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A “class”-c orbit is one that rotates around a periodic orbit of class ¢ —1 with some definite fre-
quency. This contrasts with the “level” of a periodic orbit which is the number of elements in the
continued-fraction expansion of its frequency. Level renormalization is conventionally used to study
the structure of quasiperiodic orbits. The scaling structure of periodic orbits encircling other period-
ic orbits in area-preserving maps is discussed here. Renormalization fixed points of p /g bifurca-
tions are found and scaling exponents determined. Fixed points for ¢ > 2 correspond to self-similar
islands around islands. Frequencies of the island boundary circles at the fixed points are obtained.
Importance of this scaling for the motion of particles in stochastic regions is emphasized.

I. INTRODUCTION

A typical, two degree-of-freedom Hamiltonian system
exhibits motion of such complexity that, despite a hun-
dred years of study, only in the past fifteen have we begun
to approach a complete understanding. One aspect of this
complexity is the structure of the periodic orbits, which
form the framework for the phase portrait. Periodic or-
bits in two degrees of freedom are either elliptic or hyper-
bolic (or exceptionally parabolic). Birkhoff showed that
in the neighborhood of a generic elliptic periodic orbit
there are other periodic orbits which rotate around the
given orbit.! Some of these “satellite” orbits will typically
be elliptic, and will also have satellite orbits. He realized
that this structure repeats ad infinitum:

“Il est évident que non seulement les solutions e-
périodiques quelconques possedent des solutions e- et h-
périodiques voisines, mais aussi qu’en recommencant avec
ces solutions e-périodiques voisines qui sont pour ainsi dire
des satellites de ces solutions, on peut obtenir d’autres solu-
tions e-périodiques et h-périodiques qui sont des satellites
secondaires.”

Furthermore, Arnol’d proved that in the neighborhood
of a typical elliptic orbit there are invariant tori encircling
the orbit. On a surface of section, which is a plane trans-
verse to the orbits, these tori become closed curves or a set
of closed curves and have the appearance of a chain of
“islands.” The satellite elliptic orbits are also encircled by
invariant curves, and thus form islands around islands.

In this paper we discuss the scaling of these islands as
one looks on ever finer scales. Islands around islands pro-
vide an example of the renormalization transformations
which have been recently used in dynamics to study the
onset of chaotic motion.3—%

There have two types of renormalization applied to
Hamiltonian systems, which here will be called “level”
and “class” renormalization. Level renormalization is
used to study the evolution and eventual destruction of an
invariant surface as some system parameter is varied.>*
Class renormalization similarly described the behavior of
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periodic orbits.

For a brief description of level renormalization, recall
that motion on an invariant torus occurs with a given
winding number, or frequency, . According to the
Kolmogorov-Arnol’d-Moser (KAM) theorem, only tori
with sufficiently irrational w are preserved for any inter-
val of parameter variation. The frequency can be expand-
ed in continued-fraction representation:

1

w=ap+ =[ag,a;,a3,03,...], (1)
a,+

(12+

S S
a3+---

where the a; are positive integers. Recall that irrationals
have infinite continued-fraction expansions. The conver-
gents to @ are those rationals obtained by truncating its
continued fraction after some finite number of terms.
The number of terms is called the level of approximation.
As first shown by Greene,” the properties of the quasi-
periodic orbit can best be obtained by examining the con-
vergent orbits as approximations. Convergent orbits of
increasing level look more and more like the limiting irra-
tional frequency orbit. Level renormalization is the
operation of rescaling space and time to map one level
onto the next.*~® Remarkably, one finds a self-similarity
in structure under this transformation in special cases.
The simplest is that of the golden-mean frequency,
y=(14V'5)/2, for which a;=1 for all i. Here the renor-
malized Hamiltonian approaches a fixed function: The
properties of one level are asymptotically the same as
those of the next. When an invariant torus is below the
threshold of destruction, the asymptotic Hamiltonian
looks integrable. At the threshold for destruction, the
asymptotic Hamiltonian has a nontrivial form, corre-
sponding to a system with exactly one invariant circle.
Class renormalization is familiar from the case of
period doubling.? Here one follows a stable fixed point as
a parameter is varied. The fixed point, or class-0 orbit,
typically loses stability by period-doubling bifurcation.
The resulting period-2 orbit ‘“rotates” about the fixed
point with frequency +, and we call it a class-1 orbit.
One can again follow the period-2 orbit as the parameter
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is varied. When it loses stability a period-4, class-2 orbit
is born, and so forth. Self-similarity in this case appears
as a repetition of the structure from one class to the next.

We discuss below the generalization of this to bifurca-
tions of higher order, e.g., period g-tupling, and further-
more, to the birth of orbits of any frequency, p/q. These
orbits can be organized in classes by analogy with the lev-
els of a continued fraction. Asymptotic self-similarity is
found in the cases when p /g is the same for each class.
Some of the low-order fixed points have been studied pre-
viously (period 3 in Ref. 4, and 1/q to ¢=6 in Ref. 9).
Approximate class renormalization schemes were dis-
cussed in Ref. 10, and improved in Sec. 2.4 of Ref. 3.

Our purpose is firstly to attempt some organization of
the fixed points of various frequencies. We show how the
scaling parameters vary with p/q, and obtain a simple
formula for the scaling of area when p=1. We indicate
the analogy with the Farey-tree organization of scalings
for quasiperiodic orbits of the circle map.'!

Primarily, however, our interest is to use the results of
scaling in studies of the motion of particles in the stochas-
tic regions of phase space.!? Self-similarity is a useful
concept because the smallest spatial scales most strongly
affect the statistics of orbits on the longest time scales. In
particular, orbits find the neighborhood of invariant sur-
faces extremely “sticky,” due to ‘“cantori,” which are
quasiperiodic orbits covering only a Cantor set on a
torus.'!> Thus, to understand motion in chaotic regions
one needs to understand the orbits in the neighborhood of
the invariant circles which bound the region.

We show that the renormalization structure of p/q bi-
furcations, with ¢ >2, is that of islands around islands.
Each island is a set of class-(c + 1) invariant circles sur-
rounding an orbit of class ¢. The outermost of these is
the boundary of the island and forms a surface near to
which a chaotic orbit can stick. At the fixed point of a
p/q bifurcation, there is a universal structure to this
boundary, which can be used to estimate its “stickiness.”*

Furthermore, we give some evidence below that class
sequences which do not consist of orbits of the same p /g,
also have some remnant of the self-similarity of the sim-
ple case. This is analogous to generalized scaling found
for levels of boundary circles by Greene et al.'®

The results of this paper are primarily computational,
and thus no mathematical rigor is pretended. We use the
work “typical” for situations in which we observe a phe-
nomena computationally, but for which there could well
be counterexamples. Thus, for example, one can say that
typically period doublings accumulate with an increase of
some parameter representing the strength of the non-
linearity, though one can easily reparametrized a map so
that this is not true.

II. REVERSIBLE, AREA-PRESERVING TWIST MAPS

Instead of directly studying two degree-of-freedom
Hamiltonians, the computations in this paper are for
area-preserving maps of the plane. As is well known,
Hamiltonian flow can be reduced to a map by the surface
of a section. We will consider a general class of maps: re-
versible, twist maps.*!® We explain these terms in the
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context of an example: the quadratic map,

y'=x
T: (2)
x'=—y+2k—x?).

This map has fixed points at x =y = +(1+V'14+4k ), with
the upper sign representing an elliptic orbit when k is in
the range — 5 <k < 5. Denote this point by x, =y,. The
lower sign gives a hyperbolic orbit for — 4 <k.

First, an area-preserving map has unit Jacobian,
det(DT)=1. Here DT is the 2X2 matrix of partial
derivatives of x' and y' with respect to x and y.

Second, a reversible map can be written as the product
of two involutions, T=(TS)S [involutions satisfy
(TS)*=S?=1]. Such a decomposition represents time-
reversal symmetry since conjugation with the symmetry
transformation inverts the map: STS=T"'. For the
quadratic map, symmetry operations are

S: [y,=x
x'=y,

y'=y

TS:
x'=—x+2k—y?.

Fixed sets of the involutions are the symmetry sets of the
map. In general, for maps of the plane, each involution
has a fixed set which is a curve going to infinity* (these
are called symmetry lines):

Fix(TS)=#={(x,y) lx:k_.yZ]
Fix(S)Efzi(x,y) |x=y} .

(3)

They intersect at the fixed points. We are interested in
the structure of the map near the elliptic fixed point, and
so we divide the two lines into the four half-lines which
meet at (x,,y.). These lines are assigned an orientation,
pointing away from the fixed point. Positive orientation,
denoted by the subscript “ + ,” corresponds to pointing in
the positive y direction; similarly, negative orientation is
denoted “—.”

Finally, a twist map is a map that has rotational shear:
There exist coordinates (6(x,y),J(x,y)) where 0 is an an-
gle, d6dJ=dxdy, and 36'/3J|¢<0. In terms of 6,
which we can think of as the angle about the elliptic fixed
point, the rotation number of an orbit is defined as the
average number of rotations per iteration of the map

o= lim (8,/2mn) . (4)
n— oo

The twist property is not satisfied for the quadratic map
(2) in polar coordinates. However, it is possible to find
coordinates such that the twist property is satisfied in the
neighborhood of a typical (nondegenerate) elliptic point.'*
A twist map can always be obtained from a generating
function of the type F(6,0') where J'=0F /36’ and
J =—09F/36. For the quadratic map there is a generat-

ing function of this form given by

Flx,x")=xx'—2x(k —x%/3) . (5)

The total action of an orbit { xg,x, . .. »Xg} is defined by
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g—1
W({x,})= 2F(x,~,x,-+1). (6)
i=0
The orbits are stationary points of W, holding x, and x,
fixed.

III. CLASSES

Periodic orbits are fixed points of T9. The stability of
such orbits is determined by the linearization of T along
the orbit: This gives a matrix defined as

M =(DT¥=DT(2,)DT(z,_,)- -+ DT(z,) .

Area preservation implies that det(M)=1, so there is only
one parameter of M, its trace, which determines stability.
It is convenient to parametrize the trace using Greene’s
residue:

=+[2—Tr(M)] . (7

When R <0 the orbit is hyperbolic, when 0 < R < 1 it is el-
liptic, and when R>1 it is hyperbolic with reflection
(eigenvalues negative). For example the residue of (x,,y.)
is V'14+4k. For an elliptic orbit, the residue also deter-
mines the rate at which nearby points rotate around the
given orbit according to

R =sin’(7wy) . (8)

Here w is the central rotation frequency about a point on
the orbit. Typically, the rotation frequency decreases with
increasing distance from the elliptic point, implying that
coordinates (6,J) can be found in the neighborhood of this
point such that the twist condition is satisfied for 79.

Along with the residue and period, one can further clas-
sify periodic orbits in terms of their origin as the parame-
ter is varied. For example, suppose we increase k for the
quadratic map beginning at some negative value. The
fixed points are born at k = — + in a saddle-node bifurca-
tion. We call the fixed points class-0 orbits. The elliptic
class-0 orbit is the father of an entire family of orbits
which bifurcate from it as k is increased further.*!” A
periodic orbit encircling the class-0 orbit is born whenever
wq reaches a rational value, p,/q,. These orbits we call
class 1; they rotate p, times around the fixed point in g,
iterations of the map. Furthermore each class-1 periodic
orbit is a fixed point of the map T?' and, if it is elliptic,
has its own central rotation frequency, w;, Eq. (8). As k
is increased, w; typically increases from zero at birth.
New orbits are emitted from the class-1 orbit whenever
w{=p,/q,, and form chains of g, islands surrounding
each point on the orbit. These new orbits are class 2; they
rotate p, times around a point on the class-1 orbit in g,
iterations of T9'. Similarly, the frequency, w,, about the
class-2 orbit is computed using the linearization of T9'%
which has as fixed points the ¢,q, points of the class-2
orbit. This construction can be repeated, yielding islands
around islands of all classes.

There are of course periodic orbits which do not fit into
the above tree. They can appear by saddle-node bifurca-
tion, and generate their own trees of orbits. We will study
only the progeny of a single elliptic parent.

At a bifurcation point, @ =p /g, an elliptic orbit typical-
ly maintains its stability, and in its neighborhood are in-
variant circles.>!” This can be shown for sufficiently dif-
ferentiable maps providing g>4. The quadrupling and
tripling bifurcations usually result in the loss of stability
at the bifurcation point, but stability is regained as the pa-
rameter is changed so that @ is no longer equal to the
low-order rational (-} or %). However, when the residue
of the elliptic orbit reaches the point R=1 where 0 =7, it
usually permanently loses stability by period-doubling bi-
furcation,® creating an elliptic orbit of double period, and
higher class.

IV. USING SYMMETRY
TO FIND PERIODIC ORBITS

The importance of symmetry lines becomes clear when
one tries to find periodic orbits.””!® Note that if (x;,y;) is
an orbit of T, then S(x;,y;) is an orbit of T~!. A sym-
metric orbit is an orbit which is invariant under S: such
an orbit is its own time reversal. It is easy to see that a
symmetric orbit must have two points on the symmetry
lines. Thus to find symmetric periodic orbits one need
only look along these one-dimensional curves.

There are many orbits of T which are not symmetric;
however, the symmetric orbits are of great importance.
Aubry has shown that an area-preserving map with the
twist property has two symmetric periodic orbits for each
rational o in the range of the twist." One of these orbits
minimizes the action (6), and the other is a minimax
point. Since this is a generalization of the Poincaré-
Birkhoff theorem,!” these are called the Birkhoff orbits.
These are the orbits which result from the breakup of the
rational invariant circles of an integrable twist map. The
Poincaré-Birkhoff theorem implies that the two orbits
have opposite indices, which correspond to one with posi-
tive residue and one with negative residue. This property
can be shown more generally using Aubry’s existence
proof (e.g., orbits which minimize the action must have
negative residue, while minimax orbits have positive resi-
due®).

A remarkable, but not understood, fact is that positive
residue, class-1, periodic orbits all tend to have a point on
one of the four symmetry half-lines, called the dominant
line, and denoted E,.* For T, the dominant line is R,
Assuming this, one can easily determine the rules for
which points of the symmetric orbits lie on which symme-
try lines. This depends on whether p and/or q are even or
odd, as shown in Table L.+ We denote the second elliptic
line by E,, and the two hyperbolic lines by H,; and H,.

We have found that the higher-class orbits also have a
dominant symmetry line, determined by a simple rule de-
pending on the parent orbit. Suppose we consider a
class-¢ orbit with rotation number p./q.. Since the
class-(c +1) orbit encircles the elliptic parent, the four
symmetry lines for class c¢ are obtained from E, and E,
of the parent by dividing each in half at where it crosses
the parent orbit. Each half-line is oriented to point away
from the parent orbit. The orientation is designated posi-
tive if the line points in the same direction as that of the
parent line. Thus E§ splits into the two half-lines Ef,
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and E{_ where the plus designates the half-line pointing
in the same direction as E§. We find that the dominant
symmetry line for class ¢ +1 is always E5,. We can
write this as the equation

ES*Y'=ES, . 9)

All the positive-residue, class-(c¢ + 1) orbits have a point
on this new dominant symmetry line.

This rule seems to hold for any reversible, area-
preserving twist map, though so far as we know, there are
no mathematical results to this effect. In particular for
the “standard map” (y’'=y —ksinx, x'=x +y') one finds
that the simplest factorization gives the dominant line for
the primary-class periodic orbits (those that encircle the
cylinder) as the x=0 line.* The other symmetry lines are
x =, and y =2x and y =2(x —7). Orientation is such
that all lines point in the negative y direction. The assign-
ments E |, etc., follow as in Table I. With this orientation
the rule for finding the dominant symmetry line of
higher-class orbits is (9).

To find a class-c orbit we use a secant method to search
for a point that begins on one symmetry line, say H¢, and
rotates around the class-(¢c —1) elliptic point p. times
after g, iterations of the (] j;l’ g;)th power of T, and
then returns exactly to H,°. It is easy to see that these
conditions do give a periodic orbit. One can save a factor
of 2 in time by requiring that the orbit ends up on the
second line, H,*, after half of the period [for odd periods
the number of iterations from Z# to .% is (period + 1)/2].
This technique works quite well so long as the magnitude
of the residue of the orbitis <O(1).

V. CLASS RENORMALIZATION FIXED POINTS

At any typical value of the parameter there exist class-1
orbits encircling the elliptic fixed point with all frequen-
cies in the range @ to zero. For each elliptic class-1 orbit
there will be class-2 orbits of all frequencies in the range
) to zero, around it. As is by now a familiar question,
one would like to know how the structure of the class-2
orbits is related to that of the class-1 orbit they surround.
The most well-known case of this is when one considers
the period-2 orbits.® A period-2, class-1 orbit is born
when the residue, R, reaches 1. As k is further increased
a class-2 orbit of period 4 and frequency w,=~ is born
when R,;=1. Interestingly, the parameter values for
period doublings accumulate geometrically at some value
k*:

k—k*+A487°, (10)

TABLE 1. Symmetry lines for periodic orbits. Symmetry
lines # and .# are given by Eq. (3). Subscript “ + > denotes the
half-line with y >y., and “—” denotes y <y,. Class-1, sym-
metric orbits with positive residue have points on the lines la-
beled E, and negative residue on those labeled H (Ref. 4).

p/q z, 7 2R Za
even/odd E, H, E; H,
odd/even E, E, H, H,

odd/odd E, H, H, E,
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where the exponent is §=8.721.

At the accumulation point the map is asymptotically
self-similar. Orbits of all periods 2¢, ¢ =0,1,2, ..., coex-
ist, all with R>1. In fact as ¢— o, the residue of the
period 2 orbit approaches the value R *=1.1359. Define
a coordinate transformation, B, which maps the minimax
class-(¢ + 1) point on the dominant symmetry line to the
corresponding class-c point on its dominant symmetry
line, and rescales areas. Self-similarity is expressed in
terms of a renormalization transformation

N (T)=BT‘B~! (1
by the relation
Ny(Ny( - (D)) —>T*=Ny(T*)

at the parameter value k*. It turns out that the deter-
minant of the coordinate transformation B, which
represents the area scaling factor, is 65.751.

It is quite straightforward to generalize this to other
self-similar p /q sequences.*’® To find the birth of a p /g
orbit of class (¢ + 1), we search for a parameter value for
which the class-¢, frequency p/q orbit has residue
R.=sinXmp/q). The values, k*, of the accumulation
points of some of the p/q sequences are shown in Table
II. Values of the scaling parameters, &(p,q) and
&(p,q)=det(B) are given in Table III, as is the value of the
residue, R *, of the p/q orbit at the fixed point.

To determine area scaling we do not use special symme-

TABLE II. p/q fixed points. Parameter values for which
the map (2) has a self-similar sequence of p/q periodic orbits.
Typical uncertainties in k* are +3 in the last significant figure.
Values for g=2 are taken from Ref. 8.

p/q k*
4 1.034 04170098
T 0.295392 355 88
T 0.035 680 866 41
+ —0.087 242 966 99
+ —0.13985513232
+ —0.171979979 40
+ —0.190945228 18
5 —0.20291528061
% —0.211261983
-+ —0.2171104
= 0.704.93222695
2 0.172819459 88
% —0.277201 870
= —0.114935951
B 0.604 093 625 13
-+ 0.2124919263
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try coordinates but rely on the action, (6), which has the
units of area. Computing the difference in action between
the positive and negative residue class-c orbits, AW, gives
a measure of the area of the class-c island (¢ > 2). In fact,
this is the area of the “turnstile” through that periodic or-
bit.'> Thus £ represents the rate at which AW approaches
zero,

AW, —AE~C . (12)

Previous works considered the eigenvalues of the matrix
B, which give length scaling coefficients; the accumula-
tion rate along the symmetry line is called @, and across
the symmetry line, B.*#%° Unfortunately, these coeffi-
cients do not always approach fixed values: They oscillate
with period 2 when ¢ is odd.*° This leads one to suppose
that N, does not approach a fixed map, T*, for odd q.
However, we have seen that if one looks only at area scal-
ing then there appears to be a fixed point. Expressed in
terms of a and B, we find that a3=§ is a constant. Note
that £ is a canonical invariant (all maps canonically relat-
ed will have the same coefficient), while a and B depend
on the coordinate system. It remains to be seen if a
coordinate-free version of (11) can be formulated.

In Table III we see that fixed points with p> 1 typically
have quite large values for the area-scaling coefficient:
£>230. This implies that high-class islands at these fixed
points are very small, and probably do not strongly affect
motion in the stochastic region.

Table III shows that R* for all g>2 is less than one.

TABLE III. Universal parmeters. Universal numbers at the
p/q fixed points. 8 is the unstable eigenvalue of N,, £ is the
area-scaling factor, and R * is the residue of the positive residue
p/q orbits. The last significant figure is typically uncertain by
+3.

In(§) *
p/g 5 f=aB (=0 R

5 8.72109 65.751 6.039 1.13588
T 20.185 90.616 4.102 0.73371
+ 24.448 80.108 3.162 0.51781
+ 20.048 57.232 2.515 0.38915
+ 13.875 51.997 2.205 0.31295
+ 10.808 70.632 2.187 0.265 80
+ 9.4397 104.53 2.236 0.23302
5 9.0841 161.92 2.315 0.206 08
5 8.5708 221 2.34 0.18949
& 8.45 360 2.45 0.178
% 30.257 506 3.87 0.98622
z 39.279 322 2.97 0.656 50
% 32.264 234 2.48 0.473 50
& 24.331 305 2.39 0.37206
3 45.758 1490 3.5 0.93537
+ 46.3 570 2.8 0.708
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This implies that the elliptic orbits at the fixed point are
linearly stable. When w=£p /q for some g <4, the KAM
theorem guarantees that these orbits are surrounded by is-
lands.? Thus at these fixed points one truly has a self-
similar island around island structure. Figure 1 shows
four classes of orbits at the + fixed point for the quadra-
tic map. We do not use the proper symmetry coordinates,
so the shape of the islands changes with class, however
the coordinate independent properties of the islands (resi-
due and area) do scale geometrically.

At a period-tripling or -quadrupling bifurcation point
the period 3¢ or 4° orbit, while linearly stable, is generical-
ly unstable.? The tripling fixed point, however, occurs at
a parameter value below that of each bifurcation point:
the central frequency of each minimax orbit is 1/3.054.
Thus there are invariant curves surrounding each orbit.
The quadrupling fixed point is at a parameter value
slightly greater than that of each quadrupling bifurcation
(as are each of the g >4 fixed points). At k* the central
frequency is 1/3.91, and so the positive residue orbits are
indeed stable.

’ - LEEL

o ™’ 4

e NS

FIG. 1. Phase space at the % fixed point. (a) An enlargement

of the region near a point on the elliptic, class-1 orbit showing
the elliptic class 2, 3, and 4 orbits, i.e., up to period 8%. (b) The
same as (a), with additional orbits, including the % class-1

chain, the “separatrix” of the % class-1 chain and the class-1
boundary circle (close to the inner separatrix of the 4 orbit).
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VI. BOUNDARY CIRCLES

The region occupied by the invariant circles surround-
ing an elliptic periodic orbit is confined by the stable and
unstable manifolds emanating from its hyperbolic partner.
Since these manifolds typically intersect transversally,
they are embedded in a region of chaotic behavior. The
outermost class-(¢ + 1) invariant circle forms the boun-
dary between the chaotic region and the island, and hence
is called a boundary circle. At the accumulation point of
p/q bifurcations each island has its boundary circle, and
since the map approaches T* on fine scales, these boun-
dary circles will asymptotically approach a universal cir-
cle with a universal rotation number depending only on p
and gq.

To determine the rotation number of a boundary circle
we use a method developed by Greene, MacKay, and
Stark,'> which is based on the residue. Greene showed
that periodic orbits in the neighborhood of an invariant
circle have residues which approach a value smaller than
1.7 Thus if the residue of an orbit is significantly larger
than 1, it is probable that there are no invariant circles
nearby. This criterion can be refined as follows.*!®

Consider two class-c¢ periodic orbits, p; /g, and p,/q,
with g, >¢q;, which are neighboring, in the sense that
P192—p2q1=*1. The residue criterion states that there
is no class-c, invariant circle with  between these orbits
if the mean residue

R=(R,+7yR,)/(14+7)>R,, (13)

where R, can be taken to be of order 0.3. This is a conjec-
ture, based on the renormalization theory for “levels.”

To find the boundary circle for an island, we begin by
calculating the residues of the orbits with frequencies 1/n.
For the smallest n such that 1/n <o, we compute R for
1/n and 1/(n +1). If it is smaller than R, we increase n
by 1 and try again. This corresponds to moving radially
away from the center of the island. Eventually the resi-
dues begin to increase; they do so dramatically as the
chaotic region near the separatrix is approached. Take
the last n for which R <R,; we expect there is an invari-
ant circle between n and n + 1, but not between n +1 and
n +2. Find the daughter orbit with the mediant frequen-
cy (14+1)/[n +(n +1)] between the two parents. Check
the value of R for the daughter and the outer
parent, 1/(n +1). If it is smaller than R, there is prob-
ably a boundary circle between these two orbits, otherwise,
we check R for the inner parent. Construct a new
daughter between the old daughter (now mother) and
outermost of the parents with R <R, (the father) by add-
ing numerators and denominators of these two frequen-
cies. Repeat the procedure by checking R for the
daughter and its outer parent.

In this way we obtain the outermost frequency for
which the residue stays bounded, and hence the frequency
of the outermost invariant circle. This procedure some-
times proceeds down dead-end paths, in which, though R
is smaller than R, at one generation, all the daughter or-
bits at some later generation have arbitrarily large R. If a
larger value for R, is used then more dead ends are at-
tempted. Upon reaching a dead end, it is a simple matter
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TABLE IV. Universal boundary circles. Continued-fraction
expansions for boundary circle frequencies at the 1/q fixed
points. Computed using R,=0.3, and the class shown.

p/q Class 1)

+ 4 [0,4,1,14,1,1,1,2,.. .]

+ 3 [0,5,1,6,1,1,1,2,1,3,1,2,.. .]

- 3 [0,6,1,4,1,6,2,1,1,2,1,. . .]

+ 3 [0,7,1,4,1,5,1,5,1,...]

3 2 [0,8,1,5,1,1,1,1,1,3,1,1,1,...]
= 2 [0,9,1,5,1,6,1,2,1,...]

e 1 [0,11,2,1,1,1,1,2,1,1,1,2,1,...]

to move back a generation and test for a boundary circle
towards the other parent.

The resulting frequency is expressed in terms of its
continued-fraction expansion (1). In fact, the procedure
of generating frequencies by constructing the mediant (the
Farey tree procedure) directly gives the continued-fraction
expansion.”* As in Ref. 15, we find that boundary circles
have continued-fraction expansions of a special form:

[...,1,(121,1,02(1+1),1,...] ’ (14)

where the odd elements are usually 1’s (10% of the time
there is a 2), and the even elements are small integers, ap-
parently less than seven.

The boundary circle frequencies for some of the univer-
sal p/q islands are given in Table IV. For the 1/q fixed
points with 5<q <10, the universal island is the first
outer convergent to the boundary circle. These islands sit

FIG. 2. Phase space at the fixed point of the —,‘—,—-bifurcation
sequence. Shown are the “separatrix” surrounding three of the
15 class-1 islands, and that of six of the islands in a & class-1

chain. The class-1 boundary circle is between these; it has a ro-
tation frequency smaller than -,IT The Tll— class-2 chain and,

just outside it, the class-2 boundary circle are also shown.
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out in the stochastic sea, just outside the boundary circle.
Since T* is self-similar, all the classes of 1/g islands are
in the same situation. An orbit in the stochastic region
near the separatrix of the class-0 fixed point, can get arbi-
trarily close to boundary circles of all classes of islands.

When ¢> 10, however, the islands are inside the boun-
dary circle. They are inaccessible to orbits in the connect-
ed stochastic region. An example of this is shown in Fig.
2, for the 1% accumulation point. In this case, the islands
will not affect orbits in the outer stochastic region.

VII. RENORMALIZATION FOR BOUNDARY ISLANDS

At an arbitrary parameter value, one is not necessarily
at the fixed point of any p/q bifurcation. However, it is
still possible to define a class sequence in terms of the
outermost convergents of boundary circles. For example,
at k =—0.175 the class-1 boundary circle has frequency
[0,6,1,6,1,6,1,4,1,...]. The outermost convergent (e.g., the
convergent with the lowest frequency) is [0,6,1]=+.
Since the residue of this orbit is less than one (R =0.204),
it forms an island; its class-2 boundary circle has the fre-
quency [0,8,1,1,1,2,1,2,1,1,1,...]. The outermost conver-
gent of this circle is the class-2, —;' orbit, with residue
0.375. The class-3 boundary circle of this orbit has fre-
quency [0,5,2,6,2,2,1,2,1,...], which implies that the -+
orbit (with residue 0.207) is the outermost convergent. Its
outermost class-4 convergent has frequency 3 and residue
0.299, etc. In most cases the residue of the outermost
convergent is smaller than 1 and it forms an island; in the
exceptional case we take the next outer convergent.

This yields an infinite class sequence of boundary is-
lands around boundary islands analogous to the level se-
quence of convergents for a boundary circle. We desig-
nate such class sequences by (p,/q,):(p,/q,):. .., eg.,
i The boundary island is not necessarily
the outermost island: orbits which are not convergents (in
the above example the class-3, + orbit or the class-4, o5
orbit) can also form islands; it is not precisely clear which
islands are most important for transport in the general
case.

The property of most interest for determining the stick-
iness of a region of phase space, is area scaling. It is easy
to compute AW for each orbit in the sequence of boun-
dary islands. We find that a version of the geometric
scaling still survives:

AW, ~AW,._q—*%, (15)

with £=2.2. and where p /q is the frequency of the class-c¢
orbit. This scaling seems to hold within a few percent for
any parameter value. This is not too surprising since:

(1) This is approximately the same scaling which occurs
for all the 1/q fixed points with g between 5 and 11. This
is shown in Table III as the ratio In(£)/In(q).

(2) Since the outermost convergent to the boundary cir-
cle is typically of the form [0,a;,1], a p/q island chain
for p>1 is not usually such a convergent. However 10%
of the odd continued-fraction elements of a boundary cir-
cle are 2’s, and so the outermost convergent will occasion-
ally have the form [0,a,,2]=2/(2a,+1)."*

(3) Finally, the residue of a convergent to a boundary
circle should be near the critical value R,. For the case of
noble circles this is 0.25008. Table III shows that the
residues of the + and + fixed points are closest to this
critical value, and so they might naturally be expected to
be the most common values for the island frequencies.

We have not yet investigated the statistics of the oc-
currence of p/q’s in the island around island sequence.
This could yield interesting results, analogous to those for
the continued-fraction sequences of boundary circles.

VIII. CONCLUSIONS AND IMPLICATIONS

We have shown that area-preserving maps exhibit a
self-similar structure corresponding to islands around is-
lands. Of course, this is a very old idea and perhaps even
the very first case of renormalization in dynamics: it was
probably envisioned by Birkhoff' and perhaps even by
Poincaré when he discovered homoclinic orbits.

We label orbits by class and frequency. An orbit of
class ¢ encircles a periodic orbit of class (¢ —1). Frequen-
cy is measured relative to the orbit encircled.

The simplest form of self-similarity corresponds to the
case of a sequence of islands each with frequency p/q.
For a typical one-parameter family of maps, the parame-
ter can be adjusted [k —k*(p/q)] so that scaling of the
p/q family is asymptotically geometric, and corresponds
to the fixed point of a renormalization operator. The pa-
rameter value k* seems to be a monotonic function of the
frequency p/q. We suspect that as ¢g— oo (for p finite)
k* approaches the class-0, saddle-node bifurcation point
[ —0.25 for Eq. (2)].

There appears to be essentially* one unstable eigenvec-
tor, 8(p,q), of the renormalization operator at k*. This
eigenvalue gives the rate of approach of the parameter
values for a bifurcation to k*. Geometric scaling is deter-
mined by the ratio of the area of p /g island to that of the
p/q island surrounding it; this ratio is called £(p,q). Both
of these scaling parameters depend on the values of p and
g as shown in Table III: in fact, they are probably most
properly though of as functions on a Farey tree, as in the
circle-map case.!!

Consider class sequences with a frequency of the form
1/q. For q >4, the eigenvalue 8(1,q) monotonically de-
creases with ¢, while £(1,q) monotonically increases.
Area scaling obeys the simple relation (15) with {=~2.2
when ¢ is in the range 6—10. One could have expected
that for g <4 the fixed points would behave somewhat
differently since at such a bifurcation, linear stability of a
p /q orbit does not necessarily imply actual stability. For
q> 10, we find that the class ¢, 1/q islands are trapped in-
side invariant circles of all classes <c, and hence are not
accessible from the connected stochastic region outside
the primary, class-1 island. We expect the areas of these
islands to decrease more rapidly with class than those in
the stochastic region; this is confirmed by the larger
values of £ (and also &) as ¢ increases. For a given class,
the largest island is that of type +, since £ is smallest.

Results we have obtained indicate that the fixed point
for a frequency which is a Farey daughter of two ration-
als, occurs at a parameter value intermediate to those of
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the parents. Similarly the residue at daughter fixed points
is between those of the parents. Furthermore, the size of
islands seems to decrease rapidly, with relation (15) being
roughly valid for an exponent {~2—3. Perhaps { settles
down to some particular value for large Farey generations.
More interesting is the possibility of scaling behavior
for arbitrary class sequences. At most parameter values,
an elliptic fixed point will have an outermost invariant
circle, with a frequency of the form [0,a;,1,...]. The
outermost convergent to this irrational is the class-1 is-
land of frequency 1/¢q with ¢ =a,+1. This island will
have an outermost class-2 invariant circle with a similar
frequency, [0,a},1,...]. This sequence of islands around
islands appears to proceed indefinitely because the typical
residue of orbits in the neighborhood of a boundary circle
is of order 0.25.15 In fact this implies, from Table III,
that the g; should be most often near 7 or 8. In such a
situation the generalized scaling relation (15) should hold.
Unfortunately, with the brute-force methods of this pa-
per, fixed points with g and p large are computationally
difficult to achieve, and the universal behavior of & and §
cannot be ascertained. This is due to the rapid increase of
& and the period of an orbit, (g), with g. The maximum
period we can find numerically is around 10°. A clearly
better way to proceed is to use the renormalization equa-
tion (11) directly, treating the map as a polynomial of
some large order. In this fashion fixed points for many
frequencies have been investigated for the circle map.'!
The implications of class renormalization for transport
have been treated in Ref. 14. In the simplest type of
transport theory which attempts to include the effects of
boundary circles,'>!* the stochastic region is divided into
states which are the stochastic regions outside an island
chain of given class and bounded by “cantori.” Motion in
the state is assumed to be random. This implies that the
probability for a transition from one state to a neighbor
can be obtained from the ratio of the flux through a
bounding cantorus to the area of the state. Fluxes scale as
the total area of a state divided by a trapping time in the
state; this is equivalent to saying that the flux is propor-
tional to the area of a single island in the state. Thus
fluxes decrease at the rate £=w ~!. Time scales according
to the period of the island chain in the state, which in-
creases at a rate ¢ =€~ \.
There are two kinds of scaling which are important for
this model, that of levels, which defines the “stickiness”
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of a particular boundary circle, and that of classes, which
defines the islands around which are orbit is likely to be
trapped. Assuming that one could be at a renormalization
fixed point corresponding to both kinds of scaling (an un-
likely case) gives a model in which motion occurs on a
self-similar tree. Moving up branches of the tree corre-
sponds to either increasing level, or class.

The stickiness of the tree can be measured by the first
return distribution, which is the probability that given at
t=0 a particle is put in a state at the base of the tree (first
level, and lowest class), it first escapes from the tree at
time ¢. We find that this distribution decays as'*

R(t)—t~1+2 | (16)

where the exponent z obeys the relation w.e;?
+wy€er*=1. Here the subscript refers either to class
scaling or level scaling. Using generalized scaling rela-
tions like (15), this becomes

gc z ;L -2z

€ +ef =1. (17)

For general boundary circles, the exponent £; =3.05,'
while for class scaling we can take {,=2.2. For the gol-
den mean the period scaling, €, , is ¥ ~*=0.382, while for
class scaling €, =g ~'. Using the g=7 we obtain z=1.96.
The value for z will fluctuate depending on the €’s, which
in turn vary with the frequencies of the boundary circles
and islands. We expect, however, that these fluctuations
should have a mean roughly given by the values we have
used.

Thus the scaling theory implies that the first return dis-
tribution should decay roughly as ¢ ~3. Numerical experi-
ments seem to give a decay closer to ¢ ~>°. For more dis-
cussion of this result we refer to Ref. 14.
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