbers, and
& (lIv I, . . . ) is a geometrical factor, given as the following product:

N

d((, , . . .)=ii, fd *V;, ("(()(aa)r, (;),. (3.13)

with lo=l, mo=m 4 L, and mN M. The matrix element M'~'is defined as

M' '= f dr& f dr„, f dr, uzi (rz)

XrNglN )(rN, PN I',EN I )re Igl~ 1(rN I, rhr l', EIv 1) rigi ( i,rI,'EI )rIu)) I(rI ) .

(3.14)

We have calculated cross sections for lI)t'-photon ionization of ground-state hydrogen, applying the above formalism to
the matrix element M' '. The evaluation of M' ' reduces to the evaluation of two types of matrix elements,
(&,& I

r
I S„r) and ( uKL I

r
I S„I); the first of these is a standard integral' and the second is evaluated in the Appendix.

We did not regularize uKL (r) since the convergence of the Sturmian expansion of M' is assured simply if

I
& & =gi, ,«P I )rgl (EP 2—)— (3.15}

is expanded in (damped) outgoing waves; here P is the minimum number of photons required to ionize the atom. Fol-
lowing the discussion of Sec. IIC we have, in general, that

N —P
M' '=2Re{M+'~') 21n y„—J,' ''M'~ (3.16a)

where [with
I
a ) as in Eq. (3.15)]

(uKL I rgl (EIv —I)r gl(Ep}r
I
a }

&.'"'=(uKL
I rgl„,«w I) gI„„,«N .+ I -)r

I »„„,I„„)'-
&I =(uKL,

I
"

I uk„,,l„

(3.16b)

(3.16c)

(3.16d)

where k„=Q 2E„and E„hasall inflnl—teslmal positive
imaginary part. The evaluation of J„' ' amounts to
evaluating matrix elements of the form

(b
I gi, ,(EJ+ I }r

I uk,.i, }. .

I
uk I. ) according to Eq. (3.5a) and by replacing

J J
gi (E. I} by its Sturmian expansion; the resulting ex-p+
pansion of the matrix element converges if the following
three conditions are satisfied:

This latter matrix element can be evaluated by expanding Re(g)Re(K)+1m(g)im(K)+
I kj I

1m{K)&0, (3.17a)
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Im(s —g) g0, (3.17b)

TABLE I. Generalized cross sections for X-photon ioniza-
tion of ground-state hydrogen when f N —1)-photon ionization
is possible. The light polarization is circular, o.~ has units
cm sec ', and the wavelength A, is in A. The number in
square brackets is the power of 10 by which the preceding num-
ber should be multiplied.

Re(g)Re(v)+Im(g)lm(x)+
i ki+i i

Im(~) &0. (3.17c)

The first condition ensures that the expansion of
i uk i )

J J
is convergent. The second condition ensures that this ex-
pansion consists of outgoing waves. The third condition
implies that the truncated expansion of
r 'exp( gr)u—l, i (r) (where i)l =l +i —l ) can, in princi-

J J J+ J

pie, be reexpanded in a series of terms exp( gr)S—„/,+', (r),
thereby ensuring that the replacement of gi (EJ+i) byJ+
its Sturmian expansion is legitimate. A11 three conditions
can be met if g and a are chosen as follows:

Re4= —'( Iki+i I+ I ki I
)

Imp= —Re),
a=2(.

In verifying Eqs. (3.17) note that
i kJ+i i

&
i ki i

.
We have performed calculations for X equal to P+1.

Numerous calculations have now been reported for
above-threshold ionization of hydrogen (i.e., X &P), and
so we do not present extensive results here; we refer the
reader to calculations involving the Sturmian approach
and other methods. ' ' However, to our knowledge,
most results presented so far (not those of Refs. 6, 15, and
16) are for N =2, P =1. In Table I we give results for
P =1—4.

The expansion of
i
a ) in outgoing waves can be trun-

cated after a few terms; the number of terms required de-
pends on the (complex) wave vector chosen for the outgo-
ing ~aves, and increases as I' increases. In our calcula-
tions we retained at most 11 terms in the expansion of

i
a ). The Sturmian expansion of M+' ', with ltl =P + 1,

converges rapidly for P = l~&nly about 50 terms were re-
quired in the final sum to achieve convergence in the
second place—but the rate of convergence diminishes as P
increases, and for P =4 about 450 terms were required in
the final sum to achieve convergence in the second place.
Furthermore, for P &2 the individual terms can become
very large and cancel in the sum. For P =4 the individu-
al terms in M+' ' reached an order of magnitude of 10',
while the sum is on the order of only 10 . For this reason
we needed to use extended precision in our computations.
We hope that further exploration will reveal a path to al-
leviating this drawback. %e note that large terms which
cancel in the sum appear in other StuiII~ian-type methods,

TABLE II. Generalized cross sections for one-, two-, and
three-photon ionization of ground-state hydrogen when one-

photon ionization is possible. Units of o.~ are cm sec
Light polarization is circular.

6.4[—19]
1.0[—53]
1.3[—88]

1.2[—18]
3.4[—53]
6.3[—88]

2.0[—18]
9.2[—53]
2.4[—87]

3.1[—18]
2.2[—52]
8.8[—87]

the problem can be alleviated to some extent, as demon-
strated by Fainshtein et al. , by optimally choosing the
open wave vectors (which are not uniquely defined).

We have also performed calculations of three-photon
ionization when ordinary photoionization is possible
(P =1, N =P+2). Some results are given in Table II.
The number of terms retained in the expansion of

i uki )
was of the order of 20. The number of terms retained in
the Sturmian expansion of gI(E) in J„' ' was of the order
of 100. Where comparison is possible, our results agree to
within a few percent with those of Klarsfeld and Maquet
and Aymar and Crance. '

Progress has been made on extending the ideas of this
paper to atoms more complicated than hydrogen. ' %e
note that the remarks of this paper have implications for
all approaches employing discrete basis functions.
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APPENDIX

We describe here the evaluation of

(up+a
i
8'exp( gr) iS„"i)—

=f dr r"exp( gr)uzi (r)S„"—i(r), (Al)

where p + l —L + 1 and p —l +L + 1 are non-negative in-
tegers (and V is pure Coulombic). We reduce this integral
to a closed-form expression which, though rather compli-
cated, is manageable even when n ~&l.

Using the integral representation

I'(1 —a)l (b) ( 1 + i)b —8 —1

F(a;b;z}= . dt exp( zt)—
2@iI b —a t1—

(A2)

to represent S„i(r)—here C is any contour enclosing the
point t =0 in the counterclockwise sense, if a and b are
integers with (b —a}&0—we have, from Eqs. (3.1) and
(3.7), that

(uxi i
r exp( gr)

i
S„"i)—=l3I, (A3a)

( 1 +t)ll +II = . f dt I f dr r 'exp( pr)—
1.2[—18]
3.4[—53]

1.3[—49]
1.4[—83]

2.9[—83] 4.0[—116]
2.6[—116] 8.8[—149]

x %(L + 1 i y;2L +2;2'),—

(A3b)
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where y=Z/~K ~, rn =p+L+i+3, and

p, =K+k+g+2kt,
P=(2k}'+'K +'[(n —i —1}!/(n+i)!]'~d+

(A3c)

(A3d)

dt K 1

ds k (1

S —N

1 —sz

(A5c)

(A5d)

Note that m 2L——2 and rn —21 —2 are non-negative in-
tegers„as required in the following analysis. In going
from (Al) to (A3) we have interchanged the order of in-
tegration, which is legitimate if Re!u & 0 inside and an C.
The integral over r is a standard one'z and we obtain

I= (m —1)!(m —2L —2)!
I (m L ——ly)2&l

1
21

' a+1
t 1+—

pNl

u! =(k g —K)—/(k —/+K),
p=2Ks/(s —1) .

Noting that the singular part of

zFi (L +1 i—y, m;m L i y—;—g)p,

along C~ is'

I (m L —i—y)l (1—5)
( —s) +

(m —1)!(m —2L —2}!

(Ase)

(A5f)

X2Fi(L+1 iy, m—;rn —L iy—;g), (A4a)

g=(k+g+2kt K)Ip .— (A4b)

In the region outside C the integrand of Eq. (A4a) has
branch paint singularities at t = —(K+k+/)/2k, where
g= oo, and at t = 00, where g= l. We draw a branch cut
between these two singularities, with the direction of the
cut chosen so that g is real along the cut. We deform C
into a contour Ci that wraps around this cut and then
joins a circle Cz of infinitely large radius. See Fig. 1. We
write I=Ii+Iz, where Ii and I2 are the contributions
from the contours Ci and C2, respectively.

To evaluate Ii we change variables from t to s = I/f.
We have

X zFi(L +1 i y, 2L—+2—m;5;s)p

k /+K — I'(1 —5)
k+g+K (2K) 2~i

d ( )s i(1 )m —2!—2(1 s )2!
C3

S —t8
X

1 —sz

X 2F)(L +1 iy, 2L +—2—m;5;s) . (A6)

where 5=L +2—m i y, w—e obtain

EI) ———
k

1 —sz

s —1

z =(k +g —K)/(k +(+K),

(A5a)

Here C3 is the transform of C! under the change of vari-
ables t~s; thus, in the complex s plane, C3 starts at the
paint s =1 and returns to this point after encircling (in
the clockwise sense) the cut along the interval 0&s &1.
Note that the hypergeometric function in the integrand of
Eq. (A6) is a polynomial in s of degree m 2L —2. Not—e
also that if /=0 (i.e., tU =z}and if k and K are both pure
imaginary (a case of interest) we have

~

z
~

&1, and

~

(s —z)/(1 —sz)
~

&1 along C3, where the equality ob-
tains only when s equals 1. Hence if n »1 the integrand
of (A6) is negligibly small except in the region

~

1 —s
~

—1/n; it follows that I! 0(y/n ——2! ') if
n »1, assuming that (=0 and that k and K are pure
imaginary. To evaluate the integral of (A6} we write

a+1
~)n+! g Cn+! n s!—+P( ~P (A7a)

q=0

zFi(L +1 iy, 2L +2—m;—5;s)

m —zL —i (L+1 iy)„(2L+2—m—)„s"
0 (5)„(r!) (A7b)

where Cz n!/[q!(n —q)!——], and we use the integral repre-
sentation

1 I (1—a)I (e)
2Fi a,b;c;z =

2@i I (c —a)

FIG. 1. Contour C in complex t plane is deformed into con-
tour Cl encircling cut and contour C2 which is circle of infinite
radius.

X ds( —s)' '(1—s)' ' '(1 —sz)
C3

(A7c)
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where Re(c —a)&0. The result is a sum of hyper-
geometric functions:

n+I m —2I —2

Ii ——8 g Cq+ ( —to)» g 8», 2Fi(a, b;c;z),
q=0 r=0

(ASa)

( m —2L —2 )!
I (L+1 i—y)

( L——iy) (m 2—L —1)
xg, ' ' (2E)q-"-'I„,

q! ( 2L—)q

'2l ' ' n+l
k +g+E k g+—E

2k k+g+E
1I = . dt, 1+—

2m.i c2 p~' t

n+l

(A9b)

(rn —21 —2)! 1

(2E)

(L +1 iy)—„(2L+2 —m)„
(&),(r!)(a)

(ASb)

(ASc)

a =5+n+I —q+r,
b=n —I,
c =a+m —2/ —1.

(ASd)

(ASe)

(2L)!I (m L i y )——
1 (L +1 i y)(—m —1)!

xg ( L i y ) ——(m 2L —1)—
q! ( 2L)q—

We therefore have

Along C2 the singular part of 2F i (L + 1 i y, m- ;
m L t y; g——)ts''

where q'=m +q 2L ——1. If we expand p q (1+1/t)" +'
in powers of 1/t, only the term in 1/t +' contributes to
the integral I2q, in fact, the integral is just the coefficient
of this term. We therefore have

k
I~q ——(2k) q g ( —1}tC"+

r=0

(A10)

where j =21+1 r —q—
' and where 8 is the smaller of

21+1—q' and n+I; with the restriction imposed on p,
we have, in fact, R =2I + 1 —q', and hence that j =8 r-
Note that Izq increases with n as n" and therefore, since

has maximum value I+L —p —1, I2 increases as
n l+L —p —1

The values p = 1 and L =I+1 are of particular interest.
We have m =2I +4+1; for n »1 we have I2 increases as
n 2' 2-+' whereas if (=0 and k and E are pure imaginary
we have Ii ——O(y/n -'). In this case we can neglect Ii
for n »1 and we have only to deal with the relatively
simple computation of I2.
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