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The dynamics of a tridimensional, axially degenerated vibration coupled to a finite Fermi system

shaped as a cylindrical reservoir in the Markovian —plus —weak-coupling regime is investigated. The
vibration is aimed at representing a normal mode of the fermion system and is extracted out of a hy-

drodynamical construction for the relative motion of a two-Quid mixture. Such a procedure pro-

vides a dispersion relation that has been proven to work properly in nuclear theory. A residual cou-

phng between the mode and the heat reservoir constituted by the single-particle degrees of freedom

is adopted and equations of irreversible evolution for the oscillator components and for the fermion-

ic population can be obtained. This dynamical system is numerically integrated for a variety of con-

tainer sizes and particle numbers and it is shown that thermodynamic magnitudes characterizing the

attractor of the dynamical system, as well as typical relaxation times, can be consistently extracted
from the numerical approach.

I. INTRODUCTION

The evidence of collective mode broadening in finite
many-particle objects such as atoms, molecules, and nuclei
provides an excellent example of an irreversible route to
canonical equilibrium in systems far from the thermo-
dynamic limit. In particular, an investigation of the ori-
gin and nature of resonances and their damping in finite
Fermi systems such as nuclei is a challenging task, since
up to now no complete, self-consistent treatment of
resonant decay has been provided. ' s Approaches to the
description of either the centroids or the widths of these
collective degrees of freedom in nuclei and more general
Fermi systems range from purely hydrodynamic9 to pure-

ly microscopic models, with a recent emphasis on the
self-consistent buildup of broadened oscillations. ' ' On
the other hand, an attempt to extract half-lives out of a
time evolution pattern of the vibration and the single-
particle (SP) states in the heat bath has been recently pro-
vided. ' 7 In this approach, one essentially leaves aside
the considerations regarding the structure of the mode on
the grounds that the amount of violation of the Pauli
principle can be proven to be small, and solves the cou-
pled dynamics of a quantal oscillator and the fermions in
a heat reservoir. Calculations performed in extend-
ed' and finite Fermi systems such as spherical nu-
clei cover a number of possibilities concerning the
geometry of the reservoir and the nature —i.e., either elas-
tic ol' lllelastlc —of tile coupllllg to the vlbratloll alld lll

every situation already considered, a systematic approach
to equilibration that accounts for finite half-lives is en-
countered.

In the present work we board a study of the dynamics
of a tridimensional axially degenerated vibration coupled
to a finite Fermi system shaped as a cylindrical container.
This configuration is aimed at a model investigation, in
future workof res, onance splitting and broadening in axi-
ally deformed nuclei and is conceived, at the present stage,

rather as a problem in nonequilibrium statistical mechan-
ics, since the selected interaction is mainly devised for di-
dactical purposes and is not realistic enough to allow for
experimental tests. It is an extension of the so-called
quantal Brownian motion (QBM) model of collective
mode damping to a peculiar geometry that Inakes room to
straightforward introduction of a hydrodynamical con-
struction yielding a dispersion relation and phonon wave
functions. Equations of motion extracted in a standard
fashion' are numerically integrated and several features
of the approach to equilibrium of either oscillator or fer-
mionic degrees of freedom can be analyzed, as well as the
consistency of the asymptotic configuration on thermo-
dynamic grounds.

In Sec. II, we describe the model and the perspectives
that we have adopted in order to construct the free Hamil-
tonian and the interaction. In particular, we dedicate
some space to describing the major characteristics of the
abave-mentioned construction, a well-founded one in nu-
clear theory, that we find of interest due to the possibili-
ties of applications to any Fermi system consisting of two
distinct components, i.e., one charged and one neutral
fiuid. In Sec. III we briefly quote the QBM prescriptions
for the time evolution of the mode and its heat bath. Sec-
tion IV contains the description of the calculations and
displays the results which are analyzed in Sec. V. The fi-
nal summary is presented in Sec. VI.

II. THE MODEL

We are considering here a three-dimensional osci11ator
with axial symmetry immersed in a fermionic heat bath to
which it couples through a particle-phonon interaction.
The total Hamiltonian then reads

H =Hg+HF+HgF,

where 8 and I' denote bosons and fermions, respectively.
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We now perform a detailed discussion of each term ap-

pearing in Eq. (2.1).
n1 N1

0

n2 N20 (2.7)

A. The boson H~~iltonian

a~=a~ '+ v~
1= gs„baba+ —, g Vatic'z b&bttbnbc

A A,S,C,D
(2.2)

the unperturbed SP energies sq are the eigenvalues of a
cylindrical Schrodinger equation

2m
V fg(r, q,z)=s„fg(r,q, z)

We assume that the heat bath consists of weakly in-
teracting fermions located in a cylindrical reservoir with
radius R and height L at a constant density no T. his
geometry has been selected as a crude first approximation
to a finite deformed nucleus possessing the density of nu-

clear matter, namely no ——0.17 particles/fmi. If we write

with Ã, the total number of type-i particles. In other
words, if, for instance, n i varies as

n i{r,t) =n i [1+g{r,t )]

in order to fulfill both (2.6) and {2.7) we get

N1
nz(r, t)=nz 1 — q(r, t)

2

(2.8)

(2.9)

In this model, one is mainly interested in the extraction
of the compression modes associated with the relative
motion of the fluid. This can be achieved if one imposes
a variational principle upon a Lagrangian I.=T—U
where (i) T is the relative kinetic energy,

T= —,'m n, rt u rt r (2.10)

with n, the reduced particle density

satisfying the boundary condition on the surface
gz(surf) =0. One finds

n&n2

np
(2.11)

for particles of equal mass rrt and v the relative velocity
of the fiuids,

=D„„J~(k~ r ) cos(my) sin(k, z ), (2.4)
V=V1 —V2 . (2.12)

where D„„ is a normalization constant, J (x) is a

cylindrical Bessel function with wave number k" such
that J (k"R)=0, m is an integer and the axial wave
number is k, =en, /L for integer n, . The SP energy then
reads

fP pg zsm- = «~) +
2ptl Li (2.5)

The details of the two-body matrix elements Vz~cn are
not relevant for the purpose of the present work.

8. The boson Hlmiltoman

no n i(r, t)+n2(——r, t ), (2.6)

where the labels 1 and 2 may denote protons and neu-
trons, respectively, or any other two subsystems of actual
interest. Furthermore, the partial particle densities n&(r, t)
are assumed to experience slight deviations from their
equilibrium values n 01 and n 02 related by

As mentioned above the boson Hamiltonian Htt de-
scribes a three-dimensional oscillator with cylindrical
symmetry. In future applications to nuclear physics, such
an oscillator will represent a collective oscillation of neu-
trons against protons giving rise to giant multiple reso-
nances. Consequently, to the aim of establishing the fre-
quencies of the vibration, we resort here to a quantized
hydrodynamical model, which bears an old tradition in
nuclear physics, and can be utihzed for any binary mix-
ture with one charged and one neutral component w'here a
charge oscillation starts. This is actually a two-fluid
model whose total uniform density no decomposes as

Notice that if the masses of the particles in type-1 and
type-2 fluids are different, one should consider mass den-
sities rather than particle densities in n, and ni (thus in

no and n„) (ii) U. is the potential energy for the particu-
lar problem one is describing. Since we are concerned
with nuclear matter, the appropriate potential energy is
the symmetry energy,

U=E,„=— f (ni n2) d—3r
np

(2.13)

with M a symmetry parameter given by a mass formu-
la. ' No electromagnetic force is taken into account in the
nuclear matter approximation.

The normal modes of both relative velocity and reduced
density are those modes of the Euler-Lagrange equations
for the action S= f L dt subjected to the constraint
%=Xi+%2——constant. If the motion is irrotational, the
velocity v is the gradient of a potential 4 and the Euler-
Lagrange equations are just ~ave equations,

2

(2.14)

for g(r, t)=g(r, t) or 4(r, t). The sound velocity u takes
the form

1/2
sm
m (+)+~2)i

(2.15)

in terms of the parameters of the model.
The cylindrical symmetry yields three normal modes,

namely,

(2.16a)



$4 RESONANCE SPLI IZING AND BROADENING IN AXIALLY. . . 2435

g'„01„—D—„'0„' Jo(qor) cos(q,z),

(2.16b)

(2.16c)

where m is an integer and the wave numbers q are provid-
ed by the zero-outflow boundary condition,

(2.17)

One can then write the general solution of Eq. (2.14) as

0«r)= g &~n'm. (rW"m. (r)+ g ized'on

(tent'0'

«»

~nmn (rnmn rnmn +rn—, mn rn, m—n +1)
n, n

m~0
1+ g 1)ioi.o.,(r.o;r.o;+ i }

n, n

with frequencies

~nmn =~qnmn

=u[(qm)'+q;1'" .

(2.23)

(2.24)

myQ
i=1,2

ni(0)
V y=O.

nO
(2.19)

Now„with the help of the general solutions (2.18), the
procedure to extract the quantized vibrations of the two-
fluid system is as follows. First, one considers the La-
grangian I.=T Ucorres—ponding to Eqs. (2.10) and
(2.13); the orthonormality of the normal modes (2.16)
yields then a quadratic expression in terms of the general-
ized coordinates a'n'm„and their derivatives a'n' „.Since

the relation (2.19) holds, only the coordinates describing
the excess density rl(r, t ) appear in the Lagrangian.
Secondly, one extracts the generalized momenta,

where the amplitudes u'n'm„(t}, i =1,2, 3, are generalized

coordinates. The coordinates for the velocity and density
fields are related by the continuity equation that in the
present situation takes the form

We drop the superscript (i} in the frequencies and in the
phonon operators, since the polar degeneracy for i =1,2
allows us to identify two different ones according to m
being different or equal to zero (i =3 in the latter case).

The model Hamiltonian in Eq. (2.1) contains just three
modes of Hamiltonian (2.23), actually those able to build

up a three-dimensional oscillator with axial symmetry.
These are the components of the lowest dipole mode
n=1, m= —1,0, 1, and n, =0; we select then a boson
Hamiltonian HB as

HB ~110(rlioriio+ ri, —lori, —10+ 1)

+~100(rioorioo+ z ) (2.25)

This choice means that in the current model one implicit-
ly assumes that higher multipoles are unimportant, either
because they lie too high in energy for the adopted
geometry or because they do not couple to the fermionic
excitations in order to participate in the dynamics to a
relevant extent.

Note that the phonon operators in Eq. (2.25) possess
well-defined angular momentum projection; indeed, one
has

Bl
~nmng ~ (i)

~~Z nmn

(2.20) L.,r', , 0~O&=+1)lrnr', , oiO& . (2.26)

and writes down a Hamiltonian,
The frequencies can be calculated from Eq. (2.24) and
read

i, n, m, n

(2.21) 1mO ~ 71mO

(2.27)

This Hamiltonian can be straightforwardly quantized
when one has introduced canonical commutation relations
between the generalized coordinates and their respective
momenta. Thus, the fmal step in this procedure is to con-
struct the boson operators,

J1 (q 1R ) q 1RJo(q 1R )=0—,

Ji(qoR ) =0 .

(2.28a)

(2.28b)

since q„=n.n, /L =0. The momenta q' are the roots of
the equations

t(i)
~nmn =

2 2

(i) (i)
~nmn n'mn

~~(i) (i)
~~mnn mnn

1 /2

( —1) II„

(2.22)

One finds

1.841 i 3.832
O'O =

R R

C. The interaction Hamiltonian

(2.29)

where 8„"„and co„"„are, respectively, the inertia and

frequency parameters that explicitly show up in the first
step. These quantities are degenerated on the polar plane
and are known functions of the model parameters as

displayed in Ref. 9. Accordingly, the noninteracting bo-

son Hamiltonian reads

The coupling between bosonic and fermionic degrees of
freedom is a standard particle-phonon interaction in the
present model. It reads

(2.30)
i =1 0!,p
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V(r~, r~h)=A, 5(r~ —r~h) al» (2.32)

where the matrix element A,~ is assumed to represent the
scalar product,

A,~~ ——J d r~ I d rph f„'(rq)g*"'(rph)

X V(rq, rp'h)f (rq) . (2.31)

In this expression, rz and r~h denote particle and phonon
cmrdinatm, rmp tively; V(r p, r(ph)) is a myel interaction
between a fermion at rz and a type-i phonon at r~h and 1(

denotes either wave function. We further adopt the po-
tential ~(k~ k„qiio 1)5~,a5m, o

4

ka Ciao 1)5m 05m
(2.34a)

The SP wave functions are those in Eq. (2.4); as for the
free-phonon wave functions we adopt the cylindrical nor-
mal modes whose shape is displayed in Eqs. (2.16).

Expression (2.33) factorizes as three integrals; the radial
one can be evaluatmi with the help of standard tables. We
just quote the result here that exhibits the current selec-
tion rule as

(1) (2)
XQp Al f/'

thus

~~=~ I d'r P„'(r)g,',"(r)lj.(r) . (2.33)

A, '„'=A,5„„5 F(k~, q)oo, k„,m ),

with the kernel

(2.34b)

1 cos(mW) +O((kR) ) tf ~k, —kz
~
&k3(k, +k21

p(k), k 2k 3ppg)=, v ~k3 slnJ3f

if k3( ~kl k2I «k3)kl+k2
(2.34c)

the argument M being pII' ——g p„'„'
(

n }(n' ~, i =1,2, 3 (3.1b)

k)+k3 —k2
2 2 2

'

2k(k3
(2.34d) with

~

n ) an oscillator (Pock) basis, and

The kernel in Eq. (2.34c) vanishes unless a triangular
relationship among momenta is fulfilled. This condition
reflects a restricted linear-momentum conservation; of
course, strict conservation is meaningless in the present
case since the geometry does not allow the components of
the linear momentum to be good quantum numbers.

pF =, det(pi)+pF (3.2)

pi= g p~~ l»&~'I (3.3)

with det(p&) denoting a Slater determinant of SP densities

p& whose spectral decomposition reads

III. THE DYNAMICS

We are concerned here with the time evolution of the
reduced density operators representing either the bosonic
or the heat-bath degrees of freedom, pz and pF, respec-
tively. A standard reduction procedure on the
Liouville —von Neumann equation of motion' combined
with a Markovian-like hypothesis yields a pair of coupled
equations of irreversible evolution. The details of the ap-
proach have been extensively discussed in prior
works' ' and we will not repeat them here. The gen-
eral scheme is as follows; we express the density operators
as

(i) (i) (i) (i) (i)
po ——8 +p) —S' po (3.4a)

.{i) (i) (i) (i) (i) (i) (i)
p ~ = ~+(p. +i —p. )+ lV-(p. -i —p. » (3.4b)

on the SP basis of Eq. (2.4), and PF is a correlation con-
tribution induced by the two-body interaction. The reduc-
tion procedure in the Markovian —plus —weak-coupling re-
gime yields equations of motion that, once the off-
diagonal matrix elements in Eqs. (3.1b) and (3.3) have
decayed' —i.e., very close to equilibration —adopt the
form

3
(i)pa= gapa ~

i=a

.(i) (i) (i) {i) (i)px = —~+pe+ ~-px
(3.1a)

for the boson occupation probabilities, and

(3.4c)
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3

P &
= 2 2 I

~ p I
+(~ ~ p)(~&pt(1 Po )Pi(1 P ) (1 P&)p (1 P—p)]

+5&&,[(1 P—&')P~(1 —p&) —(1 Po—)Pp(1 Pa)] I +p kin (3.4d)

for the fermion occupation numbers.
As in previous works' ' the quantities 8"+' are tran-

sition rates whose expression is

Pr(~i) y ~

g(&)
~

2~(~(i) ~ )p (1 p )
CXP a p

(3.5)

Both in Eq. (3.4d} and in Eq. (3.5) the symbol
W(co"—co &) denotes a Lorentzian filter,

A (co —co~,p) =
R(a)"—co „)'+~' (3.6}

that accounts for energy nonconservation, since in order
to derive Eq. (3.4) one has assumed that the particle-
phonon interaction lasts a finite lapse r, =y '. The
quantity fiy is then an energy spread occurring at scatter-
ing and should be much larger than any typical energy pa-
rameter in the total system, if the Markovian approxima-
tion holds. Furthermore, the kinetic time derivative pk, „
in Eq. (3.4d) is the Boltzmann-like collision rate induced
by the two-body interaction in (2.2); since we are interest-
ed in examining the role of the particle-phonon coupling,
we will disregard this contribution in what follows.

IV. DESCRIPTION OF THE CALCULATIONS

%e have numerically integrated the dynamical system
(3.4) for different particle numbers N and different di-
mensions R and L The latte.r have been chosen in order
to reproduce (i) together with N, a typical nuclear matter
density of no=0. 17 fermions per unit volume and (ii} a
ratio 8 /L consistent with an average nuclear quadrupole
deformation. In every case the boson frequencies have
been evaluated according to Eqs. (2.27} and (2.29). The
SP spectrum has been built up with Eq. (2.5), allowing for
a fourfold spin-isospin degeneracy. All those SP states
above the Fermi level that participate in the dynamics up
to a two-step phonon generation have been included. This
criterion for spectrum truncation was adopted after
several trials once it was established that the calculation
turned out to be stable and saturated if further extension
of the SP spectrum was allowed.

Typical results are displayed in Table I. The columns
are labeled by the number of particles and each of them
contains, in addition to the parameters R, L, the Fermi
energy eF, and the energies fuoiio, kcoioo (in units of
fi /2m ), the energies of the fermionic and the bosonic sys-
tems evaluated at (=0 and these energies, as well as the
corresponding entropies, extrapolated from our numerical
treatment for r increasing up to infinity. Indeed, such an
extrapolation is rather trivial since our long-time runs ex-
hibit overall equilibration of the subsystems under con-
sideration. This fact can be appreciated in Fig. 1, where
the entropies of these three sets of degrees of freedom are
displayed as a function of time for N =52.

The results shown in Table I and Fig. 1 correspond to
an initial configuration with the circular phonons
(m =+1) excited, the axial phonon (m =0) at its ground
state, and a cold Fermi gas. The evolution of the SP dis-
tribution for %=100 particles can be observed in Fig. 2.
For future analysis„we show as well in Figs. 3 and 4 the
corresponding evolution for the initial conditions (i) one
axial phonon excited, the circular ones deexcited and (ii)
the three phonons excited, respectively. The SP states

~
nmn, ) and their energies are given in Table II.
All these computations have been performed for an

inelasticity spread iriy=0. 5 (in the current energy units).
It was chosen so as to broaden each SP state level to the
extent to which it overlaps 2—4 neighboring states. We
remind the reader that the value of this parameter is ir-
relevant at the present state of the calculations. It plays
the role of a representative of disregarded open channels
capable of driving flux out of a colliding particle-phonon
system and convert the discrete SP spectrum into a con-
tinuous one, without which a dissipative dynamics could
not take place. '

V. ANALYSIS OF THE RESULTS

TABLE I. The initial energies and the asymptotic energies
and entropies of the three subsystems under study for different
numbers of fermions in the reservoir with radius R and height
I.. The Fermi energy for each selection of dimensions is indi-
cated as well as the two phonon energies.

I.
C,F
~»o
~100
EF(0)
Eg, (0)

Eg (0)

EF( oo )

Eg, (00 )

Eg, ( oo )

S,('-)/N
Sg, (oo )

Sg, ( oo )

20
2.38
3.17
2.84
1.53
3.18

36.9
1.53

45.0
0.177

0.013

0.750
0.373

0.026

52
3.5
4.68
2.60
1.04
2.16

80.2
1.04

0.00

84.9
0.047

0.04

0.379
0.188

0.014

100
4.5
6.0
2.44
0.81
1.68

128.1
0.81

0.00

131.5
0.03

0.002

0.21
0.16

0.01

200
5.57
7.5
2.48
0.65
1.36

275.2
0.65

0.00

277.9
0.013

0.001

0.120
0.100

The first observation from inspection of Fig. 1 is the
overall equilibration attained by the three subsystems and
their different time scales. Notice that the overshooting
displayed by the entropy of the degenerate oscillator and
its subsequent decrease to a saturation figure is not in con-
tradiction with the second law of thermodynamics since
the total entropy is an increasing magnitude.
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0. -

10 5x10' 10
t= 200 At

Number of time steps

FIG. l. The time evolution of the entropy of the bosonic and
the fermionic systems (in arbitrary units).

t=1QQQ ht

From the data displayed in Table I one can extract
several interesting quantities. As a matter of fact, one
might be interested in testing the adequacy of a statistical
description for systems far from the thermodynamic lim-
it. This can be achieved in various ways and we have
chosen the foHowing: if we assume that the vibrations
reach equilibrium at a heat-bath temperature T, the ener-

gy would read, for any of them,
FIG. 3. Same as in Fig. 2 with one axial phonon excited and

the circularly degenerated oscillator at its ground state.

t.Q

t.100 6'i

t &000dt
0

t=lQQQ Qt

0 l

1-

FIG. 2. The distribution of the ferrnions at different time
steps during the evolution. The initial conditions correspond to
an excited circular vibration and an axial component at its
ground state.

FIG. 4. Same as in Figs. 2 and 3 with the three normal
modes initially excited.
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TABLE II. The fermion orbitals and energies for %=100
particles in the container eath the dimensions indicated in Table
I. Only those orbitals are displayed that effectively participate
in collision events mth a vibrational mode in the current model.

for a temperature T=(Tz +Ts, )/2 at each column of
Table I. In addition, we have chosen to express the chem-
ical potential in terms of energy and entropy as

p, '(T) =(—, U~ SF—T)/N (5.4)
100
101
110
111
120
104
200
201
114
130
210
211
204
220
214
300
301
230
304
310
311
314

0.28
0.35
0.72
0.79
1.30
1.38
1.50
1.57
1.81
2.01
2.43
2.50
2.60
3.50
3.53
3.70
3.77
4.70
4.79
5.11
5.18
6.21

(5.1)

Consequently, we can extract a temperature T out of (5.1)
for each E~;(ao) in Table I. Furthermore, we can evalu-
ate the theoretical canonical entropy of each oscillator as

Ss(&)= —ln(1 —e ) .
Ug -0,/T
T (5.2)

'2
5m2 T

Up(T) = UF(0) 1+ (53a)

T
p( T)=a~ 1—

12 Tp
(5.3b)

These temperatures and entropies are shown in Table HI
for the same column labeling as in Table I. We can ap-
preciate (i) the excellent agrimnent between the two tem-
peratures T~; at each column; (ii) the excellent agreetnent
between the canonical entropies evaluated according to
(5.2) for each mode and the corresponding saturation en-
tropies Sii;(ao) obtained out of the time evolution (cf.
Table I); and (iii) these excellent agreements in (i) and (ii)
improve, in relative figures, as N increases. It is worth
pointing out that these figures are rather more than ac-
ceptable even in the case of a low particle number such as
20.

In order to complete the undergoing argument, we have
computed the energy and chemical potential of an extend-
ed, degenerate Fermi gas,

TABLE III. The heat-bath temperatures evaluated according
to Eq. (5.1}far rither oscillator; the corresponding entropies; the
internal energy of a free Fermi gas at the average temperature
T=(Tg +T~ )/2; the chemical potential of the referred Fermi

1 2

gas and that calculated with Eq. (5.4); the characteristic times
(5.5) for the three subsystems. These data are displayed for the
same column specifications as in Table I.

Tg

Tg

Sg (Tg, )

Sg (Tg )

Up( T)
p(T)
p'(T)
~(Eg )

JEST )

~(EF)

0.578

0.372

0.026

44.4
2.73
3.28

1900ht

14006t

2800ht

0.332

0.343

0.186

0.013

85.7
2.56
2.59

850Lt

500ht

900ht

0.242

0.160

0.009

133.4
2.40
2.14

620ht

0.166

0.170

0.100

0.003

280.4
2.47
2.30

600ht

310ht

700ht

and evaluated this quantity for T=T introducing the
values far UF(00) and SF(oc). This computation was
selected rather than the evaluation of SF(T) out of UF(T)
and p,F( T) in order to eliminate instabilities due to numer-
ical rounding-off. The results are also shown in Table III.
A due comparison makes evident that (i) the canonical en-

ergy U~(T) lies within a fringe narrower than a rough
2%, even for a low particle number such as 20, and (ii) for
N & 52 the chemical potentials computed according to the
choices (5.3b) and (5.4) are in excellent agro:ment, demon-
strating the thermodynamic consistency of the evolutian
data.

Different initial conditions make room for the behavior
of the fermionic system drawn in Figs. 2—4. Before
entering a detailed analysis of these figures we wish to
quote that from our evolution data we can extract identi-
cal conclusions to those already mentioned in connection
with Tables I and IH plus the following features: (i) ac-
cording to different initial excitations —in other words,
different amounts of available phonon energy to share
among the participating degrees af freedom —various tem-
peratures, thermal energies, and entropies show up that
increase with the tatal initial excitation energy„(ii) the
chemical potential evaluated with Eq. (5.3b) is

p,z(T) =2.40 and that corresponding to Eq. (5.4) is

pF —2. 14, in eac—h case they are constant figures indepen-
dent of the initial conditions as well as of the final equili-
brium temperatures corresponding to a truly degenerate
FelTM gas.

Now, Figs. 2—4 possess the following characteristics.
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In all cases the levels suffering the largest occupation
change are those that lie in the neighborhood of the Fermi
level and that participate in direct coupling to the circu-
larly degenerate —i.e., m =+1—phonons. These are the
SP states

~
nmn, ) =

~

201),
~

114), and
~

210) above the
Fermi level and their respective partners below this state,
a««ly the or»ta» ~211) ~204), and ~300) Each «
these states may in turn couple to the m=0 phonon
through a different partner. Other orbitals suffer less sig-
nificant variations in their occupation numbers, although
a careful comparison of the pictures in Figs. 2—4 shows
that the more significant changes at those states take
place when the type-3 phonon (m =0) is initially excited.
The reason for this behavior is that in such a case, both
the selection rules involved in the partide —axial-phonon
coupling and the larger amount of available excitation en-

ergy provide important time derivatives for the SP occu-
pation numbers of those states at short times. One could
additionally notice (cf. Figs. 3 and 4) that the larger the
initial excitation energy, the larger is the variation in the
population of originally occupied or unoccupied SP states.

In this respect, it can be observed as weH that the relax-
ation of the Fermi distribution depends on the initial con-
ditions. Even more„ the rates of equilibration for the
three subsystems under consideration depend on the di-
mensions and particle number. Table III displays a set of
relaxation times r for these subsystems defined as

g( ) E( )
E(0) E( oo )

This table shows (a) the Fermi system takes longer than
either boson system to reach equilibrium; (b) the degen-
erate oscillator presents a characteristic relaxation time
slightly smaller than the Fermi gas, but about a factor of
2 higher than the m =0 vibration, provided that the latter
is initially at its ground state; and (c) in case this axial os-
cillator is excited at i=0, it drives the circular one to
equilibrium at a higher rate and the relationship quoted in
(b) is reversed. Such an inversion of the time figures
occurs because the more important collision events in-
volve SP states close to the Fermi surface, able to couple
to m =+1 phonons. Other transition that may involve
the same orbitals coupled to the m =0 phonon —appear as
largely inhibited by the energy conservation filter. This
brings as a consequence that if such a phonon is initially
excited, its decay suffers a relative delay since it may not
evolve until the fermion population has undergone, via its
coupling to the circular vibration, a change that allows
the participation of blocked —i.e., not near to the Fermi
surface —SP orbitals.

As a final remark, we must point out that the total en-
ergy is not strictly conserved. This is not surprising in
view of the inelastic collisions considered here. However,
the energy loss is always kept at a low percent and should
not be considered an important figure of this calculation.

In this work we have designed a mode1 that intends to
simulate in a very low-order approximation the expected

dynamics when a three-dimensional, circularly degenerat-
ed harmonic vibration in a fermion fluid excites and de-
cays via its coupling to the excitons. In order to carry out
this low-order approximation, we have disregarded any at-
tempt to describe the motion in a self-consistent fashion
and considered two distinct systems, actually a boson and
a fermion field and a mutual coupling. The origin of the
former is traced back to a two-fiuid model that, although
devised to describe giant resonances in nuclei, may also be
well-suited to feature charge oscillations in binary mix-
tures. Once the normal modes of the relative motion of
the fluids are extracted in a cylindrical geometry with rig-
id walls, the dipole contribution to the quantized Hamil-
tonian is adopted as the boson Hamiltonian of the model,
assumed to couple to a generic fermion gas in a cylinder.
In this way one has extracted a convenient dispersion rela-
tion which has already proven to be rather adequate for
nuclear purposes.

Equations of irreversible evolution of both the boson
and the fermion degrees of freedom are extracted in the
frame of the QBM model and numerically solved for vari-
ous selections of container sizes, particle numbers, and in-
itial conditions. Although all quantities are expressed in
arbitrary units, they bear the relationships that are ap-
propriate for nuclear scales. The analysis of the results
makes evident a number of features, as follows. First, one
realizes that the model provides a proper oscillator-bath
thermodynamics for sufficiently long times, even for low
particle numbers. In fact, one can demonstrate that con-
sistent thermal variables and state functions such as tem-
perature, energy, entropy, and chemical potential can be
extracted. Secondly, the time evolution of the Fermi sea
can be photographed at several steps and the population
dynamics can be clearly interpreted on microscopic
grounds. Finally, figures for characteristic relaxation
times can be provided and their relative sizes can be
traced to the initial configuration and its subsequent
disarrangement.

It remains to be proven whether this oversimplified
cylindrical geometry is a reasonable order-of-magnitude
approximation to a realistic situation taking place in a
spheroidal reservoir such as a nucleus. A numerical solu-
tion of the wave equation or employment of harmonic
spheroidal functions' is then demanded. Calculations
along this line are in progress and will be presented else-
where.
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