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Spurious dimension from correlation algorithms applied to limited time-series data
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An algorithm devised for measuring the dimension of a strange attractor from a time series is ap-
plied both to autocorrelated Gaussian noise and to a dynamical system. It is analytically shown that
a finite sequence of stochastic data —where by "finite" it is meant that X «2W, where X is the
number of points in the sequence, ~ is the autocorrelation time (in units of sampling period), and m
is the embedding dimension —exhibits anomalous structure in its correlation integral. The anomaly
is seen numerically in both stochastic and dynamical data. Unrecognized, it can lead to unnecessari-
ly inaccurate and possibly spurious estimates of dimension. %'e propose a slight modification of the
standard algorithm which eliminates this difficulty.

I. INTRODUCTION

Since the work of Lorenz, ' it has become widely known
that simple deterministic systems with only a few degrees
of freedom can display complicated aperiodic behavior.
The experimentahst, confronted with complex motion,
seeks to determine whether that motion is "chaotic, "
deriving from just such a simple system, or whether it is
"stochastic, " deriving from a system which itself is com-
plicated and which possesses many degrees of freedom.

Methods proposed for the determination of the dimen-
sion of a system's trajectory through phase space provide
a means of distinguishing these two kinds of motion. An
algorithm of Grassberger and Procaccia involves the
computation of a "correlation integral" whose power-law
behavior is used to estimate the dimension of the attrac-
tor. This dimension is thought to be a measure of the
number of "active modes" in the system, or of the "effec-
tive number of degrees of freedom. "

We examine the structure of the correlation integral in
two representative cases: for stochastic and for dynamical
data. We find in both cases that for limited data sets with
high autocorrelation, the correlation integral displays an
anomalous "shoulder" which inhibits good estimates of
dimension. For stochastic data, we can model this effect
analytically. The model provides a criterion from which
one ean predict whether the effect will be important in a
given system; also, by pointing to the source of the anom-

aly, the model provides a quick and easily implemented
fix. We demonstrate the effect and its fix numerically for
both stochastic and dynamical data.

II. CORRELATION INTEGRAL

The experimentalist measures at regular and discrete in-
tervals of time the value of some state variable (such as
temperature or density or voltage) and records: x i,
x2, . . . , xN, where x;GR is the measurement taken at
time t;=to+i ht.

Takens suggests creating out of this sequence of one-
dimensional variables a set of m-dimensional vectors
whose components are just the time-delayed values of the
variables:

vi =(xi txi+Tsxl+&T& ' ' ' &xi+(m —1'iT), vi ER . (1)

Note that (for T,m &&N which is typical) there are (al-
most) as many vectors v; as there are data points x;. The
dynamical information in the one-dimensional data has
been "converted" to spatial information in the m-
dimensional set. Takens has shown that for sufficiently
1aree m and with "certain generic conditions" on the mea-
surement, a system which has a v-dimensional attractor in
its phase space will have its Takens vectors lying on a v-
dimensional subset of the embedding space 8

To find this v, Grassberger and Procaccia introduce
the following correlation integral:

1
C(r,N): 2X [the number of—pairs (ij ) for which

~
v; —vj ~

& r] .g'2

In anticipation of the modification that will be proposed,
we write an equivalent form:

W W —n

C(r, N)= g g H(r —
~
v;+„—v;

~
),+2

where H(x) is the Heaviside step function. The correla-
tion dimension v is then defined by the limit:

logC(r, N)v= bm lim
r~O N~co logf'

or when it exists

d [1ogC(r,N)]/drv= lim lim
r o N d(logr)/dr

(4)

With finite data, however, one must compromise. Neither
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limit can actually be taken; N can be only as large as is
available and r can be only as small as the least of the N
distances. What is usually (though not always6) done is
this: A log-log plot of the C(r, N) curve is constructed,
and a slope is sought in the small r regime. One hopes for
a broad range over which the slope is constant so that the
value of that slope (which estimates v) can be accurately
determined.

It is the purpose of this paper to show that for auto-
correlated data, the range of constant slope on the log-log
plot may be unduly restricted if the number of data
points, N, is limited. The restriction is not a fundamental
one, however, and can be fixed without increasing N.
This can be done, as we shall demonstrate, with a slightly
generalized version of the correlation integral. Take

N —n

C(r,N, W)=
2 g g H(r —

f
v;+„—v;

f
) (6)E „g;

keeping in mind that 8'=1 gives back the standard
Grassberger-Procaccia formula defined in Eq. (3).

III. ANALYTICAL RESULTS: STOCHASTIC DATA

Consider a limited (finite N) data set of autocorrelated
Gaussian noise. Specify the mean @=0, the variance o,
and the autocorrelation a. That is, (x; ) =p =0,
(x,x; ) =o, and (x;+„x;)/o2=a". Take a & 1 and note
that the autocorrelation time (in units with ht =1) is
given by v = 1/ln(1/a) or v = 1/(1 —a) for a near unity.

Because the data is stochastic we can use statistical
methods to obtain an analytical expression for the correla-
tion integral C(r, N, W). We will see that the behavior of

I

the correlation integral can be classified into two qualita-
tively distinct regimes. If N is large enough (or a small
enough), then the effect of autocorrelation is negligible,
the trajectory "fills out" the phase space, and the slope of
the log C(r, N, W) versus logr curve approaches the
embedding dimension m for r «cr .On the other hand,
for N not sufficiently large (or for a too near unity), the
effect of autocorrelation becomes noticeable and although
the trajectory still fills out phase space the correlation in-

tegral is not so well behaved; a structure is induced in the
correlation curve which inhibits good dimension esti-
mates. And as we will show, the "sufficiently large" N
which separates these two regimes can be quite unreason-
ably large.

It is not essential, but it makes the analysis easier if we
impose that the delay time T be much larger than the
autocorrelation time r. This allows us to treat x; and

x;+T as independent and simplifies the expression for the
probability that two vectors are separated by a distance
less than r. We use the L oo metric (again for conveni-
ence ) which specifies that the distance between two vec-
tors is the maximum of the differences between those vec-
tors' components.

Rewrite Eq. (6) for the correlation integral by replacing
the inner sum over Heaviside functions with its expecta-
tion value:

N

C(r,N, W)= g (N n)P(
f

v—;+„—v;
f
(r),

n=W

where P(X} denotes the probability that statement X is
true. Now

P(
f
v;+„—v;

f
&r)=P( fx;+„+kz x;+kr—f

&r for all 0&k &m)

P(fx; „k —x; k f
&r)

Ogkgm

=[P( fx;+„—x; f
&r)]~.

(8)

(10)

For correlated Gaussian variables,

P( x x y) ge —(x —2a"xy+y )I8

with 8 =2cr (1—a ") and normalization 2 = li
[2mo'(I —a'"}'/2]. Then

P( fx;+„—x;
f

&r)
Co X+K

dy e
—(x —2a"xy+y )/8 (12)

=erf
+n)1/2

where erf is the error function. Substitution back into Eq.
(7) yields our main analytical result:

A. Uncorrelated hmit

In the case of zero autocorrelation, Eq. (14) reduces to a
simple form:

C(r, N, W) =[erf(r/2o )]~, for a=0 . (15)

Recall that erf(x) a:x for x «1 and saturates at unity
for x ~~ 1. The correlation integral looks like
C(r,N, W)=(av m)™r for r «2a. And the exponent
m is just the value that we want our log C(r, N, 8') versus
logr algorithm to pick out.

In fact, this is the same limit that is approached for
N —+Do, independent of a. Since a"~0 as n~ao, most
of the terms in the sum will be error functions with argu-
ment very near r/2o-, thus,

C(r, N, W)= g (N n) erf-
2cr(1 —a")'

(14)

lim C(r,N, 8'}=[erf(r/2o)]
N —+co

(16)

and again the embedding dimension m will be ap-
proached.
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8. Effect of autocorrelatlon

On the other hand, if a is very nearly one, or if N is not
sufficiently large, the sum in Eq. (14) cannot be so simply
expressed. For small n, , 1 —o," is noticeably less than uni-

ty, and the argument of the error function will be notice-
ably larger than r/2o. (Also, since the erf is raised to the
mth power, this effect is magnified with greater embed-
ding dimension. ) Although r /2cr is a good approximation
to the argument of the erf for most of the terms (those
with large n), those few for which this is not the case can
actually dominate the sum for small r.

In particular, for r ((2o(1—a )'/i the first term
( n = W} of the right-hand side of Eq. (14}is

18

2
(N —W) erf

2a(1 —a~)'"
2 2

N
=—[o m(1 —n )] / r . (17)

As N~ao this vanishes. But if N~g2(1 —a )
/ then

this first term will be much larger than
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and indeed dominate the entire sum. In this case,

C(r, N, W) =—erf
2

2a( 1 a Iv)1/2

C. Recommendations for 8'

As a minimum recommendation, ere point out that if
W&r(2/N) then there will be "sufficiently many"

data points N that the range of linearity (in the log-log
plot) will not be compromised. We note that this W is
typically much less than N, so the modification we are
proposing is actually quite minor.

for r &&2cr(1 —a +')'/. For r=2a(l —a )'/, the er-
ror function saturates at unity and C(r, N, W) displays a
plateau at 2/N. Finally, for r & ov rr(2/N)'/, the first
term loses its significance, and the correlation integral
C(r, N, W) begins to look hke its corresponding a~O (or
N~~ }limit.

Now, the least nonzero value that C(r, N, W) may have
is 2/N; this is because the sum of Heaviside functions
must be integral. The usable range of C(r,N, W), i.e., the
range over which C(r, N, W) ccr, will be between 2/N
and of order 1 for the uncorrelated limit, and between
2/N2 and of order 2/N for the case where autocorrela-
tion is important. These two cases are qualitatively dif-
ferent; and the first is better by a factor of 2/N. On loga-
rithmic axes, the first has almost double the range of the
second.

The uncorrelated limit may be achieved by taking N
sufficiently large, but "sufficiently large" can be very
large indeed. With W=l, one needii N»2v /. For ex-
ample: w= 10 and m =20 demands N «&2 X 10' . This is
S /2 pp10 distances to compute. One possibility' is to
decrease the sampling rate in the original data, thus de-
creasing r Another recom. mendation, which our notation
has probably made obvious by now, is to take 8 & 1.
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FIG. 2. log-log plot of the generalized correlation integrals for

stochastic data described in caption of Fig. 1(a). Embedding di-
mension is fixed at m =20 and the cutoff parameter W is
varied.

FIG. 1. (a) log-log plot of the standard ( W = 1)
Grassberger-Procaccia (see Ref. 3) correlation integrals for sto-
chastic data with N =10000 points, standard deviation o =20,
and autocorrelation a=0.9 for a range of embedding dimen-
sions m. Notice the horizontal plateau at C (r,N, W) =2/N; n.b.
logq(2/N)= —12.29. (b) Slope of curves in (a). Here, the
derivative v(r, N, W) —=d [1 og2C(r, NW)]/d (log2r) is approxi-
mated by v(r, N, W)=5[ iogC2(r, NW)]/5(log2r) where opera-
tor b is defined by hf(r):f(r+1)—f(r). —
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Up to now, the problem has been discussed as one that
"goes away" when N~ oo. As has been seen, though, it is
the first few terms which cause all the trouble: and they
do not go away, they are merely overwhelmed. A better
algorithm, we argue, euen if X is sufficiently large, is to
toss out those overcontributing early terms right from the
start. In the example case of autocorrelated stochastic
data, this is achieved with 8'& r ln(m l2).

From a more intuitive point of view, the taking of
8'» r ensures that the small r behavior of the correlation
function counts only the "accidentally" close pairs of vec-
tors; it is not biased by those pairs whose vectors are close
in space only because they are close in time.
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IV. NUMERICAL RESULTS

A. Stochastic data

With the initial goal of mimicking real data from our
own physical system (the California Institute of Technolo-

gy research tokamak"), we created a stochastic data set
with o=20, a=0.9 (so r=10), and %=10000. With
T =5 for the delay time in our Takens embedding, and
m =4, 8, 12, 16, and 20 for the embedding dimensions,
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FIG. 3. (a) and (b) same as Figs. 1(a) and 1(b) except that the
modified ( W = 10) correlation integrals are plotted.

FIG. 4. (a) log-log plot of standard correlation integrals for
Mackey-Glass differential delay equation (see Ref. 13) with
% =10000 points, a =0.2, 6 =0.1, s =100, renormalized so
that o =20 and sampled at a rate ht =2, for a range of embed-
ding dimensions m. (b) Slope of curves in (a}.

correlation integrals were computed. ' A quick and un-
careful look at these curves [Fig. 1(a)] might suggest a
slope v that saturates with increasing m. A closer look,
however, reveals a more complicated structure. There is
an extra shoulder, due almost entirely to the (anomalously
large) n =1 term. When a %=2 correlation curve is
plotted (Fig. 2) the shoulder disappears; though as the
8'g 2 curves demonstrate, anomalous contributions come
also from the n =2 term. Notice, however, that for
8'&3 the correlation integrals are essentially unaffected
by further increases in IV. Figure 3(a) shows that the
spurious saturation with m that was seen in the 8'=1
curves is not present for 8'=10; as m increases so does
the slope of the C(r, X, W =10) curve. These effects are
more dramatically apparent in plots [Figs. 1(b) and 3(b)]
of the slopes of the C(r,N, W) curves as a function of r.

B. Dynamical data

Although the effect we describe is best modeled with
stochastic data, it is in fact a general feature of autocorre-
lated input and can be seen in dynamical data as well.
The Mackey-Glass' differential delay equation
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creases with delay time s. Grassberger and Procaccia
give a dimension of about 7.5 for the s =100 case. Using
s = 100 and the same numerical algorithm that
Grassberger and Procaccia use (but increasing the sam-

pling frequency so that the autocorrelation time is &=10,
and renormalizing so that the standard deviation is
o.=20—all this so that comparisons can be made with our
random data), we compute correlation integrals of the
Mackey-Glass data for various W and m. As in the ran-
dom case, the standard ( W'= I) curves [Fig. 4(a)] display
the unwanted shoulders and the modified ( W = 10) curves
[Fig. 5(a)] do not. Again the derivative curves are espe-
cially compelling. Convergence of the slope to the attrac-
tor dimension (-7.5) is readily apparent for the modified
correlation [Fig. 5(b)] but no convergence is seen in the
curves [Fig. 4(b)] obtained by the standard algorithm.
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FIG, 5. (a) and (b) same as Figs. 4(a) and 4(b) except that the
modified ( 8' =10) correlation integrals are plotted.

V. CONCLUSION

We find that the introduction of a cutoff parameter
W& 1 improves the convergence of the standard correla-
tion algorithm toward its N~ ao limit. Although we
recommend W=r, where ~ is the autocorrelation time of
the input time series; we point out that as long as
W& r(2/N), where N is the number of points in the
time series and m is the embedding dimension, the exact
choice of W is not important.

As a final comment, we remark that these W&1
curves, once the W= 1 curves had already been calculat-
ed, were very easy to obtain. We merely computed the
n =1,2, . . . , II' —1 terms separately (each of which re-

quired only 2/N, or 0.02% in our examples, of the work

required to compute the whole curve) and subtracted them
from the 8'= I curve.

dx ax (t —s) (19)
1+[x (t —s)]'

(with a =0.2, b =0.1) models a dynamical system of ar-

bitrary complexity. Strictly, there are an infinite number
of degrees of freedom —note that the initial condition is
the function x(t) specified over a range t&[to —s, to].
Farmer'" however has found that the effectiue number of
degrees of freedom (i.e., the dimension) is finite and in-
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