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Equilibrium polymerization of chains and rings: A bicritical phenomenon
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The equilibrium polymerization of chains and rings together is a (n = 1) critical phenomenon with

aspects of bicriticality, governed by exponents not found in any symmetric O(n) model. The bicriti-
cal nature of the critical point is the result of a competition between a transition to form long-chain

polymers and a transition to form an infinite-rings condensate. As a result the fraction of mono-

mers incorporated in chains and in rings varies with temperature according to a different power law

than that for the total fraction of polymerized material and is governed by an exponent that depends
on the crossover exponent 4 for quadratic anisotropy for the O(n) vector model of magnetism in the
limit n ~1. Moreover, the fraction of monomers in polymeric rings is found to decrease with tem-

perature with infinite slope just beyond the transition in the polymerized phase. Similarly, the

geometry of large polymers is described by a po~er law R -N" &, where R is the distance spanned

by a polymer segment of N monomers and where the exponent is not the de Gennes result v(n =0)
for chains alone, but rather also depends on the crossover exponent ((t for n =1. We study the
equilibrium polymerization of chains and rings together using a variety of techniques, including sim-

ple equilibrium theory, a lattice model, field-theoretic correspondence to magnetism and a direct
renormalization-group calculation on a polymer model. An explicit parametric form for the equa-
tion of state is presented to lowest order in e. Results are obtained for the fraction of polymeric ma-

terial in chains and rings and for various correlation functions of interest in considering the

geometry and distribution of chains and rings.

I. INTRODUCTION

The autoassembly of monomers to form large linear po-
lymers under conditions approximating chemical equili-
brium is a very general phenomenon found widely in na-
ture. In pure liquid sulfur and dilute liquid sulfur solu-
tions high-molecular-weight polymers form from
monomeric Ss rings at a sharp transition temperature at
which well-documented critical anomalies occur. ' An
analogous transition occurs in the formation of "living po-
lymers, " notably poly-a-methylstyrene and polytetrahy-
drofuran. Under appropriate conditions long linear poly-
merlike micelles can form from surfactant molecules in
solution. In the biological realm actin and tubulin fila-
ments' polymerize from protein subunits to form the
skeleton of the living cell. Such phenomena also exist in
lower dimensions. In two dimensions the commensurate-
incommensurate transition in adsorbed monolayers can be
described by the appearance of domain walls" that behave
in many ways like equilibrium linear polymeric structures.
In one dimension many phenomena such as the helix-coil
transition' can be described as an equilibrium polymeri-
zation.

Simple equihbrium theories of polymerization of chains
and of chains and rings have existed for many years.
Gee' ' and Tobolsky and Eisenberg' developed a theory
for the polymerization of sulfur chain polymers from Ss

monomers. This was later generalized to deal with "liv-
ing" polymers. ' Scott' generalized the Tobolsky-
Eisenberg theory to solutions of sulfur in an inert solvent
and first showed explicitly that it followed from the Flo-
ry' theory of polymer solutions. An almost identical
theory was developed by Oosawa' to describe the au-
toassembly of protein subunits to form actin and similar
filaments, and similar ideas have been used to describe the
formation of polymeric micelles. o These theories can be
thought of as governed by two equilibrium constants, an
"initiation" equilibrium constant K, for the activation of
a monomer (for the opening of a S8 ring to form a diradi-
cal Ss chain in the case of sulfur) and a "propagation"
equilibrium constant K~ for the growth of the chain by
addition of one inactive monomer (a Ss ring in sulfur).
There is a mathematically sharp phase transition only in
the limit Ki —+0. The very small value of K, in sulfur
(K, =10 '

) explains the experimental sharpness of the
transition there. The transition occurs at a value of K~ of
order unity (exactly at K~ =1 for the Tobolsky-Eisenberg
theory). Corresponding chemical equilibrium theories for
the simultaneous equilibrium polymerization of chains
and polymeric rings were considered for the case of
sulfur, first by Fairbrother, Gee, and Merrall, ' and later
in more detail by Harris. ' Polymeric chain, polymeric
ring equilibrium was also studied in a more general con-
text by Jacobsen and Stockmayer, and the same ideas
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have recently been employed in treatment of polymeric
micelles by Porte. The "conventional wisdom" emanat-
ing from all of these studies is that polymeric rings play
only a minor role in the transition and are dominated by
the polymeric chains, once these form, because of the en-

tropic cost of closing a chain to form a ring.
Recently we have shown ' that the equilibrium poly-

merization of monomers to form long polymeric chains is
described by the n~0 limit of the n-vector model of
magnetism, and is thus a critical phenomenon described
by nonclassical critical exponents. In this correspondence
the magnetic field (divided by temperature) h plays a role
analogous to a Boltzmann factor for the chain ends, i.e.,
to the square root of the initiation equilibrium constant
E~, and the coupling constant between spins divided by
temperature, J, plays a role analogous to the propagation
constant E~ of Tobolsky-Eisenberg theory, i.e.,

This correspondence allows the powerful machinery
developed over the last 20 years for the study of phase
transitions and critical phenomena to be brought to
bear on the phenomenon of equilibrium polymerization.
We showed that in the mean-field approximation the
n~O vector model reduces identically to the Tobolsky-
Eisenberg (TE) theory of equilibrium polymerization
throughout the h, T plane (Ei,K& plane). Thus, the tran-
sition is, within TE theery, an Ehrenfest second-order
transition, and nonclassical critical behavior is to be ex-

pected due to fluctuations ignored in mean-field theory.
The use of renormalization-group estimates for critical

exponents of the n ~0 vector model and a simple
scaling-law equation of state has been remarkably success-
ful in describing the anomalies in pure and doped
sulfur ' and in living polymers, and mean-field

approximation to a corresponding dilute n~O vector
model for sulfur solutions has proven very useful in eluci-

dating the possible phase diagrams in these systems.
This work builds upon the pioneering studies by
de Gennes and des Cloiseaux of the statistical mechan-

ics of simple polymers and nonreactive polymer solutions
in terms of the n-+0 vector model. Gujrati ' has also
considered various aspects of the n ~0 and related
Alodels.

Shortly after the appearance of Ref. 24 it was argued by

Cordery that if polymeric rings are included in the
equilibrium then the appropriate universality class of the
critical phenomena is that of the Ising model (n = 1) rath-

er than n=0. Several other authors " argued in in-

dependent ways that the appropriate universality class for
polymeric rings and chains in equilibrium was that of the
n-vector model with n & 0, but as noted by Duplantier and

Pfeuty and argued explicitly below, if the breaking of a
bond in the middle of a very large ring is chemically
equivalent to the breaking of a bond in a very long chain,
then the appropriate universality class is n=1, as argued

by Cordery.
From one point of view, this change in universality

class is not crucial. The connection with nonclassical crit-

p„,=pb„+A(J —J, )+8+(J—J, )' (1.2)

where a is the specific-heat exponent of the n~ 1 vector
model, the fraction of monomers in chains P, is given by

$, -8,(J—J, ) ~ (J&J,) . (1.3)

For J& J, when ii ~0, where P is the crossover exponent
for quadratic anisotropy in the limit n ~1

Second„because P is greater than unity for n &0
(a=0.12, /=1.08, for n= 1 in three dimensions), 9 0 the
fraction of monomers in chains grows more rapidly above

J, than does the total fraction in polymers This gro. wth
occurs at the expense of rings, the fraction of monomers
in which must decrease with infinite slope just above J, .

Third, the physical transition point is the result of a
delicate balance between two quite different kinds of poly-
merization, a transition to a state with a very flat, po-
lydisperse distribution of chains of very high average
molecular weight, and a quite different transition to a
state with an "infinite-ring condensate" of polymeric
rings with radius of gyration bounded only by the size of

ical phenomena and the advantage of a map to a model of
magnetism remain. Moreover, the identification of the
magnetic field of the magnet with the statistical weight of
an end of a polymer chain remains the same in the limit
h~O, the limit relevant to critical phenomena. On the
other hand, the change in universality class from n=O to
n= 1 results in a change in the value of a, the exponent
governing the specific heat anomaly, by a factor of 2 from
a=0.24 for n=0 to a-=0.12 for n=l. Moreover, any
change in universality class can result from the presence
of rings only if rings of arbitrarily large size are present.
This leads to the question as to whether chains really play
an important role at all, especially in the limit K&~0,
where the concentration of chain ends (and therefore the
number concentration of chains) tends to zero. Indeed,
one could easily conclude from Cordery's treatment that
only rings are present in the limit Xi~0. While this is
certainly true for J &J„ it is by no means obvious for
J&J, . Experimental results and comparison with the
classical TE and nonclassical n ~0 vector model theories
suggest that a non-negligible fraction of the sulfur must
be incorporated in chains when J&J, . With the existing
theories, however, it was only possible to determine the to-
tal amount of polymeric materials, rings plus chains, and
not the fraction of monomers incorporated in chains or
rings separately.

Recently we have found that the polymerization tran-
sition of chains and rings together has an aspect of bicriti-
cality. Quadratic anisotropy is introduced to break the
symmetry inherent in the physical requirement that the
propagation constant be the same for very large polymeric
rings and chains. This allows the separate determination
of the fraction of monomers incorporated in polymeric
rings and chains. Several interesting consequences follow.

First, the fraction of monomers in chains is described
by a new critical exponent, not found in the symmetric
O(n) vector model, and related to the crossover exponent,
P, for quadratic anisotropy. While the total fraction of
monomers in polymers of all kinds is given by
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the container.
Fourth, the crossover exponent P also plays an interest-

ing role in the description of the geometry or "fractal
dimensionality" of large polymers on a distance scale
short compared to the correlation length, i.e., short com-
pared to the distance scale on which a large polymer
meets other large polymers. As first pointed out by de
Gennes, for an isolated polymer chain in a good solvent,
the number of monomers N required to span a distance R
varies as

D =1/v (n =0), (1.S)

and v is the critical exponent describing the divergence of
the correlation length of the n~O vector model. The
same result holds in the case of equilibrium polymeriza-
tion of chains provided R is short compared to the corre-
lation length as well as large compared to the size of
monomers. When rings are also in equilibrium, however,
the correct result is neither D = 1/v for n =0 nor
D = I /v for n = 1, but rather

D =Q/v (n =1) .

In fact, the result for chains alone can be thought of as
(1.6) with n=0 rather than (1.S}, because $~1 as n ~0
independent of dimensionality. This result was presented
earlier using a simple scaling argument. '

In this paper we develop in more detail the results
presented in our letters" "and obtain a number of new
results. In Sec. II we give a more detailed analysis, for
general spatial dimension d, of the simple chemical equili-
brium theory presented in our letter. We give there the
arguments concerning the nature of the ring condensate
and note that the theory leads to "nonclassical" critical
exponents identical to those of the spherical model. A
more detailed treatment of a random-walk model which
leads to the same asymptotic results as those in Sec. II is
presented in Appendix A. In Sec. III we demonstrate an
exact correspondence between a plausible lattice model of
equilibrium polymerization of chains and rings and an n-
vector model of magnetism and show that incorporation
of quadratic anisotropy in the Hamiltonian of the magnet-
ic model allows the evaluation of the fraction of mono-
mers incorporated in chain or ring polymers separately.
The model of polymerization is essentially that of Cor-
dery. The magnetic model is a fixed-length classical n

vector model on a lattice similar in spirit to that used re-
cently by Nienhuis. In the limit of zero magnetic and
anisotropy fields (the limit of interest) it has the same
syminetry as the 0( n) vector model and retains this sym-
metry to lowest order in an expansion in powers of these
fields. We use this correspondence to obtain the ex-
ponents and scaling behavior of the fraction of monomers
incorporated in chains and rings as well as the total frac-
tion of polymerized material. We also present in this sec-
tion the argument that if the breaking of a bond in a very
large chain is chemically identical to that in a very large
ring, then the appropriate value of n for the n-vector
model is n=1 for polymeric rings without a sense of

(1.4)

as R ~ oo, where the fractal dimensionality D is given by

direction (e.g., for sulfur).
In Sec. IV we present a simple continuum model for the

equilibrium polymerization of chains and rings with ex-
cluded volume and carry out a direct renormalization-
group calculation of its properties to first order in
e=4—d. While the inethods employed in the
renormalization-group calculation are essentially identical
to those employed in field-theoretic calculations on mag-
netic systems, we make no direct use in this section of any
map to a magnetic model. This has the advantage that
certain generalizations are possible that are not at all
natural within the magnetic analogy. For example, it is
possible to consider the case in which the propagation
equilibrium constant for chains, K„ is different from that
of rings, K„, and thus to examine the nature of the ring
condensate of Sec. II when there are excluded volume ef-
fects. The values of the exponents obtained by this treat-
ment are identical (to the order in e calculated} with those
for the n-vector model with n = 1, confirming the
correspondence obtained in Ref. 48, and in Secs. III and V
and Appendix 8 of this paper.

In our letter we outlined a correspondence between a
field-theoretic model of chains and rings in equilibrium
and the field theory of magnetism for the n-vector model
with quadratic anisotropy. In Sec. V we use this
correspondence to extract the expected scaling behavior of
various densities and correlation functions. In particular,
we obtain the result in Eq. (1.3} for the exponent govern-
ing P, and extract the scaling function to lowest order in
e. We use more general quadratic anisotropy operators to
extract the result in Eq. (1.6) and to discuss the length dis-
tribution of long chains in the polymerized regime, the
possibility of considering K,&K, in the magnetic analo-

gy, and the crossover from chains to ring condensate. A
more detailed presentation of the correspondence between
the field theory of magnetism and that of equilibrium po-
lymerization of chains and rings is given in Appendix 8,
where attention is given to the terms in the perturbation
expansion of the magnet generated by higher-order terms
in the Ursell-Mayer expansion of the two-body repulsive
interaction between monomers in the polymers.

Our result concerning the Hausdorff dimension embo-
died in Eq. (1.4} with Eq. (1.6) is derived in two different
ways in Secs. IV and V. In Sec. IV we obtain Eq. (1.4)
with a direct renormalization-group calculation of D to
first order in e without recourse to any magnetic analogy.
In Sec. V we obtain the relation (1.6) by formal compar-
ison of magnetic correlation functions with the corre-
sponding polymer averages. A similar derivation could be
carried out in Sec. III. The agreement to first order in e
of the exponent D obtained in Sec. IV with the known
e expansion for P/v provides an additional confirmation
of the usefulness of the magnetic analogy. A discussion
of the results and indications of areas for further work are
contained in Sec. VI.

II. CHEMICAL EQUILIBRIUM THEORY

In this section we develop in more detail a simple
chemical equilibrium theory of equilibrium polymeriza-
tion of chains and rings that was described briefiy in Ref.
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48. I.et x, and x „be the number of chains and rings,
respectively, of m monomers divided by the total number

of monomers„both free and in polymers. They are taken
to be related to the fraction, xo, of free monomers by the
relations

P, = g mx, =Kixo/(1 —K,xo)
m=1

(!},= g mx „=8[4(K„xo,2d) 1]—K„xo,

(2.3)

x~, =K~xo(K,xo) ' (m & 1),

x~„=Bm ' ~ +"(K,xo} (m &2),
(2.1)

where

4(z,s) = g (n + 1) 'z"
n=0

(2.4)

x, = g x,=Kixo/(1 —K,xo),

x„= g x „=8[4(K„xo,, 1+1)—1]K„xo, —
pt =2

(2.2)

and the fractions of monomers incorporated in chains and
rings are given by

where d is the spatial dimensionality. We are, of course,
primarily interested in d=3, but it will be illuminating to
treat d as a variable parameter and to consider the
behavior of the model for 2 & d g4. The constant Ki is a
statistical weight associated with the chain ends, and may
be interpreted as the equilibrium constant for activation
of a monomer (e.g., opening of a Ss ring). The constants
E, and K, are statistical weights associated with bonds
between monomers that include an estimate (per bond) of
the number of ways to place a chain on a lattice. Equa-
tion (2.1) amounts to a choice of the equilibrium constant
for adding one inactive monomer to a chain or ring of
length m.

The choice of x~, is essentially that employed by Gee'
and Tobolsky and Eisenberg. " The factor Bm ~ in
x~„accounts for the ratio of closed loops to open chains
for random walks in the limit of large m in d spatial di-
mensions, while the additional factor of m ' accounts for
the fact that a ring may be formed by chain closure at any
of its m bonds. The constant 8 depends upon the details
of the walk, in particular upon the rigidity of the mono-
mer units, and may therefore be viewed as an adjustable
parameter in the theory. The use of Eq. (2.1) for x „ for
small m constitutes an arbitrary choice of ring propaga-
tion constant for small m. Harris ' and Jacobsen and
Stockm'ayer z have considered models for chain and ring
polymerization based on similar ideas. The novel feature
of the model in Eq. (2.1} is that we allow, at least formal-
ly, for the possibility that the chain and ring propagation
constants, E, and E, are unequal. Physically, we expect
that E, must equal E, at least for very large m, so that if
K, and K, are to be taken independent of m, they must be
taken equal for all m. However, it is often useful in
studying physical systems to consider an enlarged parame-
ter space in which certain physical symmetries are broken
and in which the system of interest lies on some special
locus. That point of view turns out to be fruitful here as
well.

The total numbers of chains and rings, respectively, di-
vided by the total number of monomers are given by

sin[i«(s —«) /2]
21 («+1—s)

(2m)' '«!

ln(z)
Xg(«+1 —s)

2m'

where I (x) is the gamma function and g(x) is the
Riemann zeta function, defined by analytic continuation
and finite everywhere except x= l. Thus, x„and P„are
both well-defined and finite at K,xo ——1 for d & 2, and, in
particular, for d= 3. The conservation of monomers can
be expressed by the equation

xo+$„+P,=1 (2.6)

which serves as an equation of state for the model (togeth-
er with the physical requirement that xo, P„, and P, all be
non-negative).

The resulting phase diagram for d=3, 8=0.1, and
E~ ~0 is shown in Fig. 1. The region I, where E,xo and
K,xo are both less than unity, is the "unpolymerized"
phase where the concentrations of both rings and chains
decrease exponentially with length m. In the limit
E

~ ~0, only rings are present. Region II is the
Tobolsky-Eisenberg polymerized phase of long chains
with small rings present. As K~ ~0 the average molecu-
lar weight of the chains diverges while x, tends to zero
with P, remaining nonzero. The concentration of rings
decays exponentially with length. The phase boundary be-
tween regions I and II is given by the condition that,
simultaneously, xo+P„= 1 and K,xo ——1, that is, by

K, [1—Q„(K,K, ')]=1 . (2.7)

Region III consists of rings with a power-law distribu-
tion of sizes (x~, -m ' +") together with a nonzero
mass fraction of infinite nngs (more strictly, rings so large
that their radius of gyration is determined by the size of
the container rather than by their number of monomers).
No chains are present in the limit K~ ~0 and only a small
concentration of chains with x, decaying exponentially
with m are present when K~ is nonzero but small. It is
bounded by the line K„=Ez for K, &E~ and by the line
K, =K, for E, &K~ where E~=(1—P'„) ' is givenby

Kq
——I 1 —8 [g(d/2) —1]] (2.8)

is a function the properties of which are well known. In
particular, 4(z,s) has a branch-point singularity at z= 1

and possesses the expansion about z= 1 of the form

z4(z, s) = I (1—s)[ln(1/z)]'
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For K, &E~ and E)~0, the second term vanishes as
L ~ ao and the first becomes identical to )I)„ in Eq. (2.1).
For K, gE, and E, &K~, the product E,xp must be very
close to unity. Let P„be defined by
)}))„to,=l —K, '—:(()'„+P„. Choose xo such that E„xo is
given by

FIG. 1. Phase diagram for chemical equilibrium theory of
chains and rings for 0=3, 8=0.1, and K& ——0.

The first of the lines corresponds to the condition
I(}'rXP——1.

The presence of the infinite rings cannot be deduced
from Eqs. (2.1), but requires a careful consideration of the
thermodynamic limit. In a finite container, say a cube of
edge length L, the formula for x „must be modified to
read

x~, =8m ' +(Ex ) (2&m &m )

d

=8' — rn '(Kx e " ') (m)rn )r 0 (2.9)

where m'-(L/2)i and a is a microscopic length of the
order of the size of radius of gyration of a monomer.
This may be understood as follows. The factor m r in
Eq. (2.1) is proportional to 8 "where R is the radius of
gyration of a random walk of m monomers. For R much
less than the diameter of the container, R + is the volume
within which both ends of the walk are likely to be found
and R is proportional to the probability that they mill
be close enough to form a ring. However, when R &L,
this probability is no longer governed by R but by
L ", the reciprocal of the volume of the container in
which they must lie. In addition to this effect there is a
small entropic effect resulting in a reduction of the propa-
gation constant IC, by the factor exp[ —c(a/L) ]. This
result mas first obtained by Cassasa and co-morkers and
has been obtained by a scaling argument by de Gennes.
We rederive it in the context of a lattice random-walk
model in Appendix A. Strictly, it is valid only for
m'r a )L, but the further corrections for m' a &)L do
not affect the conclusion of this analysis.

Using Eq. (2.9) we obtain for P„

—8 a
L

'd
-8' — ln ))))„/8'

L " L

d

(2.12)

The total number of infinite rings is thus

'd
L x

(2.13)

*he dashed»ne E,=E, & E~, separating regions II and
III, is a first order transition line across which p, and )I)

change discontinuously but )t))o, and P, are continuous.

Then, for very large L, the first term in (2.10) approaches
)}))'„while the second approaches ))))„. Thus, for K„)E~, a
fraction P„=l—(t)',—K, ' of the monomers are incor-
porated in rings with rn &m'-(L/a) . These "infinite"
rings (in the thermodynamic limit) play the role of a con
densate analogous to the condensate in an ideal Bose gas.
Inde:d, as we show in Appendix A, there is a precise
mathematical analogy between the ring condensate and
the condensate of the ideal Bose gas.

Despite the nonzero fraction of monomers in infinite
rings the concentration x„of these rings is zero in the
thermodynamic limit. The total number of such rings
grows only as the logarithm of the size of the system. To
see this we compute the sum [using Eq. (2.9))

d

x -8' — ln(1 Exoe '"r~) )—00 r 0
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For E, &E, the mass fraction of infinite rings is zero in
the thermodynamic limit and the limit Ei ~0 while that
of chains is nonzero, whereas for K, &K, the opposite is
true. For K, =K„ the relative amounts of chain and in-
finite rings depends upon the order of the limits V~ao
and Ei~0. If the thermodynamic limit is taken before
the limit Ei ~0 then only chains (and a power-law distri-
bution of finite rings) exist on the line K, =E, &K&. If
the limits are taken in the opposite order, only finite and
infinite rings exist. The behavior of P„P„P„,and P„,
with K„ for K, =2, Ei ~0, 8=0.1, and d =3 is shown in
Fig. 2.

It is of some interest to examine the crossover between
dominance by Ki~0 and V~ap. Chains suffer no
change in prefactor from finite-size effects but do suffer
the same entropic effect as rings. Thus for a finite box of
edge length I. the total fraction of polymerized material
may be expressed in the form

1
I

I 1

y...=& g m -""(K,xp)

00
2

e
—@{a/L) )mr 0

+Kixp y in(K.xp)

Gl i 1 i

0 2 3 4

Kr

FIG. 2. Behavior of t))„P„P„,and P„, as a function of E„
for E,=2 with Et ——0, 8=0.1, and d=3.

CC
2+E,x, g m(K, xpe-"'"' ) (2.14)

There will be a crossover between chains and infinite rings
when the last two terms in the left-hand side of (2.15) are
comparable. This occurs when

-a (-,'K, xpr y...)-'", (2.16)
a

4

where hP„,=P„,—P'„. For dg, ,-l this gives L/a of
the order of 50—100 for sulfur (K, —10 ' ). If we take
a =6 A this gives I.-300 A. Thus even with K& as small
as 10 ' chains dominate for vessels larger than a few
hundred angstroms. Even if K, were as small as 10
the container would have to be of submicrometer dimen-
sions to force dominance by the ring condensate. Of
course, for containers this small, the large surface to
volume ratio will assure that surface effects will contri-
bute important corrections. In particular, if the effective
Ei is larger near the surface this will suppress the forma-
tion of large rings. Essentially the same conclusions fol-
low from a nonclassical analysis of this crossover in Sec.
V.

Using Eq. (2.6) we may write, on the line
j;,=K, =Kp gEp,

—cf

I.B'
a EIxo

1 K~xe
'" ~ —(1—K~xpXo8 pX08

(2.15)

y', —y, —(K,x, —1)""-' (2.17)

so that 4„decreases with infinite slope just above K, =K~
and consequently P, must increase with infinite slope to

The behavior of P„P„and P„,=P„+P, is somewhat
different along the line of physical interest, K„=K,:—K&,
than along a path with E„=const. Along the physical
line, for Ez less than a critical value, Kz, there are no
chains in the limit Ei~O, but both x„and P„are
nonzero. As K~ increases, P, =1—xp increases, so xp de-
creases, but Ezxp increases. As Ezxp~l, the fraction of
monomers in rings approaches a constant,
P'„=8[((d/2) —lj where g(x) is the Riemann zeta func-
tion, so that xp (Kz) '=—1——P', . For E~ &K» the value
of K~x p remains at 1 (very slightly less than 1 for Ei & 0),
so that P, remains constant at P'„while P, increases
steadily with T: P, = 1 —P', E~ '. Thus, —P, increases
linearly with Kz —Kz just above Kz even in the limit
Ei ~0, and all of the increase in ((t„,=g„+P, above K~
is due to chains. The behavior of P„P„and P„, with K~
is shown in Fig. 3 for Ei-+0, d=3, and 8=0.1. Along
the line K„=const and with Ki~0, the fraction of po-
lymerized material P„,=P, is nonzero but constant, in-
dependent of K„ for E, less than a critical value K,'
given by Eq. (2.7). For E, greater than this value, E,xp
is equal to unity so that $„,=1—xp increases linearly
with K, just above E,'. Since xp decreases, so too does p„
above K„while P, increases. Thus, for E,=const, chains
grow at the expense of rings for E, & E,'. Both P, and P,
vary linearly with K, —K,' for K„&E~. When K„ is pre-
cisely Kz given by Eq. (2.8) the behavfor of P„and P, for
E, &K,'=K~ is quite different. According to Eq. (2.5),
near K„xp ——1, and for 2 & d &4,
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keep $„,=1—x0 ——1 —K, increasing linearly with K, .
Similar behavior may be seen for P, and tI), as functions
of K, for K, &K, in Fig. 2.

The detailed shape of the phase boundary between re-
gions I and II in the immediate vicinity of K, =K» is of
some interest. Equations (2.7) and (2.15) can be combined
and rearranged to give

~ 0 i t I t t ( 1 I &
t

t t i I
t

I i

K K —(K' E—) (2.18)

for 2 & d &4. This has the geometrical interpretation that
the horizontal distance between a point on the phase
boundary and the line of symmetry, K„=K„in Fig. 1

vanishes as the vertical distance of this point from the
critical point on the line of symmetry, K, =K, =K»,
raised to the power 2/(d —2). We will see in Sec. IV that
this power should be replaced by the critical crossover ex-
ponent P for quadratic anisotropy in the n-vector model
in the formal mathematical limit n +1-

The phase diagram in Fig. 1 contains the confluence at
the point K, =K„=K» of two "critical lines" of quite dif-
ferent character and a first order line. It is thus charac-
teristic of a bicritical phase diagram, and it is to be ex-
pected that there will be a new critical exponent describ-
ing the crossover from one type of critical behavior to the
other. We argue in Secs. III and V that this exponent, P,
is the crossover exponent for quadratic anisotropy in the
n-vector model in the limit n ~1, and show in Sec. IV
that, to first order in @=4—d, this identification is borne
out by a direct calculation on a field theory of polymeri-
zation.

Although the variation of P„g„and P„, in Fig. 3 is
linear with E~ near the transition to lowest order in
K» —K», it should not be thought that the results of this
chemical equilibrium theory are "classical" or "mean
field" in character. Rather, the model is described by the
critical exponents of the spherical model ( n +ac ). -
Thus, for example, the total fraction of polymerized ma-
terial varies near E~ (for K» &K» and Ki ——0) as

p„=/to, =p', +A (K» K»)+C(K» —K») ~'—
(2.19)

From which we can deduce that the critical exponent a
for the specific heat has the value (negative for 2 & d &4)

a =(d —4)l(d —2), (2.20)

in agreement with the spherical model. Similarly the
shape of the chain transition line is described by the ex-
ponent 2/(d —2) which is precisely the value of the cross-
over exponent P for quadratic anisotropy in the spherical
model. Using the hyperscaling relation 2—a =dv, we ob-
tain v=1/(d —2), the result for the spherical model. In
Sec. V we argue that the fractal dimensionality of a long
chain polymer in the presence of rings is neither
1/v(n =0) nor I/v(n = 1) but rather P/v(n = 1). It is in-
teresting that the ratio P jv for the spherical model is ex-
actly 2, independent of dimensionality, as expected for an
essentially random-walk model such as this. For d &2
the phase boundary between regions I and III recedes to
E„=+00 and there is no polymerization transition along
the physical line K, =E,. (The Tobolsky-Eisenberg tran-

0.5—

0.2—

O.I—

l i i i i I i a

Kp

FIG. 3. Behavior of P„, P„and P„,as a function of E» with
Er =Ec=Ep Ei =0~ 8=0 1~ and d=3

sition remains as K, is increased at fixed K„.) At d=4,
logarithmic corrections occur in the formulas given above
due to special behavior of 4(z,s) in Eq. (25) for integer
s. For d & 4 the dominant variation of P, from P'„comes
from the term with r=l in (2.5) rather than from the
leading term so that the exponents "stick" at their classi-
cal values. These critical and borderline dimensionalities
agree with the behavior of the spherical model.

III. LATTICE MODEL OF CHAINS AND RINGS

In this section, we establish a connection between a lat-
tice model of equilibrium polymerization of chains and
rings and a vector model of magnetism of the same sym-
metry as the n-vector model of magnetism with quadratic
anisotropy. Our treatment is inspired by the earlier treat-
ment of polymerization of chains and rings by Cordery
and by a recent letter by Nienhuis. Our treatment gen-
eralizes the work of Cordery in two important ways.
First, it extends Cordery's model from strictly Ising
model (n= 1) results to general n This allows . (at least
formally) the determination of the number concentration
of rings as well as that of chains. Second, and more im-
portantly, it allows the determination of the amount of
polymerized material in chains and in rings separately,
rather than only the total fraction of monomers in poly-
mers as was the case for earlier treatments.

Our treatment uses the ideas of universality in two im-
portant ways. Our model of polymerization, like that of
Cordery, employs a very special and somewhat artificial
form for the repulsion between closely approaching poly-
mer segments. %e argue that the exponents describing
the behavior of this model should not be dependent upon
the details of this repulsion and should therefore be the
same for our model as for a more realistic choice of in-
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teractions. Our model of magnetism, following the idea
of Nienhuis, is also not the n-vector model with quadratic
anisotropy, but rather a simpler model that, for small
values of the anisotropy and magnetic field, has the same
symmetry as the n-vector model and therefore, by univer-
sality arguments, should have the same critical exponents
as the anisotropic n-vector model.

Consider first the following model of equilibrium poly-
merization of chains and rings. Each bond of a regular
lattice contains one monomer molecule, which may be ei-
ther closed (inactive) or open (active). If it is open the
monomer lies along the bond with one active site capable
of bonding to another active monomer at each end of the
bond. We may thus think of each bond of the regular lat-
tice as either "occupied" by an active monomer, or "emp-
ty." The partition function for the equilibrium state of
this model is obtained by summing over all assignments of
open or closed to each monomer (i.e., over all assignments
of occupied or empty to each bond), and over all ways of
connecting the open monomers to form polymers, subject
to the following rules.

(1) At each vertex the maximum number of bonds is
formed between active monomers. Thus, at most one ac-
tive polymer end remains at any site of the lattice.

(2) At a vertex at which 2k or 2k —1 active monomers
meet to form k polymers, each of the (2k —1)!!—= (2k —1)(2k —3) (1) possible ways of pairing the
(distinguishable) bonds into pairs to form polymers is
counted. (See, for example, Fig. 2 of Ref. 42.)

(3) Each chain polymer contributes a factor Ki to the
statistical weight of the state, each ring polymer a factor
K2, and each bond, a factor K~.

(4) At each vertex at which k&2 polymers meet, each
of the (2k —1)!! pairings contributes a factor Wk ~1 to
the statistical weight of that state.

This accounts for excluded-volume effects by deweighting
vertices at which two or more polymers approach each
other closely with the "Boltzmann factor" Wk. We will
want to demand that Wk, ~ Wk, whenever ki ~ k2, that

is, that the polymers repel each other. The partition func-
tion for this model of equilibriuin polymerization of
chains and rings is then given by

fp(Ki, K2,Kp, I W~ I ) = in',2

C

and the fraction of monomers incorporated in polymers,
whether rings or chains, is given by

tot
8f~

lan
(3.4)

In its present form, this model does not allow the deter-
mination of the fraction of monomers incorporated in
chains or in rings separately. This difficulty can be sur-
mounted, at least formally, by allowing bonds in chains
and bonds in rings to contribute differently to the statisti-
cal weight of a state. If each bond of a ring contributes a
factor K„and each bond of a chain (including a single
open monomer) contributes a factor K„and if I., and I.,
are the total number of bonds (monomers) in rings and
chains, respectively, in a given configuration, then the
corresponding partition function can be expressed as

N N L I. k x

,= g"'g"'K, ', ', 'E, " g „", (3.5)
k=2

where the remaining notation is the same as in Eq. (3.1).
In terms of the thermodynamic potential fz, defined in
analogy with (3.2), the fractions of all monomers incor-
porated in chains and rings are given by

Bfp

BlnE,
(3.6)

where C is the number of sites on the lattice and q is the
coordination number so that —,

'
qC is the total number of

bonds on the lattice. Then the "concentrations" of chains
and rings, x, and x, (expressed as the number of chains
or rings divided by the total number of monomers), are
given by

Bfp

BlnE,
(3.3)

Bfp

BlnEi

Z, = g'"g"'E, 'E "(K') ' g W„',
k=2

where g'" is the sum over all assignments of occupied or
empty to each bond, g' ' is the sum over all allowed

ways of connecting the occupied bonds of the lattice to
make polymers according to rules (1) and (2), above, and
where N„N„Xb, and Xk (k =2,3, . . . , k,„) are,
respectively, the number of chains, rings, bonds, and ver-
tices at which k polymers meet in a given configuration.
( k,„ is the largest integer less than or equal to q/2 where

q is the coordination nuinber of the lattice. ) Various
properties of the polymer model can be obtained by dif-
ferentiation of the partition function. I.et

While the formal introduction of E, and K„as distinct
entities allows the determination of P, and P„separately,
it should be emphasized that the physically relevant situa-
tion is K, =E,. %'hile one might imagine that the statis-
tical weight per bond might be different for rings and
chains of small size, the model chosen above implies that
K„and K, are independent of polymer size, and for very
large polymers it is difficult to see how the contribution
per bond could be different for rings and chains. Even
long-range electronic conjugation effects which might
select rings from chains must decay to zero at large
enough lengths.

A similar argument suggests that the physically
relevant value of K2, the statistical weight per ring,
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JrrdS n "rr
4 =1 ( jJ')

I rrdS
(3.7)

where the integral is over all directions of the N fixed-
length classical vector spins S; in n dimensions, the prod-
uct g&,"& is over all nearest-neighbor pairs of spins on

the lattice, and the products g,. are over all of the N
spins on the lattice.

For the n-vector model of magnetism with quadratic
anisotropy, V(S;,SJ ) and IV(S;) would be given by

V(S;,SJ ) = —JS;.SJ —g (S;.SJ nS SJ'), —

IV(S;)= —hS
(3.8)

should be unity. For a given configuration of a very large

ring and a given configuration of a very large chain we

would expect that the statistical weight for removing one

monomer (emptying one bond) from the ring would be the
same as the removing one monomer from the middle of
the chain. The first process destroys one ring, creates one
chain, and reduces the number of occupied bonds by one.
It therefore has statistical weight (relative to the initial
state) K&Ei '(X~) '. The second pracess decreases the
number of occupied bonds by one and increases the num-

ber of chains by one. It thus has statistical weight

E, (X~ } '. For these processes to have equal probabili-
ties, we must set K~ ——1.

The argument above is appropriate for monomers that
have a single distinguishable orientatian or collection of
configurations along a lattice bond (as is the case in
sulfur), or in which the monomers have two or more dis-
tinguishable configurations but connect together random-

ly with propagation constant independent of configura-
tion. If the monamers had two distinct configurations,
corresponding to an arrow pointing in either direction
along the bond, and if the monomers could only join head
to tail, giving rise to two distinct polymers for each lattice
walk, then an argument similar to the one given above
leads to the conclusion that E2 ——2 so that n =2 is the ap-
propriate universality class. The case in which the two (or
more) states can mix but not randomly is more comphcat-
ed. It can be treated by methods similar to those that
have been used recently, to treat equilibrium copolymer
ization, and has been treated directly by universality argu-
ments.

We naw turn to a model of an anisotropic magnet and
show that it is related to our model of polymerization. In
the limit that the anisotropy field g vanishes, the partition
function of the magnet becomes identical with that in

(3.1) for the polymer system. This is closely related to (al-

though not identical with) Cordery's result. For nonzero

g the magnetic model is not identical with the model of
polymerization with E,&E„. However, we show that the
derivative with respect to g at g=O generates exactly the
statistical average necessary, to calculate the fraction of
monomers in the chains, P, .

Consider the following model partition function for a
magnet:

where the dot product is given by S;.SJ ——g"
i S; SJ and

the vectors are of fixed length n ', that is,

, S; S; =n. The first term in V(S;,Sz) is the usual

interaction between spins in the isotropic n-vector model
while the second introduces an anisotropy that selects out
one component (component 1}as having either stronger or
weaker coupling than the rest. According to current
understanding of critical phenomena, the critical behavior
of such a magnet (for integer n greater than unity) will
fall into different universality classes according to wheth-

er g is negative, positive, or zero.
We will eventually be interested in the formal

mathematical limit n~ 1. While this has no simple phys-
ical interpretation in the magnetic language, the
renormalization-group expansions for critical exponents
may be continued to this limit and we assume that they
give the appropriate exponents for the corresponding po-
lymer problem in that limit. We have verified this as-

sumption to order @=4—d in Sec. IV.
Equation (3.8) for V(S;,S~) of the anisotropic n-vector

model can be rearranged to yield

V(S;,SJ)=—[J+(1 n)g]S—SJ' (J+g—) $ S; S, .

The Hamiltonian defined by Eqs. (3.7) and (3.8) can in
fact be mapped to a corresponding polymerization model
of chains and rings, as discussed briefly at the end of this
section. Here, however, we adopt the strategy employed
recently by Nienhuis and consider instead the Hamil-
tonian defined by the following choices for V(S;,SJ ) and
IV(S; ):

e ' ~ =[1+JS;SJ+g(S; SJ nS S—J')]

n

1+[J+(1 n)g]S S,'+(J—+g) g S S,.
ol=2

e ' —=(1+hS ). (3.10)

This choice corresponds to truncating the expansion of
the exponential at first order in the interactions, or,
equivalently, to including additional higher-order multi-
spin interactions in V(S;,SJ } and W(S;). The essential
observation is that for sufficiently small g and h the re-
sulting Hamiltonian is of the same symmetry as the origi-
nal, and should therefore fall into the same universality
class. The Hamiltonian defined by (3.10) has the great ad-
vantage that the expansion of the partition function in

powers of J, g, and h yields at most one power of J or g
from each bond and at most one power of A. from each
site. The resulting graphs are identical to those encoun-
tered in the hyperbolic tangent expansion for the partition
function of the Ising model with the exception that each
bond carries a "color" corresponding to the spin com-
ponent o. in the product S; SJ that generates it. Indeed,
with g=O and in the limit n ~1, Eq. (3.7) with Eq. (3.10)
is the partition function of the Ising model under identifi-
cation
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J=tanh(Jt AT)

h = tanh(Ht/k&)
(3.11)

average in (3.12) at this vertex is given by

= W„g (2k, —1)!!, (3.13}

For general integer n ~ 1, each bond of an Ising graph, 6
must be labeled with a color corresponding to the spin
component a of the product S; S& that produces it. This
results in a large number of colored graphs, 6; corre-
sponding to each Ising graph.

By symmetry, the integral jI g,. dS; will eliminate any

graphs which do not obey the following rules.
(1') Every lattice site visited by a graph must have an

even number of bonds of each color emanating from it,
with the understanding that,

(2') a cross (corresponding to a factor hS ) plays the
role of a bond of "color 1" emanating from the site, so
that an odd number of (other) bonds of color 1 must
emanate from a cross site. Consequently,

(3'}each graph must have an even number of sites with
crosses.

The partition function for this magnetic model can thus
be expressed as the sum of the statistical weights of
graphs over all colorings with n colors (subject to the
rules above) of all graphs in the hyperbolic-tangent expan-
sion for the partition function of the Ising model in
nonzero field.

The sum over all Ising graphs is simply the sum g"'
in (3.1) over all assignments of occupied or unoccupied to
each bond of the lattice with the understanding that occu-
pied bonds meeting at a lattice site simply meet there
forming a vertex of the resulting graph. For the Ising
model ( n= 1) each bond of the graph contributes a factor
J to the statistical weight and each odd vertex (vertex at
which an odd number of bonds end} contributes a factor
h. For the n-vector model we must sum over all colorings
of the graph with n colors subject to rules (1') and (2')
above and evaluate the statistical weights of the various
kinds of resulting vertices. Each bond of color 1 in the
graph contributes a factor [J+(1—n)g] to the statistical
weight of the graph, and each bond of color a&1 contri-
butes a factor (J+g). Each graph vertex with an odd
number of bonds carriers a cross and contributes a factor
h. Vertices with more than two bonds require special at-
tention in this model. They require the calculation of spin
averages other than ((S ) )z =—1 where ( )z denotes the
angular average over all directions in the n-dimensional
spin space. We have shown earher that the angular
average of a product of powers of spin components in the
n-vector model can be evaluated expliritly as

I ( —,'n) I (k~+ —,
'

)n

I ( —,')I ,
'

n +gk~— (3.12)

This may be expressed in a more convenient form for the
present purposes as follows. I.et a vertex of interest have
2k i bonds of one color, 2k' bonds of a second coloretc. , ,
where k& &kz&k3& . - yO, and where st rs understood
that a cross counts as a bond of color 1. Then the angular

where k = g,. k;, and

I ( ,' n)—I(k + —,
'

)
~k=

I (k+ ,'n)-I (-,')

~k —1

(n+2)(n+4) . [n+2(k —1)]

(3.14)

(3.15)

We now observe that each colored Ising graph can be
decomposed (in general, in many ways) into a configura-
tion of colored polymers analogous to the polymer config-
urations described above for our polymer model, but with
the additional feature that each polymer is colored with
exactly one of the n colors of the n-vector model graph.
If, at a given vertex, all of the k; are unity, i.e., if no more
than two bonds of any one color meet at that vertex, then
the angular average is simply Wk. For such a vertex
there is only one way to pair the bonds to form a polymer
interpretation in which each resulting polymer consists of
a single color. For a vertex with some of the k; greater
than unity there will be g, (2k; —1)!!ways in which the
sets of 2k; bonds of the same color can be paired to form
a polymer interpretation. If each of these pairings is tak-
en to contribute a factor of Wk to the statistical weight,
then the sum over all such pairings will contribute pre-

cisely the factor fi' ' in Eq. (3.13), i.e., precisely the
angular average of the spin product at that vertex. In this
way we may rewrite the sum over all colorings with n

colors of all Ising graphs as the sum over all polymer con-
figurations in the polymer model subject to the following
observations. Every bond on the graph is unambiguously
either in a ring or in a chain in any one of the interpreta-
tions. If it is in a chain, then it is connected to a cross
and so is necessarily of color 1. If it is in a ring then it
may be of any of the n colors, and the sum over all al-
lowed colorings of the Ising graph will generate all n

colors for every ring. We can thus write the partition
function of the n-vector magnet under consideration as
the sum over all assignments of occupied or empty to each
bond of the lattice and over all ways of pairing bonds at
vertices to form polymer configurations subject to rules
(1) and (2) of the polymer model, and finally over all
colorings of the rings with any of n colors and the chains
with color 1 of the statistical weight of such a polymer
configuration with the rules that each bond of color 1

contributes a factor [J+(1—n)g], each bond of color
a&1 contributes the factor (J+g), each chain contributes
the factor h, each ring of a specified color, the factor un-

ity, and each vertex at which k polymers meet, the factor
gk in Eq. (3.15). For the case g=O bonds of all colors
are identical. In this case the sum over all colors for a
ring contributes the factor n for each ring and the parti-
tion function for the magnet can be written simply as

k msx

= g'"g"'(h ) '(n) "(J) ' g W " (316)
k=]
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where the notation is the same as that in Eq. (3.1) and 8'k
is given by Eq. (3.15). Comparing with (3.1) we see that if
we make the identifications

K)~h

K2~n, (3.17)

and require 8'g for the polymer model to be given by
(3 15), then the« is an exa«correspondence between the
two models. It is natural to define the thermodynamic
potential for the spin system (magnet} as

f (h, J;n)=——lnZ
1

C
(3.18)

We then have the connection

Thus, we have the equality

lim
J 8

(lnZ )
g 0 1 —n 9g

Hlax

Z —l g) 1 ) g(2) L (h 2) c(n) R(J) b g Pr b

k=1

(3.23)

NR
where Nb=L, + g, )L; is the total number of bonds
(active monomers) in the configuration. This is precisely
the average number of bonds in chains. Thus, if we define

f (h,g,J;n) in analogy with (3.18), we have

J 8
(3.24)

q 1 n—Bg

fp(K), K2,Kp, [ Wk ] )= fbt(h, J—;n) .

Accordingly we can make the connections

af,
+C =—hm,

BlnK) q ginlt~ q

~fp 2 ~fm 2—
q BlnJ q

(3.19)

(3.20) f (»g,J;n }-
I
~

I

' f"'(~/
I
r

I

' g/
I
~

I
~,sgn(~);n }

+f'"(Ii,g,J;n ), (3.25)

From the symmetry of our magnetic model we expect it
to have the same critical exponents and scaling behavior
near the critical point as the n-vector model of magne-
tism. Consequently we expect that, near the critical point,
the thermodynamic potential will have the scaling
behavior

de
BlnK2

2n ~fm

q dn

+(n —1)(J+g) 'I,

(3.21)

where L, is the total number of bonds (monomers) in
chains. Equation (3.21) reduces to (3.16) when g~O. We
now note that

)'

lim I [J+(1 n)g] '+(n —1)—(J+g) '] =0 .
g~0 Bg

(3.22}

where m and e are the magnetization and spin coupling
energy per spin, respe;tively. With g=0 (the case of
physical interest} there is no way to determine ((), and P„
separately. For nonzero g the magnetic model is no
longer identical with the polymer model, even when

K,&K,. However, as we now show, the derivative with
respect to g in the limit g~O generates precisely the frac-
tion of monomers in chains. For g~O each ring makes
two contributions of quite distinct nature, according to
whether a, the color of the rings, is 1 or not. If there are
I.; bonds in ring number i, theo this ring makes one con-

L;
tribution of the factor [J+(1—n)g] ' for a=1 and

L.
( n —1) contributions of the factor (J+g) ' for a&1. The
partition function can then be expressed in the form

Z y{1)g(2) (g2) e[J+(1 n)g] c

max ~ R
L;

X g W), g I[J+(1—n}g] '

k=1 i=1

where f"' carries the dominant singularities of the free
energy, f'"' is' a (more) regular function of h, g, and J,
where r=(J, —J)/J, and where b, =P5 and P are critical
exponents. The exponent P is the crossouer exponent that
describes the way in which the critical behavior crosses
over from that of an (n —m)-vector model to that of an
m-vector model as g passes through zero. We are con-
cerned here with the (rather bizarre) limit n =m = 1. As
a consequence of this scaling form we conclude that

PI"(h/
~

~ ~,sgn(v ))+PI"'(h,J),
(3.26)

P,"(h/~ r ~,sgn(~)) .

We see, therefore, that the critical exponent governing the
growth of the fraction of monomers in chains is different,
in general, from that governing the total fraction of
monomers in polymers. Moreover, since the exponent P
in general exceeds unity, it is to be expected that the ex-
ponent governing P, is farther below unity than that
governing P«„so that P, grows more rapidly than P„,
near the critical point. If we write P, in the form

c, then the effective exponent a, governing chains
is a, =a+/ —I & a.

The correspondence developed above is valid for any
value of K2 n As w——e .argued for the polymer model,
however, the appropriate value of E2 for polymerization
of sulfur chains and rings is Kz ——1. We are thus led to
examine the anisotropic n-vector magnet in the limit
n~l. A wide variety of estimates for a are avail-
able and the current consensus is that
a(n = l,d =3)=0.12. The value for P(n ~1}is much less
well studied, but the e expansion for tI) has been carried
out to third order. ' From this work we estimate
P(n~l, d =3}=1.08. It follows that a, =0.20, substan-
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tjaiiy larger than a(n =1)=0.12 and rather close to the
value a(n~O)=0. 24 appropriate when only chains are

present. For K» less than its critical value E~=J, and

E, +0 —it is surely the case that $,~0. However, for

E» &J, we expect that P, remains positive even as Ei ~0
that is, that P,"(0,—1)&0. The only way in which the
fraction of monomers in chains can grow faster than the
total fraction of monomers in polymers is that the frac-
tion of monomers in rings decrease with the same ex-

ponent as that for chains. We are thus led to conclude
that, to leading order

(3.27)

The choice in Eq. (3.15) for the statistical deweighting
factor 8'k associated with the close approach to two or
more polymers may seen rather arbitrary and artificial,
and so is perhaps worth some further attention. One
would expect on rather general grounds that such a factor
should have the Arrhenius form

Wr, -exp[(T Mk —~k)/RT] & 1 {3.28)

with ddXk &0 and beak &0 corresponding to an unfavor-
able energy associated with such a site and, in addition
perhaps, an unfavorable entropy associated with states
unavailable at any energy. The form in (3.15) corresponds
to ~k =0; that is, to a purely entropic effect. While this
is surely unrealistic, it does at least reproduce the physi-
cally natural expectations that Wk & 1 and that

Wk, & 8'q, if k2 & ki, i.e., that a vertex becomes progres-

sively less likely as more polymers pass in close proximity.
Inspection of (3.15) verifies that W'k does fall off rapidly
as k increases for n near unity. As noted at the beginning
of the section„we anticipate that the detailed form of Wk
should not affect the gross features of the critical behavior
such as critical exponents provided it retains the essential
features of an excluded volume or unfavorable interaction
between polymers. In fact, by considering non-fixed-
length spina we may alter the form of IVq. As a result,
the factor n in Wk, which is the average of (S S) for
fixed-length spins of length Mn may be replaced by the
2kth moment of any non-negative normalized probability
density defined on {O,oo ).

It is interesting to note that the relationship expressed
in (3.13) between the angular average in (3.12) and the
number of ways of pairing the bonds of the same color re-
quired for the polymer model is not an accident but rather
a fundamental consequence of the O(n) symmetry of the
magnetic model. This may be seen as follows. The aver-

age in Eq. (3.12), which may be written in the form
Ia)

( ffj.
"

i 5 ' ), may be regarded as the limit of the aver-

age (over S) of a product of dot products of S with 2k
distinct and independently variable vectors Vj
(j = 1,2, . . . , 2k) in Euclidean n-space E„Such an aver-.
age is a function of the 2k vectors VJ and is an {even) in-
variant of the operations of O(n), that is, of all rotations
and reflections of all of the VJ about the origin in E„. As
such, it can be expressed in terms of the n possible dot
products among the VJ. Because it is linear (and homo-

geneous) in each of the Vj and independent of a permuta-
tion of the labels j on the VJ, the most general possible ex-
pression is a single constant multiplying the sum, over all
distinct ways of pairing the subscripts j=1,2, . . . , 2k, of
the product of k dot products between the VJ such that
each vector VJ enters exactly once in each product. If the
Vj are now allowed to approach the basis vectors in E„,
the average becomes identical with that in (3.12) in the
form given above, while the dot products (V; VJ) ap-
proach Kronecker delta functions of the basis vector in-
dices: unity if V; and VJ approach the same basis vector,
zero otherwise. As a consequence, the average in (3.12)
may be expressed in the form

(
2k

( )
k

II5' ' =IVk X g81r(r), y(n
j=l 1=1

(3.29)

where the sum g is over all distinct pairings of the in-

dices 1,2, . . . , 2k, into k pairs where P(l), y(l) are the lth
pair a;aj in a given pairing, and where 5isr is the
Kronecker delta function, unity if P=y and zero other-
wise. The constant 8'~ depends upon n and k, but not on
the individual kj. Its value is not a consequence of sym-
metry arguments. From the properties of the delta func-
tions we see that the sum g is precisely the number of
ways to pair like indices, and thus readily identify each

polymer interpretation as corresponding to one term in
the sum.

As noted at the beginning of this section, it is possible
to use the true n-vector Hamiltonian in Eq. (3.8) rather
than the caricature employed in (3.10). The result is that
in the corresponding polymer model any number of active
monomers can reside at each vertex and any number of
chemical bonds joining them can reside on each lattice
bond. The spin average at the lattice site leads to a statist-
ical weight factor that deweights sites increasingly more
severely the larger the number of active monomers that
reside there, thus mimicking the excluded volume between
polymers. This is essentially the mapping proposed by
Helfrich and Muller. It can be generalized to include
quadratic anisotropy and thereby determine the critical
behavior of P, and P, separately. The results for critical
exponents are, of course, identical with those obtained
above.

IV. DIRECT RENORMALIZATION GROUP
ON THE POLYMER SYSTEM

It is well established ' ' that chemical equilibrium
theories like that presented in Sec. II are quantitatively in-
correct in low-dimensional systems close to the polymeri-
zation transition. In particular, in fewer than four dimen-
sions and on distance scales short compared to the corre-
lation length there is a high probability that successive en-
counters of any specific long polymer are with the same
(other) long polymer or itself. Thus, the fluctuations in
the polymerized density have important correlations on
these length scales and must be dealt with within a non-
mean-field calculation. Such a calculation is discussed in
this section. This renormalization-group calculation ap-
plied directly to the polymer system is essentially identical

to the method of Wegner and Houghton ' which has been
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applied to magnetic systems. In this section results arc
derived within the polymer context. The meaning, physi-
cal origin, and difference between the exponents may then
be discussed.

The behavior of complex molecular systems in general
and equilibrium polymerization in particular can be treat-
ed perturbatively within a Ursell-Mayer expansion.
Such a treatment for freely jointed polymers, and its
equivalence to a magnetic system at the level of perturba-
tion theory, is discussed in detail in Appendix B. In this
section, we will use perturbation theory on a much simpli-
fied model and some approximations which give a good
description of the long-range universal behavior (e.g., ex-
ponents and scaling functions) in "close to four dimen-
sions. "

In order to perform such a Ursell-Mayer expansion we
must specify the monomer-monomer interaction potential
V(x) and the statistical weights for polymer configura-
tions in the absence of interactions. We are focusing on
systems in which the monomer-monomer interactions are
short ranged and will, in particular, assume that the
Mayer f function f(x)=exp[ —V(x)/k&T] 1 may —be
approximated by a delta function

deriued for a particular model in Appendix B. If we identi-

fy r with 1 —K~, then the weight for a chain with a single
identified monomer becomes equivalent to the Tobolsky-
Eisenberg formula for the density of polymerized material
derived in Sec. 11 when the extent of reaction is negligible.
The fact that when the positions of additional monomers
are specified the weight is simply multiplied by a factor
dependent only on the relative positions of subsequent
specified monomers is associated with the exponential dis-
tribution of chain lengths, in particular with the fact that
the probability that the chain ends after any particular
monomer is independent of the number of monomers
which precede that monomer. The factor of 2 difference
between Eqs. (4.2a) and (4.2b) is a statistical factor associ-
ated with the fact that in the first case the ends of the po-
lymers are indistinguishable, in the second they are distin-
guishable, e.g., one is attached to the monomer at xi, the
other to the monomer at x„.

%C will model 6, the probability density at a polymer
have a monomer at x' on one of the two branches of the
polymer given that it has one at x, by

(4.3)

f(x)——uKq 5(x),

u= —Ep X X

(4 1) This form for 6 is also typical of random walks with this
weighting, ' e.g., we expect that the probability density
of separation for two monomers on a polymer separated
by a large number, n, of other monomers should be
Gaussian with a variance proportional to n,

The importance of this approximation will be discussed
below.

In an equilibrium polymerization system of this nature
we expect that the statistical weight of a polymer chain
will be proportional to Ki, the statistical weight associat-
ed with the ends of the polymer, and to a constant, K~,
raised to the number of monomers in the polymer. In ad-
dition, we will treat only the case in which the polymers
are flexible, i.e., the case in which the noninteracting
probability density for the separation of two monomers on
a chain separated by a fixed (large) number of monomers
is simply that for a random walk with a number of steps
proportional to the number of intervening monomers.
For the Ursell-Mayer expansion we must specify only the
statistical weight for a polymer of arbitrary length which
has n monomers at specified positions xi, xq, . . . , x„
along the chain, ioith an arbitrary number of intervening
monomers and an arbitrary number of monomers before
(after) the first (last) monomer on the chain ioith specified
position. We work within a model in which this weight is
given by

P (n, x) —(4n nc ) ~iexp( —
~

x
~

/4nc ) . (4,4)

Expressing the probability as a Fourier transform and
summing over n with weighting Kz

' we readily find

6(x)=I e'"'"d "k
(4.5)

(2ir)

1

eck g

—,K~6(x=0), n =1 (4.6a)

which differs from the formula given for 6(x) with
r =1—K~, c =c only for large wave vectors k. As we do
not expect the behavior near the transition to depend on
the short-distance behavior (which in any case is not
correctly given by the analysis above) the use of the model
6(x) is justified. We will choose the cutoff so that
cA =1, i.e., so that the cell size A ' is the mean square
displacement of a polymer per monomer.

We must also specify the statistical weight for ring po-
lymers with n monomers along the ring at positions
x~, x2, . . . ,x„, again with arbitrary numbers of interven-
ing monomers. %'c mill take this weight to be

E1Kpr, n =1
~(Ix)})=

2KiKgr g 6(
~
x; —x+i ~

), n & I

(4.2a) ~(( }) ,'EpG(
/
xi —xi [),—n=2

n —1

K"6(x„—x&) ff 6(x; —x, , ),

(4.6b)

(4.2b)

where 6 (
~

x —x'
~

) is the probability density that a poly-
mer have a monomer at x' along one of the two branches
of the polymer given that it has a monomer at x.

These formulas are typical of random walks ' and are

(4.6c)

Equation (4.6a) assumes a particular artificial statistical
weight for a ring polymer consisting of a single monomer.
This is convenient for the renormalization-group calcula-
tion described below and should not affect the description
of the transition. The condition that breaking a bond in a
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large ring changes the free energy by the same amount as
breaking a bond in a long chain implies that if a ring is
broken between two monomers with specified (large)
separation x and only the polymer segments between these
monomers are allowed to relax, moving and adding mono-
mers, the statistical weight must be divided by the same
factor, G(x)r /Ki, as if a chain with two monomers with
the same separation is broken and allowed to relax in the
same way. The statistical weight above satisfies this prop-
erty independently of the separation x.

Given these statistical weights we may give the graphi-
cal rules for calculating the expectation value of many
quantities. (A detailed treatment for a more realistic
model is given in Appendix B.) In particular we draw
graphs consisting of polymers on which monomers are
known to have certain positions. Each such monomer
must either be a monomer which interacts with other
monomers or a monomer which has been distinguished as
associated with the expectation value we are calculating,
e.g., graphs for the polymerized monomer density have a
single distinguished monomer at the origin, graphs for the
density of monomers in chains have a single distinguished
monomer on a chain at the origin, etc. As an example,
these graphs for the density of monomers on chains are
shown to low order in u in Fig. 4. The value of the graph
is the integral over the positions of the monomers of the
product of statistical weights of these polymers times the
product over pairs of interacting monomers of the Mayer

f function of their separation, divided by the symmetry
factor of the graph (the number of ways that interacting
monomers can be exchanged without changing the topolo-

gy of the graph). The expectation value of the quantity is
then the sum of the values of all such graphs.

Among the allowable graphs are ones in which mono-
mers interact with more than one other monomer and
graphs in which distinguished monomers interact with
other monomers. We will neglect such graphs. This is
justified if the perturbation parameter u is small and the
polymers are long so that interactions of any specific
monomer on a polymer are dominated by interactions of
the other monomers on the same polymer. In principle
the interactions of polymerized monomers with mono-
mers near the ends of chain polymers differ from those
with other polymerized monomers. We will assume these
differences are negligible. It is unlikely that either of
these assumptions or the formulas for f, 6, and P" are
strictly correct for systems of physical interest. However,
the approximation entailed in the use of these assump-
tions does not affect the universal long-length scale quan-
tities discussed in this section.

The Ursell-Mayer expansion, order by order in the in-
teraction strength u, diverges when r =1—E& is small or
negative. Formally this is evident from the divergence of
G(

~

x —x'
~

) in (4.3). The physical reason for this diver-
gence may be distinguished in two distinct regions. %'hen
r is negative and E~ is sufficiently small the expansion
does not give an adequate description of the polymerized
phase on long-length scales, where each polymer interacts
with many other polymers In addit. ion, for r and K&

both sufficiently small there is a critical regime in which
the expansion diverges because it does not adequately

(c)

FIG. 4. Connected graphs for the density of polymerized
monomers on chains to first order in the interaction u. Solid
lines symbolize pieces of polymer, the open circle symbolizes the
distinguished monomer on a chain polymer, and dotted lines
symbolize the monomer-monomer interaction. The values of
these graphs are (a) ( K&E~r ), {b) 2QE &Epr, (c)

QE]Epr dx 6 (x), {d) —uE~E~r '6 (x=0), (e)
—2uEIE~r —36 (x=0).

describe the conformation of a long piece of polymer be-
tween interactions with other polymers.

For r sufficiently negative and K, sufficiently small
we expect a polymerized phase in which the density of
polymerized monomers is large. In order to obtain a con-
vergent perturbation expansion in this regime we must
take two effects into account. First, adding a monomer to
a polymer is made less probable by its interactions with
the remaining polymerized monomers. Second, the in-
creased density of monomers on the same polymer in the
vicinity of a specified monomer on a polymer is partially
compensated by a decreased probability of monomers on
other polymers in that vicinity. Both these effects can be
treated by summing to all orders particular sets of graphs.
The second effect has been treated in the literature and
will not be considered further in this paper. We now give
a siinple treatment of the first before turning to the criti-
cal region. If we assume the polymerized monomers are
distributed randomly with density P«„ interactions with
this background density will decrease the statistical
weight associated with adding a monomer to a polymer by
u P«, /Ez (given our assumption that a polymerized
monomer interacts with only one other monomer). Thus
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we must replace r =1 K—
~ in the formula for 6 by

rMF = I —Kz I+Pt,tfdr f(r}

=r+y...u IK, , (4.7)

where 4„, can be determined self-consistently by the use
of Eqs. (4.2a) and (4.6a):

A.t=0.+0.

p, =KiKpr MF,

Kp dk 1

(2%) ck +BCMF
d 2

(4.8a)

(4.8b)

(4.8c)

where P, and P„are the densities of polymerized mono-
mers in chains and rings, respectively. These formulas are
exactly those obtained from the summation of all dia-
grams in which no polymer has more than one interaction
(not even an interaction mediated by other polymers) with
any of the other polymers. This treatment is essentially
identical to the chemical equilibrium treatment given in
Sec. II. In particular, when r g r, = —uP„' jK&, where P,

"
is the value of P, in (4.8c) with rMF ——0, and Ki ~0, these
equations have a solution with rMF proportional to Ki
and ((t, & 0 given by

group (RG}. Given the Ursell-Mayer expansion, a RG
calculation can be performed directly on the polymer sys-
tem. In particular we ehminate quickly varying fiuctua-
tions, change the length scale and replace monomers by
"renormalized monomers, " that is, pieces of polymer con-
taining enough monomers so that the mean-square dis-
placement of an effective monomer is equal to the new
larger cell size. After these changes we find a similar sys-
tem with a similar set of calculation rules but a different
set of parameters. For sufficiently small initial values of
u, K&, and r these parameters will tend towards a fixed
point. The universal behavior of the polymer system can
then be calculated from the behavior near the fixed point.

In the RG calculation below it is not necessary to ac-
count for the screening effects discussed above that be-
come important when the density of monomers in poly-
mers is non-negligible. This is because we obtain RG
equations only for fixed-point locations and exponents,
which are independent of the direction of approach to the
fixed point. If we wished to obtain the scaling form for
the equation of state as well, the effects of screening
would have to be considered in the semidilute limit
(Ki~0, r~0 ).

We will eliminate fluctuations in the polymers with
wave vectors k between Ae ' and A. That is, we decom-
pose the probability density 6:

(4.9) 6 (x)=Gs(x)+ 6@(x), (4.12a)

(4.11)

Thus when I. ,„ is large (if d &4) there are clearly prob-
lems with this expansion.

This problem must be treated with the rcnormalization

In addition to these problems there is a divergence in
the Ursell-Mayer expansion in four and fewer spatial di-
mensions when the polymers are long and the distance be-
tween successive interactions of a long polymer with dif-
ferent other polymers is large. This is because the contri-
butions from graphs in which two pieces of polymer, hav-
ing interacted once, interact with each other many more
times before interacting with other polymers dominate the
contributions from graphs in which these two pieces in-
teract only once before meeting other polymers. The im-
portance of this effect can be illustrated by giving a crude
estimate of the ratio R of the contribution of a graph in
which two pieces of polymer interact twice before meeting
other polymers to that in which they interact only once.
This may be estimated by

(4.10)

where u is the contribution from the additional interac-
tion, 6(x) gives the probability density that two pieces of
polymer which interact at the origin both pass through x
and, thus, can interact there, and L, ~ is the maximum
distance scale on which it is reasonable to assume that the
increase in the density over the mesa density is given by a
random-walk polymer„ i.e., I. ,„ is the lesser of the typi-
cal radius of gyration of the polymers and the typical dis-
tance scale on which a polymer encounters many other
polyiners. We readily find

8 ——ue I I,„.4—d

(4.12b)

GF(x) = dk;i, .„ Ize' " . (4.12c)
'& lk I

&~ (2n) ck +r
Each Ursell-Mayer graph will then yield many new

graphs in which some pieces of polymer have the quickly
varying part of the propagator G~ and the remainder have
the propagator Gs. We then integrate over portions of
any graph which have quickly varying propagators. This
yields a new "renormalized" graphical expansion for the
polymer system as follows. Each portion of a graph with
quickly varying propagators may be isolated from the rest
of the graph by cutting all polymer lines with slowly vary-
ing propagators. The high-wave-vector (short-distance)
propagators in polymer lines are considered part of a re-
normalized monomer. Polymer rings consisting entirely
of high-wave-vector propagators are considered part of a
"solvent" and are eliminated from the theory. As the
rules for inserting graphical elements with quickly vary-
ing propagators are the same in all graphs these identifi-
cations yield a new set of graphical rules for the polymer
differing from the rules discussed above in two ways.
First the paraxncters discussed above: e, r, u, and K& will
have different values. Second, possible polymer-polymer
interactions and polymer statistical weights not in the
rules above will be generated. The effect of these new in-
teractions and ~eights decreases rapidly with length scale.
In consequence they are not relevant to the calculation to
lowest order in e and will not be discussed below. Finally,
we rescale the lengths by a factor e and define a renor-
malized monomer, which, like the previous monomer, is
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sufficiently long so that, on average, it spans the larger
spatial cell. This process is conceptually simpler when hl
is finite, however for mathematical convenience we will
follow the common practicei4'6' of working in the limit
El~0, yielding differential equations for the effective pa-
rameter as a function of length scale.

The graphs necessary to the calculation of the renor-
malized value of u, which are well known from the mag-
netic analogy, are shown in Fig. 5. From them we find
the renormalization-group equation

du =eu dl —(2+2+ —,
'

)fd"x[Gp(x)] u (4.13a)

with GF(x) given in (4.12c). In the limit dl~0 this be-
coIDes

=6Q —TEgc A Q (4.13b)

where e=4—d and Ee ——2 +'m /I'(d/2) is (2m)
times the area of the unit sphere in d dimensions. The
first term comes from the scale change. As noninteract-
ing polymers have Hausdorff dimension 2, a length rescal-
ing by a factor of e' will increase the number of mono-
mers in a cell by a factor of e '. This simply corresponds
to the fact that the number of steps in a random walk is
proportional to the square of its linear dimension. Thus,
ignoring interactions the probability that renormalized
monomers in the same cell interact (e.g., the effective in-
teraction between the renormalized monomers} increases
by a factor of exp[(4 —d)l]. The second term gives the ef-
fect of the interactions described by the graphs of Fig. 5.
The graph in Fig. 5(a) corresponds physically to the fact
that the polymers have effectively smaller interactions
simply because they repel each other and so are less likely
than random to interact. The graph in Fig. 5(b} corre-
sponds physically to the fact that polymers are less likely
to interact because their self-interactions cause them to
stretch, thus there is less likelihood of their intersecting.
Finally, the graph in Fig. 5(c) corresponds to the decrease
in the interaction between two polymers due to the shield-
ing by rings, i.e., if a piece of polymer approaches another
and, in doing so, displaces a large ring, the total interac-
tion energy does not increase.

The graphs for the renormalization of the parameter r
are shown in Fig. 6. We find

FIG. 5. Graphs for the calculation of the renormalized in-
teraction. Slowly varying polymer propagators are symbolized

by solid lines, quickly varying polymer propagators are symbol-
ized by wavy lines, and interaction lines are symbolized by dot-
ted lines.

renormalization-group equation

(4.15)

We have assumed that the free energy of breaking a bond
between monomers is independent of environment. Thus,
the only changes in Ei come from the fact that the num-
ber of monomers in a renormalized monomer increases as
e ', and the exponential of the entropy of a chain end,
which when the polymer is broken can be positioned in-

dr =2r dl+(1+ —,
' )Gp(0)u,

where Gr(x} is given in (4.12c). This gives

EgA
=2I' +

dl 2 cA'+r

(4.14a)

(4.14b)

The first term simply corresponds to the change in the ef-
fective monomer in the absence of interactions: r is in-
versely proportional to the number of monomers in a
noninteracting chain and the number of monomers in a
noninteracting monomer scales as e . The effect of in-
teractions is given by the second term and corresponds to
the decrease in free energy of a piece of polymer due to in-
teractions with itself [Fig. 6(a)] as well as its interactions
with rings [Fig. 6(b)].

The statistical weight for breaking a polymer has the

(a)

FIG. 6. Graphs of the calculation of the renormalized value
of r. Symbolism is as in Fig. 5.
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r'= ——,X~A e 'u, = ——,
'

A ee,d —2 —1

x', =o.
We also find that

(4.16a)

(4.16b)

(4.16c)

de]pendently of the other polymer, scales as the volume,
di)e
To this order there are no graphs which renormalize c.

Thus we do not have to adjust the rescaling equations so
that c remains unity. From Eqs. (4.13) and (4.14) we then
find the fixed point values to lowest order in e,

volume increases as e ' so that the density decreases as
e' '. The second term accounts for the stretching of(2—d}E

the polymer due to its interactions with itself. It arises
from graphs in which the vertex specifying that a mono-
mer is on a chain is on a rapidly varying propagator. The
relevant graph is shown in Fig. 7(a). There are additional
graphs in which this vertex is on a rapidly varying propa-
gator which yield contributions to the chain density with
different graphical rules. These contributions decrease
rapidly with length scale and are not important to lowest
order in e. From Eq. (4.20b) we find that at the fixed
point (u =u')

(4.17a)

(4.17b)

tc, (l) =to, e (4.21)

(4.22)

where we have defined

1/v=2 —e/3+0(e ) . (4.18)

We may stop this renormalization-group treatment and
use instead a mean-field treatment when

~
r(l) —r'~ or

Ei is of order one; that is, when the size of the cell, A
is of the order of the correlation length g. Then we readi-
ly see that v is the correlation length exponent:

(4.19)

where Ao is the initial cutoff.
If we had employed a more general model of the poly-

mer on short-distance scales we would obtain the same re-
sults. In particular, finite length scale interactions, finite
persistence lengths for polymers, differences between
monomers near to and far from the ends of polymers, etc.,
will all decrease rapidly in importance as we increase the
length scale. Similarly, multiple interactions of mono-
mers in polymers, interaction of a distinguished monomer
with other monomers, and finite range of interactions all
decrease in importance as the length scale increases. Such
effects are important for calculations to higher order in e,
as interactions on short-distance scales result in small ef-
fective fixed-point values for these parameters.

We have calculated above the change in the effective
thermodynamic parameters with a change in length scale.
To calculate (for example) the density of monomers on
chains we must consider the effect of the RG on graphs
for this quantity. We again find (to lowest order in e)
that the graphical rules remain the same except that the
thermodynamic parameters change and the result must be
multiplied by a length-scale-dependent factor to, (l) which
has the renormalization-group equation

dio, =(2—d)ut, dl —I [GF(x)j uio, d x, (4.20a)

where Gz(x) is given by (4.12c). Thus,

We must stop the renormalization group when the cutoff
is of the order of the correlation length. In the limit
ECi -+0 this implies r(l) is of order one and we find from
Eq. (4.9) that for r (l) negative the chain density of the re-
normalized system is a finite constant. We conclude that

(4.23)

which is in agreement with the magnetic results of Sec. III
if we use the hyperscaling formula vd =2—a and make
the identification

(4.24)

We readily verify that Eq. (4.22) is consistent with tile e
expansion of the magnetic exponents to the order to
which we have calculated Di, .

It is important to remark that D& —P/v is the Haus-
dorff dimension of the polymer. In calculating the renor-
malization of the vertex we have essentially calculated the
density of monomers on a long polymer in a cell provided
it passes through that cell. In particular, the vertex mea-
sures the density in a cell and the sum of graphs which
can be attached to it simply give the probability that the
polymer pass through the cell. Equation (4.20) implies

D~ —d
that this density scales as L " where L is the length

Gl8~ d —4 2

dl
=(2—d)w —KqA c uutC C (4.20b)

(b}
The first term is the effect of a change in length scale on
the noninteracting polymer. %hen we change length scale
the number of monomers in a cell through which a
(noninteracting) polymer passes increases as e ' because
the Hausdorff dimension of this polymer is 2, while the

FIG. 7. Graphs for the renormalization-group calculation of
the density of polymerized monomers on chains and rings.
Symbolism is as in Fig. 5 except that small open circles are used
to symbolize the distinguished monomer.
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(4.25)

by analysis essentially identical to that given for w, above.
We note that at the fixed point (at least to order s')

2—d —, K~u'—=1/v—d so Ic«,(l)-uI«tei"~" +

In order to calculate the dependence of the total density
on temperature we must take into account the fact that
rings smaller than the correlation length have a density
which depends on temperature. The resulting RG equa-
tion for the total density is

dy... —,
'
Eg

u)„, . (4.26)
d CA'+r (I)

We must integrate this equation until c A-g, do the ap-
propriate mean-field analysis, and, finally, analyze the re-
sults. Analyses of similar RG uations (for the free en-
ergy) have been done in the past. s For this equation these
techniques yield

1= —,GF(0)ic«, =

scale. This may be taken as a definition of the Hausdorff
d1IBenslon.

It is important to emphasize that the total change from
the mean of the density of monomers in a volume given
that a specific long polymer passes through this volume is
nor the density of monomers on that polymer. In fact this
change has a different scaling behavior. If we wanted to
calculate this change we would have to include the de-
crease in the probability that there are small rings in the
volume because a long polymer passes through. This is
expressed by the graph of Fig. 7(b). We then find that the
RG equation for wto„ the factor by which we must multi-

ply graphs for this density, is

of the system would be if the free-energy change for add-
ing a monomer to a ring polymer were different from that
for adding a monomer to a chain polymer. In this case
the preceding Ursell-Mayer analysis is correct except that
we must use different probability density G for rings and
chains, in particular

G„(x)= dk;g. „ 1

Ik I
&" (2n)" (ck +r, )

G, (x)= dk;i, .„ 1

Ik I &A (2II) (ck +r, )

(4.29a)

(4.29b)

drr 3 g 1=2r„+TKgu A
eA +r,

(4.30a)

As is discussed in Sm. II we expect three phases to exist in
the r„,r, plane, an unpolymerized phase containing, in the
limit Ki —+0, no chain polymers and small rings, a poly-
merized phase containing infinite-ring polymers and a po-
lymerized phase containing infinite-chain polymers. In
order to find the location of the phase boundaries between
these phases when r„and r, are small we must calculate
their renormalized values. We will assume that the in-
teractions between all monomers are initially the same,
nevertheless, we must, in principle, distinguish three
separate renormalized interactions u, u, and u„; those
of rings with rings, rings with chains, and chains with
chains. However, as long as the difference between r„and
r, is sufficiently small all these effcLtive interactions will
be equal and have the renormalization-group equation of
Eq. (4.13). The free-energy changes for adding monomers
are renormalized, as before, by polymer self-interactions
and by interactions with long rings (Fig. 6) yielding the
renormalization group e-quation

0r -0t"'(T Tc )+PI"'— r~ 1 i 1=2r, +EguA
cA2+r, eA2+r„

(4.30b)

where p, s is a smoothly varying, analytic function of
T —T, and p't'"s is the singular part. This singular part
has the scaling behavior of Ic„„ that is,

i
T T, i' f(+,h—//T T, fa). —
It is of some interest to note that the Hausdorff dimen-

sion of chains is slightly different if rings cannot be
formed. If rings cannot be formed we would exclude the
graph of Fig. 5(c), changi'ng slightly the fixed-point value
of u to be inserted in (4.20b), and thereby yielding a
slightly smaller Hausdorff dimension

From these equations we find the fixed-point values

u'= —,e A'eE~c 2 2

r, =r, = ~KqA c u, = ——,A de.d —2 —1 l 2

We can also find that

r, r„=(r„r,)e- —c 0 c 1/v

(r, —r, ) =(r, r, )I'"~", —

(4.31a)

(4.31b)

(4.32a)

(4.32b)

DI, (n =0)=2——,e+O(e ) . (4.28)

The larger Hausdorff dimension when rings can
formed is the effect of shielding by large rings. We note
that if rings are not allowed we have the identity
Di, (n =0)=1/v(n =0), where v{n =0) is the correlation
length exponent for the n=0 magnet model, appropriate
when rings are not allowed. This is because, in the po-
lymerized phase, thc fluctuatloIls in thc EotQ/ polyIIlcrlzcd
density within a chain are simply the fluctuations in the
density of that chain. This does not hold if rings can
form, due to the suppression of small rings by large poly-
mers [Fig. 7(b)].

It is also of some interest to calculate what the behavior

where v is the previously defined exponent and g=P to
lowest order in e.

This renormalization group must be reconsidered on a
length scale Ii, where either r, or r, is of order one.
There are then two possibilities; either mean-field theory
is adequate on this length scale or there are critical fiuc-
tuations in the densities of rings or chains on length scales
large compared to 1~ and these fluctuations must be treat-
ed with the renormalization group. Mean-field theory
will be adequate if both r, and r, are of order one and
positive as the polymers are then exponentially localized
on the length scale I&, this corresponds to the unpolymer-
ized phase, i.e., we are in region I of the phase diagram of
Fig. 1. Mean-field theory will also be adequate if either r,
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or r, is negative and of order one. In this case the mean-
field treatment will yield a finite condensate density of
rings if r„&r, or of chains if r, & r, . The density of this
condensate is sufficiently large so that the density fluctua-
tions decay exponentially with a length scale comparable
to li so that the mean-field theory is legitimate. We note
that r, —r, does not change sign under the
renormalization-group transformation and thus the line

r, =r, for r &r' is a first-order transition line. Thus in
this situation r„p r, implies we are in region II of Fig. 1,
r, & r, implies we are in region III. Finally, if r, or r, is
positive and of order one on the length scale li and the
other of r, and r, is small, it is possible to eliminate the
fluctuations in one of the types of polymers by mean-field
theory but a renormalization-group theory must be ap-
plied to the fluctuations in the remaining type of polymer.

Next consider the phase boundary between regions I
and III in Fig. 1. When r, is of order one and positive
and r, is small, which implies r, &r, , we eliminate the
fluctuations in chain polymers. However, this ehmination
is trivial as, in the limit Ki ~0, there are no chain poly-
mers for r, positive. Thus r„and u are unchanged by this
process. In addition the renormalization-group equations
are unchanged except that u must now be interpreted as a
ring-ring interaction constant. Thus r, & r' implies r, & r'
on the length scale I, which implies r„will become posi-
tive and of order one on some larger length scale. If
r, & r', r„will become negative and of order one on some
larger length scale. Thus the line r„=r' is the equation
for the line between regions I and 111 in Fig. 1; the shape
of the line is exactly the same as in the chemical equilibri-
um theory.

Finally, consider the phase boundary between regions I
and II. That is, consider r, & r„. Then on the length scale!i we must eliminate the fluctuations in the ring polymers
and use a renormalization group appropriate to chains
alone. To eliminate the rings we integrate over all wave
vectors rather than just a shell of wave vectors yielding

1 dk
Ik 1 «(2ir) ck +r (Ii)

(4.33a)

u(li)=u' —(u') ( —, )
e c2 dk 1

~"
~
&" (2n)" ck +r„(l, )

(4.33b)

%e must then continue with a renormalization-group
treatment of the chains alone. The RG equations ap-
propriate in this case can be deduced from Eqs. 5(a), 5(b),
and 6(a) to be

which flow to r, positive and of order one and r, negative
and of order one; thus it is the equation of the critical line
between the polymerized phase with infinite chains and
the unpolymerized phase. As we stop the renormaliza-
tion-group treatment for rings and chains when r, (li ) is a
specified constant of order one we readily find from Eqs.
(4.32) and (4.34)

O 0 I)/v
r, =c+(r, r„)—e

(r, —r')e ' =c",
where c,c',c" are all constants. Substituting into Eq.
(4.34) and ro:al1ing r„=1 —K„r,=1—K„we find that
the critical curve is of the form ( K,' K,')~—
—

~

—,'(K,'+K,') —KP. Thus the chemical equilibrium
theory of Sec. III gives an essentially correct phase dia-
gram except that the spherical model exponent 2/(d —2)
should be replaced by P. Of course, the derivation given
here identifies the exponent describing the shape of the
phase boundary between regions I and II as equal to the
crossover P of the O(n) vector model for n= 1 only to
first order in e. We expect that this will hold to all orders
in e, but have as yet made no effort to verify this.

V. FIEI.D-THEORETIC ANAI. OQr Y

In Sec. IV we have applied a renormalization-group cal-
culation directly to the polymeric system. It is known,
however (Refs. 42, 45, and 48, and Appendix 8), that an
equilibrium polymerization system in which rings can
form is analogous to an n= 1 magnetic model. We have
previously demonstrated that the chain density corre-
sponds to a quadrupole operator in the magnetic analogy.
In this section we will demonstrate that various densities
and correlation functions between monomers on specific
polymers correspond to the correlation functions of vari-
ous different quadrupole operators in the analogous mag-
net. These operators all have the same scaling behavior
corresponding to a single Hausdorff dimension for all the
polymers. This Hausdorff dimension will be shown to be
P/v in the magnetic analogy, where ((t is the crossover di-
mension for the uniaxial quadratic anisotropy and v is the
correlation length exponent.

We consider an O(n) Landau-Ginsburg model with
quadratic anisotropy defined by the Hamiltonian
A =No+Pi (P =pP),

A o ——fdx —,
'
[ ~

Vo(x}
~

'+ro2(x)

=2r, +KduA /(«+r, ),d 2

dQ —2 d —4 2

dl
=au —4Edc A u

From this equation we readily deduce that

r, (I, )+A' 'K, u(l, )/2c =0-

(4.34a)

(4.34b)

(4.35}

+gQ po (x)ogx)],
A i

———,fdx fdx'o (x)u(x —x')o (x')

—h fdxo'"(x),

o =g ~o' '(x)~ and gQ =0.

(5.1a)

(5.1b)

(5.1c)

(for small u) separates renormalization-group trajectories Here, and throughout this section, we use the convention



that repeated indefinite indices are summed over. This
Hamiltonian differs from that used in previous work s by
factors which do not affect universal results. They do,
however, give a more consistent interpretation of the po-
lymeric system; details are given in Appendix B.

The identification of this field theory with the Ursell-
Mayer expansion of the polymeric system, as is detailed in
Appendix B, is made by expanding the field theory in the
perturbation Xi ~ We can readily verify, provided we as-
sume that the identified monomers do not interact with
other monomers, that the chain density is proportional to
the expectation value of a quadrupole operator, in particu-
lar

(
&

Q o(a)o(PI) (5.2)

(Q po (x)crp(x)) =Zg '&Q po(x)o(x)) (5.4)

where o is the unrenormalized spin density, o is the re-
normalized spin density which describes the system on
length scales comparable to the correlation length, and

Z& is the renormalization factor for the quadrupole
operator. We deduce from the scaling analysis, e.g., Eqs.
(1.3), (3.26), (4.23), (4.24), and (5.3) above, that
Z~ ——Age~/" +", where A~ is a constant which is not
expected to be universal, but is expected to be of order un-

ity, and where a is (one of the essentially equivalent defi-
nitions oA the inverse correlation length, and is given by

m—:i(oi) i
=(1—w )a.» +"A /u' (5.5)

[cf. Ref. 67, Eq. (5.1), with appropriate changes of nota-
tion]. The parameter w is found from the equation of
state, which, to lowest order in e, is given by

~m ("p =(1—w )
' p[ —1+3w +O(e)],

(5.6)

s
——2w (1—w )" '[1+O(e)],

/m ]s

where the units of h, T —T„and m have been chosen so
that (to lowest order in e) x = —1 along the coexistence
curve (h=O, T&T, ) and y=l at Ti ——T, (x=O) In or-.

where Qii=l and y Q =O As «guedin Ref 48~d
in Sec. Ill above, the expected scaling form for P, is then

P, —
[ T Ti

~

2 —~f,(sgn(T Tz ),h—/ (
T —Ti )

4),
(5.3)

where f, is a universal function and —means asymptoti-
cally as the critical temperature is approached, i.e., when
the Hamiltonian has its fixed-point value.

In fact, we can easily calculate this function to lowest
(i.e., zeroth) order in e =4—d, where d is the dimensional-
ity of space, in order to verify that P, is in fact nonzero.
Two factors are calculated in order to calculate a quantity
in the presence of long-range fluctuations: (1) a multiph-
cative "renormalization factor" which arises from the ef-
fects of the short-wavelength fluctuations and (2) the re-
sults of a calculation on length scales comparable to the
correlation length. Following the treatment of Schafer
and Horner we write

der to deduce (, it is now necessary to calculate the
right-hand side (RHS) of Eq. (5.4) to lowest order in e us-
ing the fixed-point (renormalized) value of u. We readily
verify that the Q»(oi)(oi) term dominates the fluctua-
tion terms ((o,—(oi)) —(o z) (i.e., is of relative order
e '). Thisgives

P, =const)&(l —w )8 ~~"+O(e) . (5.7)

This can be combined with the equation of state calculat-
ed by Schiifer and Horner for aH w to first order in e and
put into the convenient parametric form of Schofield, Lit-
ster, and Ho. Letting 82=1—w and r=(T —T, )iT„
one can put Eqs. (8.6)—(8.8) of Ref. 67 and Eq. (5.7) above
in the form

rn =r&e

T

h =2rps8(1 —8 } 1 ——,'e ln3 —ln2 —1 +O(p2)
n +8

(5.8)

r=r 2 —38 +@(1—8 ) 1+ n —1 (1—8) '~i —1

n+8 e/2

+O(e )

S'( ix —x'i, T T,g,)—
(Q'po (x)o'p(x)Q o„(x'} (x') ), (5.9a)

S'( (x —x' ~, T T„~,)—
=—&Q' ( ) p( )Q"„( ') ( ')) (5.9b}

P, =/or a &8'[1+kg(8)+O(e )],
where, again, the units of m and h have been chosen so
that, 'to lowest order, T/~ m

~

p= —1 where 8 ~1
hl

~
m

~

=1 where r=O, and where $0 is a numerical
constant of order unity proportional to A~

' and g(8) is a
function that we do not determine here. We anticipate
that the first order (in e) correction to P, will be propor-
tional to e/(n+8) and will therefore be numerically
small. Brezin, Le Guillou, and Zinn-Justin have ob-
tained expressions for correlation functions of the n
vector model in unexponentiated form from which the
term in P, which is first order in e could in principle be
calculated. For n = 1, the case appropriate for chains and
rings, the "Goldstone mode" term in ~, proportional to
(n —1), drops out. Equation (5.8) is valid for general n
and, in particular, in the limit n ~0 where it provides an
equation of state for the polymerization of chains alone.
To lowest order in e it is very similar to the parametric
equation of state proposed earlier in Ref. 24.

It is of some interest to compute the light scattering
from a single identified chain, or ring, i.e., the correlation
function between monomers on a specified chain
[S'(x x', T Ti,h)] or rin—g [S"—(x x', T Tr, h)]. — —
This allows computation of the radius of gyration and
Hausdorff dimension of such polymers. These correlation
functions are given by
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S'( ix i, T —T„h)

(5.1 la}

~T T ~4
—2$—2a

&(P'"(sgn(T T, ), )
x

( )
—T T, )",h )

T—T, [
a), —

(5.11b)

where P" and P" are universal functions. One way to
obtain the power of

~

T T,
~

in Eqs. —(5.11) is to recog-
nize that the integral of the correlation function over d-
dimensional space is a generalized susceptibility and is
therefore a second derivative of the free energy with
respect to the conjugate field g. As such it will have an
exponent of

~
T T,

~
equal to —2—(z —2(I}. The integral

over space introduces d factors of the correlation length.
Using the scaling law d v=2 —(z the powers in Eqs. (5.11)
follow for the correlation function itself. Alternatively,
one may deduce that the quadrupole operator itself scales
as length to the exponent ((I}/v—d) from the behavior of
P, and (t)„near T~ and then deduce the behavior of the
product of two quadrupole operators from this.

We will not give a detailed derivation for the form of
the correlation functions here. However, we will discuss
the expected form of the scaling function P" in certain
limits. %hen the separation between the two points in the
correlation function is small compared to the correlation
length, i.e., when x

~
T T,

~

", and xh "~ a—re small, we
may deduce the

~
T —T,

~
and h dependence of the func-

tloll P by remarking tllat oil distance scales large COIII-

pared to x the operator

Q'@o (x'}oil(x')Q'„SIr„(x +x')o'S(x +x')

with appropriate conditions on Q'p and Q')I. Arguments
similar to those used to discuss the chain density imply
that if there are monomers at x and x', and if these
monomers are on the same chain, there is a contribution
proportional to Q, Q 1, if on different chains, Q», if on
the same ring, Qa)IQ}I, and if on different rings,

(g Qa ) . Thus there are four constraints on the quad-

rupole operators Q' and Q" which can be satisfied only if
a distinction is made between the various magnetic com-
ponents transverse to the "1"component. An example of
a solution is

~c (a)~(p) ~(1)~(y)+)~(y )~(5) (5.10a)

Qc ~(a)~(p) ~(y)~(S)~p(g' CT =O' C7 (5.10b)

o' r), (r(s) are different transverse components of the mag-
netization, e.g., y, 5+1, y&5, and i = —1. The non-
Hermitian quadrupole tensor (5.10a} cannot be made Her-
mitian in any way of which we are aware and is essential-

ly a device for writing the chain-chain correlation as a
difference of two magnetic correlation functions. We ex-
pect the scaling forms

S'( ix i, T —T„h)

~

4—24)—2a

is "loca." Thus its b havior is dete~1n& by its symme
try. It is easy to verify that, in fact, the most divergent
operator in this combination has the same symmetry as
the chain density operator. Thus, we see that

pc(+1,XH)-Cfc(+I,H)X(~~v d) (5.12)

for X« 1, XH"i «1, where X=x
i
T —T, i",

H =h
~
T —T, ~, where C is a constant, f' is the

universal chain density function given above and the
power-law dependence on X and the power for X has been
deduced from the required scaling form for Ac. Equa-
tions (5.12) and (5.11a) can be combined to give

S'( iX )), T —T„h)- (},}(Th)X(" (5.13)

Sc C~ycg/v —dX2 —d (5.15)

where C' is a constant. This has a simple interpretation
within the "blob" model of polymers. In this model po-
lymers which have radii of gyration large compared to the
correlation length are considered to be formed of connect-
ed "blobs" each having a size roughly the correlation
length. Inside the blobs the polymers are expanded and
excluded-volume effects are important. The connected
blobs themselves form a polymer melt, the blobs on large
enough length scales have effectively no excluded volume
and are essentially random walks. Thus the factor (I}' in
Eq. (5.15) is simply the probability that a monomer on a

This formula has a simple interpretation in the polymer
analogy; (}}c is the probability that a chain polymer has a
monomer at position x' and X~~" is proportional to the
probability that another monomer on the same chain be
some (large) distance x away. The scaling form for the
density-density correlation function is exactly what is ex-
pected for a fractal with Hausdorff dimension P/v. This
implies that the Hausdorff dimension of chain polymers
on distances small compared to the correlation length can
be identified with this magnetic exponent, as was suggest-
ed by the calculation to low order in c in Sec. IV. It is
physically evident that a portion of a long ring will be lo-
cally indistinguishable from a long chain. Thus we con-
clude that a ring also has Hausdorff dimension (}}/v on
length scales short compared both to the size of the ring
and the correlation length.

Another limit in which the scaling behavior of P" is
easy to deduce is the limit of large separation and small
field, i.e., x

)
T T, )

"»1 a—nd h
~

T —T,
~

a &&1. On
these length scales in a magnet we expect the long-range
fluctuations associated with the n —1 Goldstone modes to
determine the long-distance behavior of the correlation
functions. Thus it is the symmetry of the operator
QaIIoo~ with'respect to the O(n —1) group excluding
the field direction which is of interest. We readily verify
that this symmetry is that of a vector plus a quadrupole
operator. The vector is dominant in the correlation func-
tions so we deduce

P"-Jd kc'"'k -x (5.14)

where k is the susceptibility for a Goldstone mode with
wave vector k. For the scaling powers to be correct we
find
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chain be at specified position in the solid, X is the

probability that a random walks of blobs starting at some

point is at another point a distance X (measured in units
of correlation length) away, and finally, g~~" "is propor-
tional to the density of monomers within a blob.

Arguments similar to the one given above for the corre-
lation functions of monomers on a ring or chain can be
given for higher-order correlation functions. The number
of constraints on quadrupole operators grows with the
number of monomers known to be on any particular poly-
mer or polymer type and thus the number of transverse
components which must be considered also grows.

It is, for example, of at least academic interest to in-

quire whether a magnetic analogy can be given to the situ-

ation in which the free energies for adding a monomer to
a ring or chain polymer are, in fact, different. This can,
in principle, be done by considering an infinite-
dimensional quadrupole operator in the Hamiltonian of
Eq. (5.1). If we consider the perturbation expansion of
Eq. (5.1) with finite g in powers of h, u, and g we will ob-

tain graphs consisting of rings and chains with an arbi-

trary number of "quadrupole insertions" corresponding to
the quadrupole operator, on each ring and chain. In order
for this to correspond to a polymer system with equilibri-
um constant E,=exp( ro)—for adding a monomer to a
ring and K, =exp{ ro —g) fo—r adding a monomer to a
chain we require that the presence of any quadrupole in-
sertions on a ring in a graph implies that the graph has
value zero. By arguments like those given above it can be
seen that the contribution of a graph with m quadrupole
insertions is proportional to trQ~, the trace of the mth
power of the matrix Q~~. Thus we have an infinite num-
ber of conditions; trQ =0 for m =1,2, . . . .

In addition we require that the weight for a chain be
given correctly. Again it is straightforward to see that
this requires that the one-one component of the mth
power of the matrix Q~p be unity for all positive m.
When this is so the sum of an arbitrary number of quad-
rupole insertions on a chain polymer with m interactions
simply reduces to the product of m geometric series
which yields the correct result for the propagator. These
two conditions yield an infinite number of conditions
which can be satisfied only by considering infinite-
dimensional non-Hermitian matrices.

Using infinite-dimensional quadrupole operators it is
possible to obtain the length distribution of the polymers,
provided the polymers are very long. In particular the
sum over all chains in the system of the average of the
mth power of the number of monomers in that chain is

(N,-)=m!h'
Bhr, Bhr BgQr r BgQr r BgQr

ends the chain. This formula is quite general and could
be used to calculate the distribution of chain lengths
throughout the critical region. Here we will give an ex-
ample of its use by calculating the distribution in the po-
lymerized phase, i.e., in the ordered magnetic phase, in the
limit of low magnetic field.

In this limit we may, to lowest order in the field, ap-
proximate the free energy by

F(h,gQ p)= —ln J dM 5 Mo —gM

)&exp[&(h,gQ p)], (5.17a)

with

P(h~, gQ p)= —Vfh M +g(P, /Mo)Q pM Mp],
(5.17b)

where V is the volume, P, is the chain density in the limit
of infinite volume and zero field, and Mo is the spontane-
ous magnetization. This is simply the free energy we
would obtain if the magnet is viewed as a freely rotating
magnet with magnetic moment VMo. The coupling to
the quadrupole operator, which is renormalized by the
short-range fluctuations, has been adjusted to give the
correct results for the chain density in the infinite-volume
limit [Eq. (5.2)]. This approximate free energy does not
take proper account of the behavior on short-distance
scales. However, it gives the leading behavior when the
polymers are very long.

In the limit of large volume (hMoV»1) and away
from the critical region we may approximate the free en-

ergy by the minimum of P. Using the method of
Langrange multipliers we readily deduce the values for
M', the magnetization which minimizes W,

Ma ——VMo
I
h

I
'hp[A, (Q)5ap —g{{)eMo I

h
I

'Q p]

(5.18)

where
I

h
I
=(g h h )'~2, the term in square brackets

is to be understood as the matrix inverse, and
k(Q)=1+0(Q ) must be adjusted so that g M' =Mo.
From Eqs. (5.16) and (5.18) we readily deduce that

(N, )=m!VMo Ih I(Q,Mo
'

Ih I

') . (5.19)

We recognize these moments as being those implied by an
exponential distribution of polymer lengths with the aver-
age number of polymers given by I

h
I

'Mo V. The prob-
ability that any particular polymer have length N is given
by

XE(h~,gQ~p), (5.16)
P(N)=Mo

I
h IP, 'exp( NMo

'
Ih I

'P, ) .—(5.2O)

where I" is the free energy and yI, y2, . . . , y~ are distinct
transverse indices (e.g., unequal to each other and 1). It is
clear that the derivative with respect to hz will initiate a
labeled chain, the derivatives with respect to the succes-
sive gQ's label ordered (hence the factor m!) monomers on
that chain, and finally the derivative with respect the h„

This formula is not correct for (rare) short polymers.
Note that it is exactly the mean-field result except for the
renormalization of the polymer length.

This simple free energy may also be used to discuss the
crossover from chain polymerization to ring polymeriza-
tion discussed within chemical equilibrium theory in Sec.
II. We find very similar results. It is clear that if we have
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a small system (not connected to other systems by «gions
the size of a correlation length) in a finite field so that

hMO V &~ 1 the free energy of Eq. (5.17) can no longer be
approximated by the minimum of P, in particular the

average over all possible orientations of the magnetization
with the weight given by exp(F) must be performed.
When this is done it is clear that there ceases to be a par
ticular direction in the system and thus the average of
quadrupole operators and, in particular, the one which

gives the chain density will go to zero. As the total densi-

ty is unchanged in this limit we conclude that the poly-
merized density is in large rings.

It is of some interest to ask whether this result has any

experimental consequences. Unfortunately, for sulfur the
field is probably too large for this to be the case. In par-
ticular hM is simply the density of polymer chains in an

infinite system. In sulfur this has been measured to be in

the range of 10 s Per Ss ring2 or 10 s A . Thus toob-
serve this effect it would be necessary to disperse the
sulfur into regions whose size is of the order of 10s A.
Moreover, except very near the transition the correlation
length is much less than this, reaching this value at the
transition. Thus connections between the regions would

have to be appreciably smaller, at most of order 102 A in

linear dimension. Care would have to be taken, moreover,
that the walls did not produce a sufficiently large effective
field (decrease in the free energy of formation of a sulfur

radical) to exclude this effect. This conclusion is essen-

tially identical to that reached in Sec. II.

VI. CONCLUSION

In this paper we have examined the equilibrium poly-

merization of chains and rings together from several dif-

ferent points of view. The common thread running

through the various treatments is that the polymerization
transition in this system is a confluence of two quite dif-

ferent kinds of critical behavior associated with the rings

alone ( n =1) and chains alone ( n =0). As such it has as-

pects of bicriticality, and exhibits behavior described by
exponents that are present in neither the pure tt= 1 nor

pure n =0 vector models, but rather are characteristic of
the crossover between the two in the presence of quadratic

anisotropy The two p.rincipal results of this paper are,
first, that the fraction of monomers in polymeric chains

grows above the polymerization temperature T» as a
power law: P, —{T —T~ ) t', where the exponent
2 —a —P is not that describing the total fraction of po-
lymerized monomers, 1 —a, but rather depends upon the
crossover exponent, P, for quadratic anisotropy in the n

vector model in the limit n~1, and second, that the
Hausdorff or fractal dimensionality of chains in the pres-
ence of rings is given not by I/v(n=0), the result for
chains alone, nor by I/v(n =1),but rather by P/v(n = 1).
In Sec. II we examined the transition in a chemical equili-

brium approximation by introducing different polymeri-
zation equilibrium constants for chains and rings. This
artifice allowed us to distinguish between the transition to
infinite rings which occurs in the case when the limit

Ki ~0 is taken before the limit V~ 00 and the transition

to infinite chains which occurs when the limits are taken

in the opposite order. While the exponents obtained in
this section are surely in error, the basis notions of a
crossover between chains and rings based on the relative
magnitudes of V ' and Ki is surely correct. Sections
III—V concern the nonclassical nature of the transition, in
particular, the exponents that are expected to describe the
various properties and the form of the equation of state
for this system. In Sec. III we have shown the correspon-
dence between a lattice model of polymerization that is an
extension of that introduced by Cordery and an n-vector
model of magnetism. The great advantage of such a map
between polymerization and magnetism is that it allows us
to make use of the extensive theoretical machinery
developed for the study of magnets over the past quarter-
century and the vast pool of resulting facts. Lattice
models of polymerization such as considered in Sec. III
have an advantage over field-theoretic models such as
those considered in Secs. IV and V in that they have a
well-defined high-density limit in the polymerized phase
and lend themselves more naturally to closed-form ap-
proximations like mean-field theory. This can be useful
in working out approximate phase diagrams. We antici-
pate that this will be useful in considering the effects of
polymeric rings on polymerization in a solvent such as
occurs in sulfur solutions. Field-theoretic models, on the
other hand, lend themselves more naturally to the power-
ful calculation techniques of the renormalization-group
approach, in particular that of the e expansion. We have
taken advantage of this feature together with the magnetic
correspondence in Sec. V to obtain the scaling equation of
state for equilibrium polymerization of chains in the pres-
ence of rings, as well as for chains alone, to lowest order
in e in addition to the expected scaling form and estimates
for the exponents, which were already available.
While the correspondence to magnetism has many advan-
tages, it also imposes limitations upon the physical pa-
rameters in the polymeric system. While this can be over-
come to some extent by including multispin interactions,
as detailed in Appendix 8, it is nevertheless of interest to
have a calculational method that can be applied dire:tly
to the polymer model itself. This is the subject of Sec. IV
where we have obtained results to first order in @=4—d
directly on a field-theoretic model of equilibrium poly-
merization of chains and rings. This gives us the free-
dom, for example, to consider the effects of inaking the
chain and ring propagation constants K, and K„distinct,
and thereby allows us to address the question of the shape
of the phase diagram in Fig. 1. While quadratic anisotro-

py of the n-vector model also breaks this symmetry, al-
lowing us to calculate P„ the correspondence with the po-
lymer model does not hold for nonzero values of the an-
isotropy field.

It would be of some interest to obtain the first-order
scaling function g(8) for P, in Eq. (5.8). Although the
singularities near 8=1 (i.e., on the coexistence curve) aris-
ing from Goldstone modes for the general n-vector model
vanish in the equation of state (m, h, and ~) when n= 1,
we anticipate that remnants of this singularity will remain
in g{8) even for n=1 because P, arises as a derivative
with respect to the symmetry-breaking field. This ques-
tion is currently under investigation.
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The lattice model we have considered in Sec. III is dif-
ferent from that proposed by Helfrich and Miiller. It is
similar in spirit to that proposed by Cordery. It has the
advantage that the excluded volume of polymers is taken
into account in an obvious and straightforward manner.
Its disadvantage is that the corresponding magnetic model
is a modification of the n-vector model. An apphcation
of the principle of universality is therefore required in or-
der to identify the exponents of the model with those of
the usual n-ve:tor model. As noted in Sec. III, the usual
n-vector model can itself be exactly related to a model of
equilibrium polymerization of rings and chains. The po-
lymer model then consists of an arbitrary number of
monomers, either open or closed, at each lattice site (cell)
with an arbitrary number of monomer-monomer bonds on
each lattice bond, consistent with the site occupations.
The statistical weight of each distinguishable lattice con-
figuration is weighted by +2Ei raised to the power equal
to the number of polymer ends, E„raised to the number
of monomer-monomer bonds, —,

' to the number of single
site "polymers" (active monomers) and, in addition„a fac-
tor for each site which depends upon the number of poly-
mers which meet there and is a monotone decreasing
function of this number that depends upon n and vanishes
as n~0 for more than one polymer. This is essentially
the model proposed by Muller and Helfrich. It has the
advantage that it is directly related to the usual n-vo:tor
model, but the disadvantage that the weighting of the
multiply occupied states in the polymer model is less obvi-
ously small enough to give sensible results for high poly-
mer densities (large values of Ez). Nevertheless, we anti-
cipate that this latter model will be useful in generaliza-
tions to polymerization in a solvent, where approximate
solutions will be of importance.

The subtle dependence of the fractal dimensionality of
chains on the absence or presence of rings has been
demonstrated only for equilibrium polymerization. To
what extent this effect depends upon equilibrium is an in-
teresting question that we have not addressed here. Surely
the presence of a fixed distribution of small finite-size
rings cannot affect the general n =0 result for chains. Qn
the other hand, fixed distributions of both chains and
rings that include all sizes might well show similar modi-
fication. We expect that the methods developed by Knoll,
Schaffer, and Witten ' for dealing with arbitrary chain
length distributions may be useful in addressing these
questions.

We have not considered in this paper the effects of rigi-
dity of the polymers. These can be included. For modest
rigidity the effect is primarily modification of the proba-
bility of forming rings [e.g., the factor 8 in Eq. (2.1)J and
of the effective monomer-monomer interactions. For
greater rigidity, interesting liquid-crystalline behavior can
result.

While the results obtained for the fraction of material
in chains, P„and the fractal dimensionality of those
chains, Df, are of considerable theoretical interest, it may
be quite difficult to test these predictions experimentally.
The exponent characterizing the fractal dimensionality of
chains changes by only about 2.5%, and the separation of
the fraction of monomers in chains from the total fraction

of monomers in polymers presents serious experimental
difficulties. We remark that the effects of polymeric
rings on the phase diagrams of solutions of monomers un-

dergoing equilibrium polymerization in an inert solvent
may show more dramatic effects. Here the presence of
rings can lead to qualitatively new phase diagrams and
new kinds of higher-order critical points. The polymeri-
zation of sulfur in various organic solvents provides in-

teresting practical exainples. This will be the subject of a
separate publication.
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APPENDIX A

In this appendix we derive the properties of a chemical
equilibrium theory of polymerization based on random
walks on a lattice. We first introduce some notation and
results for random one-step walks on a finite simple-cubic
lattice. We then introduce the chemical equilibrium
theory and use the random-walk results to solve it. The
model and results are slightly different than those in Sec.
II because of the presence of the lattice but the essentials
are the same.

Consider a finite section of a simple-cubic lattice con-
sisting of I. lattice sites i= (i„,iz, i, ) with
i~=1,2, . . . ,I.. The number N(i, j,m) of random walks
with nearest-neighbor steps on this finite lattice from site
i to site j in exactly m steps satisfies the partial difference
equation, for m &1,

N(i, j,m)= gb, ;;N(i, j',m —1) (A1)

where 6; i is unity if j and j are nearest-neighbor sites on
the finite lattice and zero otherwise, and the sum over j' is
over all L sites on the finite lattice. The initial condition
is given by

(A3)

From Eqs. (Al) —(A3) it follows that N~ satisfies the
equation

N(i, j,O) =5;;,
where 5;

&
is the Kronecker delta function.

The chemical equilibrium model introduced below re-
quires the consideration of the discrete Laplace transform
of N(i, j,m):
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with the normalization condition

gu'(i, k)u(i, k')=5~ . (A7)

It is easily verified that a complete set of orthonormal
eigenfunctions for the finite lattice specified above is
given by

N~(i, j,K)—/Kb, ;;N,q(i j ',K)=5,J . (A4)
j

Equation (A4) may be solved in terms of a complete set of
eigenfunctions of the operator 6; i. The result is, formal-

ly,
N~(i, j,K) = g u'(i, k)u (j,k)[1—KA(k)]

k

where u (i,k} satisfies the eigenvalue equation

g b,;;u(j', k) =A(k)u (j,k)

For rings of m monomers, the corresponding concen-
tration x „ is taken to be

x,=(2m) 'L QE(i, i,m)(K,'xo) (A14)

Here K„' plays the role of a statistical weight for a ring
bond and closed walks on the lattice are associated with
polymer rings. The factor (2m) ' compensates for the
overcounting of loops resulting from the fact that the
same loop is generated as a closed walk starting in either
direction at each of the sites that it occupies. It is a
feature of the simple cubic lattice that

N(i, i,m)=0 (m odd) . (A15)

For even loops, N(i, i, 2m} is easily expressed by direct
counting in the form

X(i,i,2m)= gg (2m)!

(mi!) (rnid!) [(rn —mi —mi)!]
u(i, k)= sin[xi„k, /(L + 1)]

X sin[ni~k~ /(L + 1)]

Xsin[iri, k, /(L +1)] (A8)

(A16)

provided site i is more than m steps removed from any
boundary, and where the sums on m i and mz are over in-
tegers such that rni, mi, and rn —mi rn2 a—re all non-
negative. For fixed rn, as L ~ ao, x „approaches a well-
defined limit. For large m this is easily shown to be of
the form (for m even)

with eigenvalues

g(k) =2Icos[~k„/(L + I)]+cos[m'k&/(L +I)]
+cos[irk, /(L + 1)]}, (A9)

x „-am -'"(K„xo)

with

(A17)

(A18)

where k„,k~, k, run from 1 to L.
Now consider a simple equilibrium theory for the poly-

merization of chains and rings. I.et xo and x, be the
concentrations of inactive monomers and of polymer
chains, respectively, expressed as the number of the ob-
jects of interest divided by the total number of monomers
in all forms. I.et them be related, for m ) 1, by

and

a =(3/2~)-'" . (A19)

The total concentrations of chains and rings x, and x„
and the fractions of monomers in chains and rings, !(},and
P„are defined by

x, =KixoL ' g g N (i,j,m —1)(K,'xo)

According to Eq. (A2) this gives

X lc =+1&0

(A10)

(Al 1)

&me~ Xr = &mr ~

m=1

~xmas~ 0r —g ~xmr .
m=1

(A20)

and, for fixed rn, as L~oo, gives

x, =Kixo(K,xo)

where

(A12)

(A13)

(The terms with m= 1 in x, and P„contribute nothing to
the sums, but are retained for convenience in evaluation. )

From Eqs. (A3)—(A7} they are found to be

x, (K; ) =(Kixo)L g g u (i,k)
k i

X [1—K;x,X(k)]-', (A»)
This follows from the fact that the total number of ran-
dom walks of length rn from a typical interior site on an
infinite simple cubic lattice is 6 . Equation (A12) forI&2 is equivalent to the Tobolsky-Eisenberg theory for
equilibrium polymerization of chains. Equation (AIO)
amounts to associating a polymer chain with each random
walk on the lattice. No excluded-volume effects are in-
cluded.

(A22)

X [1—K;xo&(k)]-', (A23)

x,(K„')= , L g In[1 —K,'xoA, (k)]-,
k

P, (K,') =(K,xo)L 3 g g u (i,k) i
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which holds in the interior of regions I and II. Then the
expressions for x„and (t(„ in (A22) and (A24) can be ex-
panded in powers of E„'xo with the result

They satisfy the conservation equation

l=xo+p, +p, .

Using Eq. (AS) one finds for g,. u (i,it),
T

x„=—,
' g m '(E„'xo) L '+[A,(k)]

nt =I k
(A32)

. 3/2
—,gk„—,sky

cot cot Comparison with Eqs. (A14) and (A20) [or of (A3) and
(A5)] gives

—,eke
1

&cot I +1
when k„, k», and k, are all odd integers, and identically
zero whenever any one of k„k„,k, is even. We thus ob-
tain for x,

QN(i, i,m)= g [A(k)]

The symmetry property

g [g(1 )]2ltl + 1 ()

(A33)

(A34)

x, =EixoL 8(L + 1)

2(L +1) 2(L +1) (A27)

of the eigenvalues in (A9) implies Eq. (A15). For even
rings, one finds, as L~(N, both by expansion of (A33)
and by direct counting walks [cf. (A16)], that

L i+N(i, i,2m)

where the sum is over odd k from 1. The sum is easily
evaluated to give

g'k ~= —,'g(2)= (A29)

so that

x, = [1~0(L ')] .
1 —Ecxo

(A30)

Similarly

These are precisely the Tobolsky-Eisenberg results.
Consider next the behavior of x, and (()„when E„xo& 1,

where the sum g'z is over all odd k„k„,k, from 1 to L,
and similarly for ()), with [1—E,xone, (lt)] ' replaced by
[1—E, xone, ( It)] i. As L ~ ao, x, and ((), are dominated
by the low-lt contributions so that A,(it) can be replaced by
6 and cot'[irk/2(L +1)] can be replaced by
[2(L+1)/nk] The res. ult is

3 '3
&I&o 6+1 8, 1

1 —Exo L ii k
ki

, ( !) ( !)'[( — — )!]'

where the sum on m( and m2 is as in Eq. (A16). For
large m, an asymptotic expansion about the maximum
term in {A35),for which rn i

——m2-m /3, gives

L QN(i i 2m)=2 ' (3/m) (2m) 62™, (A36)

which implies (A17)—(A19). The fact that x „ is zero for
odd m and approaches the form in (2.1) only for large m
may be viewed either as an approximation in the equa-
tions of Sec. II or as an artificiality of the cubic lattice
model employed here. While it changes the numerical
values of E„' and xo it does not change any of the qualita-
tive conclusions.

The calculation of x, and ()(„ in region III requires
somewhat more care. The low-k terms do not dominate
the sums in (A22) and (A24), and, moreover, the sums
converge even when E„xo—l. As a consequen—ce, the
lowest eigenvalue plays a special role analogous to the
quantum ground state in the ideal Bose gas. As E„xo ap-
proaches 1+ ,' [el(L +1)]2 to—within of order L ~, the
term k, =k„=k,=1 in the sum for (II„[Eq. (A24)] is of
order 1 so that the conservation equation can be satisfied.
The remaining terms, however, can still be approximated
by an integral, with E„xo=l. Thus, for large L we then
have

x, = 2 I. ln 1 —It.,xocos
1 3

I. +1

cosk i +cosk2 +cosk p

m IIL + ( ) n IIL + i ) s I(L + ( j 3
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, (K„xo)cos[m./(L +1)]
L

—3

1 K—„xocos[n./(L +1)]

—,
' K,xo(cosk, +coskz+ coskq )

+ 3 dk) dk2 dki
zw/(i, +1) 2a/(L+)) 2m/(6+1) 1

) K x (cosk +cosk +cosk )
(A38)

(N, „-lnL) .

From Eq. (A32), x, can be expressed as

x „=(2m) '(K„x()) L 'y [A(k)]

(A39)

(A40)

For m very large, specifically, large compared to
[n /(L +1)],the sum on k is dominated by the terms
with k„=k~ =k, =1 and L. Thus (for m even)

x „=(m) '(K„xo) L cos
L, +1

The first term in x„vanes as L lnL so that the total
number of rings of the size of the system varies as

In demonstrating this correspondence we give a treat-
ment of the Usrell-Mayer expansion of the polymer sys-
tem. We consider a system of freely jointed polymer
chains and rings in equilibrium whose monomers interact
via a potential V. In order to specify such a system we
must give the statistical weights of the polymer species in
the absence of interactions, i.e., probabilities for any con-
formation of an individual polymer in the absence of in-
teractions between monomers, and also the interaction po-
tential between monomers which are included in poly-
mers.

We assume that the polymers are freely jointed, i.e.,
that the noninteracting statistical weight for an m mer-
with an end fixed at xi in the configuration with the
(i —l)th monomer from this end at position x;, is

X (1+smaller terms)

we can express this in the form

x,=(m) '(Kx ) L 'e

(A41)

(A42)

S,(m, IxI)=K)K~, m =1

=2K, E~ ff P (
i x; —x;+, i ), m &1

(8 la)

(Blb)

where

f(l)= —ln cos I. +1
1

2 L+1

'2

(A43)

APPENDIX 8

This is precisely the form for large rings quoted in Sec. II.
It is interesting to note that in two or fewer dimensions

the sums in (A22) and (A24) are not completely dominat-
ed by the ground state. Rather, the sums diverge for
K,xo~ 1 so that no condensation of infinite rings results,
and no transition involving only rings takes place. This is
intimately related to the absence of Bose-Einstein transi-
tion in the ideal Bose gas in two dimensions.

0, m=1 (B2a)

S„(m, Ixt)= —,'P(
i x) —xi' ), m =2

where P(x) is normalized [ JdxP(
~

x
~

)=1] and de-

scribes the bond length distribution. For reasons dis-
cussed below we will require the natural condition
P( ~x~ =0)=0. Note that this definition of Ki differs
from that given in Sec. II by a factor of Kz. We assume
that statistical weight of rings is such that bonds in rings
are indistinguishable from bonds in chains. This implies
that the statistical weight of an m-member ring with m
distinguishable monomers at xi, x2, . . . , x is

In this appendix we demonstrate an exact correspon-
dence between a simple model of equilibrium polymeriza-
tion with rings and a magnetic model. Correspondences
between the long-distance behavior of magnetic and poly-
mer systems have been demonstrated in Sec. III of this pa-
per and elsewhere. ' Two approaches have been
used. Lattice models involve a periodic substrate which
also builds in artificial short-distance behavior. In simple
field-theoretic correspondences with magnets, there are
difficulties and artificialities associated with the treatment
of the short-wavelength cutoff, particularly if rings are al-
lowed. In this appendix these potential difficulties are
avoided by using an explicit, reasonably resdistic model
for the polymers. This allows a discussion of when the
behavior of realistic systems can depart from that dis-
cussed above.

(B2c)

The factors of 2 and —,
'

in Eqs. (8 lb) and (82) are required
for a simple correspondence to the magnet and can be jus-
tified physically as being associated with the indistin-
guishability of bonds and monomers.

%'e will assume that all monomers in polymers of all
types interact via the two-body potential V(

~

x
~

). In an
actual system (e.g., sulfur) this potential should should be
thought of as the interaction potential between monomers
in polymers mediated by inactive monomers or other sol-
vents. This defines the system under consideration. More
complex (many-body) interactions are a trivial extension.

The grand canonical partition function for an interact-
ing system of this nature is given by
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e ' =1+ g, g fdxif . fdxN gS„(m, Ix))
N = i ' partitions i=i

gS, (m', Ix}) exp ——,
' g V(x; —x )/k T

(83)

where kz is Boltzmann's constant, T is the temperature,
V is the volume, P is the (osmotic) pressure, N is the

number of polymerized monomers in a given realization
of the ensemble, and the sum over partitions is a sum over
all possible ways of partitioning these f&&f monomers into
an arbitrary number, N„, of ring polymers containing ar-
bitrary numbers mi, mt, . . . , mz of monomers and an

arbitrary number, N„of chain polymers containing arbi-
trary numbers mt, m2, . . . , miv of monomers. When ei-

ther N„or N, is zero the product involving it should be
replaced. by unity.

We may calculate the properties of such a system per-
turbatively within an Ursell-Mayer expansion. This ex-
pansion may be represented pictorially in a system with
this complex molecular nature~ as well as in the more
familiar case in which the noninteracting system consists
of point particles. In particular, instead of graphs con-
sisting of point particles and interaction lines we must
draw graphs consisting of polymers and interaction lines.
The rules for drawing interaction lines between monomers
are identical to those for the particle system, e.g., at most
one interaction line between each monomer pair. If we
wish to calculate the density of monomers, or densities of
or correlations between monomers with certain properties,
we must distinguish these monomers from other mono-
lners.

The value of a graph is calculated as follows. Associate
a position x; with each polymerized monomer in a graph.
Integrate over the positions of all monomers (except those
which have been distinguished as having a certain posi-
tion) the product of (a) the noninteracting statistical
weight of all polymers in the graph, (b) the product off ( I x; —x,' I ) over all pairs of monomers connected by in-
teraction li~es where f ( I

x
I ) =exp[ —V(

I
x

I )/ka 6—1

is the Mayer f function, and (c) the inverse of any symme-
try factor of the graph, i.e., the inverse of the number of
ways in which polymerized monomers may be inter-
changed leaving the topology of the graph fixed. In order
to calculate a quantity we sum over all possible graphs the
value of each graph. In particular, the (osmotic) pressure
—PV/k+T is given by the sum of all connected graphs,
the number of polymerized monomers is given by the sum
of all connected graphs with a single distinguished mono-
mer which has its position integrated over space, etc.

In performing the sum over graphs at any order in the
interaction f we must sum over the possibility that there
are any arbitrary number of monomers between mono-
mers with interactions, between monomers with interac-
tions and distinguished monomers, or between such
monomers and the ends of polymer chains. This
motivates the consideration of the sum

where the x; are the positions of intervening monomers
and if I= 1 the product is to be replaced by unity. We
now consider graphs in which bonds (or dangling bonds)
and the pieces of polymer described above are replaced by
solid lines (see, e.g., Fig. 5) with the following rules for
evaluation. Associate a position x; and a factor Kp with
each (distinguished or interacting) monomer in such a
graph, 6(

~
x—x'~ ) with each solid line (polymer seg-

ment), and f( ~
x—x'~ ) with each dashed (interaction)

line. Associate a factor (2K, )'~ and a position with the
"end" of a polymer chain [actually with the position of a
bond dangling from the last monomer on a chain, i.e., a
position xi, whose distribution from the position of the
last monomer oa the chain, xf, is given by
P(

I &t, —xf I )). Associate a symmetry factor with the
graph given by the number of ways solid lines and in-
teracting or distinguished monomers can be interchanged
without changing the topology or meaning of the graph.
If we then integrate over the positions of interacting
monomers and the ends of polymer chains we readily veri-
fy that all graphs (except those containing polymers with
neither interacting nor distinguished monomers) have

Xo——E,Ep x

«o r —i
+ QKiKp fdxif . fdxi ff P( ix —x.+, i

)
r=2 i=i

= VKiKp /(1 —K~ ) (BS)

For ring polymers this sum is

values equal (order by order in perturbation theory) to the
sum of the primitive Ursell-Mayer graphs. Note that the
statistical factors of 2 and —,

'
appearing in Eqs. (81) and

(82) are necessary to these simple graphical rules. Note
also that unless we require that P(

~
x

~

=0)=0 these rules
yield spurious contributions from loops of solid lines with
exactly one distinguished or interacting monomer.

The sum of disconnected parts of graphs containing
neither interacting nor distinguished monomers must be
calculated separately. For chain polymers the sum is
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&a= x —J dx, f JdxgK~p((x, —xg
(

)

, 2l

X QP((xj —x,„[)

~ln 1 —EpI' (86)

where

P(k)= fdxe'"*P(
I
x

I
}

The right-hand side has been Fourier transformed and

summed. Use has been made of the fact
kI' =I' x =0 =—O. The sum o . 84 can

also easily be evaluated yielding

0(=— x x

—g fdxi f. . . fdxj(K~/2}J(j!)

XUJ(xi, x2, . . . , xj)

X ff [(I()(xj )] . (88b)
4 p

We defme the free energy of this system in the usual way

by a functional integral

—VF/kg T =ln f (N(())exp( H /k—a T) (89)

and expectation value of a function A depending on the

field P by

(A(P)&= f(N&) pf (Hlk —T)+(VFlk T)]A(P).

G(I*—*'I)=f, )I)(I)((—))')'(I)'l)j '

(2n }

(87)

We note that these sums will diverge if Ez & 1 as P(k) ( 1

achieves the limit P(k)=1 when k=0. Thus this naive

perturbation theory will diverge for I(:~ y 1. This is due to
the instability of the reference state when Xz & 1 and can
be corrected by use of a more appropriate reference state
as discussed in Sec. IV.

As has been remarked, the graphs obtained in this way

bear a close resemblance to those obtained in expansions

of magnetic problems. In particular consider an n

component magnet with the energy H/k~ T =Ho+Hi,

(810)
We will show that if the parameters are picked correct-

ly this magnetic system corresponds to the polymer sys-
tem order by order in perturbation theory. In particular
we will show that

—P/k&T = —(F/k, T)+Sr, +C, (811)

where P is the (osmotic) pressure defined by Eq. (83), F is
the free energy of the magnet defined by Eq, (89},and C'

is a constant. We will also show that there is a correspon-
dence between expectation values calculated in the two
systems.

For this correspondence we require h ~=2Ei,

M(
i
x

i
)= fdke'"'*I[P(k)] ' —E I (812)

H~ —Jtdx Jt
dx' —,()(}(x)p(x')~( ( x—x'

I » (88a) and that UJ is given by the jth Ursell cluster function
for the interaction potential V(

~

x
~

), i.e.,

U&(xi, »)=f ( I xi —» I »
U3(xl x2 x3)=f(

I xi —xz I }f( I xz —xi I }+I( I
xi —xi I )f (

I
x,—x2

I
}+

+f( [ xi —xi
I
)f( I x2 —» I )f(

I
xi —» I

)

(813}

and so forth.
To demonstrate this correspondence we expand the

magnet problem in a perturbation theory in H, in the

standard (Wick ordering) fashion. The free energy is
then Fo, the free energy for the unperturbed Hamiltonian,

plus the sum of all connected graphs. This unperturbed
free energy is given by

—VKO/k&T= —fTrln[M(x —x')]V

2

=X"——f In[P(k}], (814}
(2~)'

where Xo is given by Eq. (86) and the remainder is the
constant C. %e note that this constant, which in any ease

is irrelevant to the thermodynamics, will be fini««y if
p(k) tends to zero as k ~ Do more rapidly than

exp( —ak") for any a. It is easy to verify that the con-

nected graphs for this magnet are identical to the connect-

ed graphs obtained by summing over intervening mono-

mers in the polymer system (exclusive of the sum over
noninteracting polymers). Such graphs would involve the
propagator for the magnetic system, which equals
G(

~
x

~
) given in Eq. (84};field vertices which have asso-

ciated with them a factor Ii, a position to be integrated
over, and one propagation line; and j-fold interactions
which have associated with them a factor
2 J(j!)E~UJ(x,, . . . , xj },j positions x; to be integrated
over, and 2j propagation lines which meet in pairs at the j
positions. The factor li accounts for the statistical weight
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of a polymer end, the factor X&~Ut gives the correct sta-
tistical weight for j interacting monomers, and the
remaining factor 2 t(j!) ' is needed because there are a
number of Wick orderings (with identical values) corre-
sponding to each polymer configuration. If each of the 2j
polymer branches (propagators) entering a vertex is distin-
guishable there are 2tj! different Wick orderings corre-
sponding to each distinct polymer interpretion. If the po-
lymer branches entering the vertex are not distinguishable
the number of different Wick orderings multiplied by the
factor 2 t(j!) ' yields the reciprocal of the symmetry fac-
tor discussed for the polymer graphs. Thus if we associ-
ate field vertices with the ends of polymers and j-fold in-

teraction vertices with the sum over all possible (connect-
ed) ways for clusters ofj monomers to interact we see that
the graphs obtained from the magnet system equal those
obtained above by summing the polymer graphs. The
graph proportional to h, i.e., the one corresponding to a
single polymer chain with no interactions, has the value
h xG x . This di ers rom the correct sum

(85)] in the polymer system by VK, . This difference, Eq.
(814) above and the equality between the conntx;ted

graphs involving interactions, demonstrates the
equivalence between the polymer model and the magnet
expressed in Eq. (811).

It is also easy to verify that the graphs for the calcula-
tion of expectation values for certain operators in the
magnetic system exactly equal those for certain corre-

spo&~i&g expectation values in the Urse11-Mayer expan-
sion. A particular example is the graphs for
(&~ d(ao+~, )/tJIt'r ) which are the graphs for the total
number of polymeriz& monomers.

It is clear that if we replace p by an n-component vec-
tor and take the formal limit n~o we will obtain mag-
netic perturbation rules appropriate to an equilibrium po-
lymerization problem in which rings cannot be formed.

It is of some interest to inquire whether there are situa-
tions in which the magnetic system falls into a universali-
ty class other than the ordinary n= 1 critical point. It is
evident that, in the absence of interactions, the maximum
in the susceptibility of the magnet, given by the Fourier
transform of 6(

I
x

I
) defined in Eq. (84), is at k=0.

Moreover, it is clear this is a simple maximum. Thus, it
is difficult to see how the system can have a I.ifschitz
point or an order parameter with nonzero wave vector.

On the other hand, it is far from clear that the infinite
sum of Eq. (Bgb) has the same behavior as the short-range
quadratic form used in Eq. (5.lb). For some choices of
the Mayer f function it may have only short-ranged con-
tributions but with higher-order minima leading to mul-
ticritical behavior. ' ' It is also possible that this infin-
ite sum, which closely resembles that for the pressure of a
gas, should have a long-range nature, like that of a gas
near its critical point. This would yield yet different
behavior.
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