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First-passage times for non-Markovian processes: Correlated impacts on bound processes
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Our previously developed stochastic trajectory analysis technique has been applied to the calcula-
tion of first-passage time statistics of bound processes. Explicit results are obtained for linearly
bound processes driven by dichotomous fluctuations having exponential and rectangular temporal
distributions.

I. INTRODUCTION

In many applications in the physical sciences and en-
gineering it is necessary to evaluate the first-passage time,
i.e., the time at which a stochastic process first reaches a
"critical value. "' Examples arise in "false alarm" prob-
lems in electrical engineering, in mechanical engineering,
in chemical physics, and in laser physics.

The numerical analysis, by means of simulations or
Monte Carlo methods, of first-passage times and other ex-
treme events is usually very expensive and time consum-
ing since such events are rare and require a large number
of long runs to provide reliable statistics. ' The impor-
tance of analytic methods for calculating extrema statis-
tics is therefore clear. Nevertheless, these analytic
methods are only available in a limited number of cases
such as for independent random processes's and diffusive
one-dimensional Markov processes, i.e., processes
described by a one-dimensional Fokker-Planck equa-
tion. '-'

Recently, efforts have been devoted to extending the
theory of first-passage times (and other extrema statistics)
to non-Markovian processes. "'2 However, the practical
application of these theories depends on the construction
of operators for which a general prescription is not avail-
able. This construction has only betm implemented for
simple cases with dichotomous Markovian fluctuations. 'i

In three recent papers' ' we have obtained first-
passage times for systems driven by dichotomous (not
no:essarily Markov} fiuctuations. Specifically, we have
studied simple systems defined by a variable X(t) whose
dynamical evolution is given by the stochastic differential
equation

X=F(t) . (1.1)

Thus, X(t) is an unconstrained "Einstein" process that
describes a free process subjected to random impacts.
F(t) is a dichotomous random process taking on the
values a and —b (a,b ~0). The times that F(t} retains
the values a and —b are respectively governed by the
"switching" distributions f, (t} and it's(t). ' We have ob-
tained an integral equation that governs the evolution of

the first-passage time probability density for arbitrary dis-
tributions ttt, s(t). From this integral equation we have
been able to derive closed and exact expressions for the
mean first-passage time for several choices of f, t, (t).

In this paper our goal is to extend the preceding results
to more general one-dimensional bound processes driven
by external dichotomous fluctuations

I'(t) =G( P+g ('Y)F(t), (1.2)

where G(Y) and g(Y) are smooth functions and F(t) is
the dichotomous random proces; defined above. As is
well known the change of variables

X=f" y,
g(y')

(1.3)

transforms Eq. (1.2) into an equation with additive fluc-
tuations, i.e., into an equation of the form

X(t)=f(X)+F(t) . (1.4)

II. DYNAMICS OF THE SYSTEM

We consider a one-dimensional dynamical system
driven by external dichotomous fluctuations. The system
is specified by the variable X(t) whose dynamical evolu-
tion is given by the stochastic differential equation (1.4)
where F(t) is a dichotoinous (not necessarily Markov)
random variables alternately taking on the values a and
—b, with a, b ~ 0, and P, (t) and gs(t) are the probability
distributions of the "time of residence" in the states

Therefore we can study the first-passage time for process-
es whose dynamical evolution is given by equations of the
form (14} and relate these results directly to the more
general processes (1.2) if the relation between X and F is
monotonic.

In Sec. II we detail the dynamics of the system. Section
Ill is devoted to a discussion of the statistical quantities
that we need later. In Sec. IV we obtain the equations sa-
tisfied by the first-passage time probability density. The
formalism is applied to various specific examples in Sec.
V, and the conclusions are presented in Sec. VI.
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FIG. 1. Dynamical variable as a function of time for two

values of F(t). X,(t) is the trajectory when F(t)=a, and Xb(t)
is the trajectory when F(t)= —b. The trajectories approach
their respective asymptotic fixed points x, and xq.

F(t)=a and b, respe—ctively We .assume that f(X) is
smooth and such that the solution X(t) of Eti. (1.4) does
not become infinite in a finite time

Let X,(t) be the solution of Eq. (1.4) when F(t)=a and
analogously for Xb(t) Since .f(X)+a &f(X)—b for all
X, we have by the comparison theorem' that

X.(t) &Xb(t)

for all t. Let x be an asymptotically stable fixed point of
Eq. (1.4},e.g., when x =x, then

f(x, )+a =0 (2.2a)

Xg

0
C3

t

t~

TIME t

FIG. 2. The trajectory shown is for a random function F(t)
that has switched values three times in the interval (0, t). The
absorbing boundaries z~ and z2 lie within the natural boundaries
(asymptotically stable fixed points) x, and xb.

0
Z2 (Z] Q Xg (2.5)

Finally, when Eq. (1.4} has no asymptotically stable fixed

points [as in the case f(X)=0] we shall assume that f(X)
is such that X,(T) [Xb(t)] is an increasing (decreasing)
function of t Now n. o restrictions apply upon the critical
values z 1 ps'.

For F(t)=a the solution of the differential equatio~

(1.4) is

lim X,(t) =x, ,f~ce
(2.2b)

where

x I
dX

~0 f(X)+a ' (2.6}

with similar relations for F(t)= band x —=xb Then, .
from the comparison theorem, Eq. (2.1), we have

xo ——X(t =0) .

Defining the function

(2.7)

Xg QXb (2.3)

(see Fig. 1). Thus when the process represented by Eq.
(1.4) has at least two asymptotically stable fixed points
[one for F(t)=a and the other for F(t)= b] ther—e exist
two "natural barriers, " X=x, and xb, that the system
cannot exceed. Therefore if we are interested in finding
the mean first-passage time when the process (1.4) reaches
certain values, say z~ or z2, these values must lie inside
the natural barriers (see Fig. 2)

(I}, '(X)—=f dX'

we have from Eq. (2.6) that

X,(t)=p, (t+p, (xo)) .

(2.8)

(2.9)

Xb(t) =pb(t +pb '(xp)), (2.10)

The solution of Eq. (1.4) for F(t)= —b is similarly given

by

Xy &Z2 QZ) QXg
0 0 (2.4) where

If Eq. (1.4) has only one asymptotically stable fi~ed point
[for example, for F(t)=a] we shall assume that f(X) is
such that Xb(t) is a decreasing fl111ction of tline. I11 this
case the restriction (2.4) on the critical values si «anise

(2.11)(I}b '(X)—:I dX'

Therefore if we take F(0)=a we have the following tra-
jectory (Fig. 2):

X(t)=P,(t+P. '(x, )), ««ti,
X(t)=pb(t+pb '($, (ti+Q, (xo)))), ti &t&ti+ti ',

X(t)=$ (t+Q (fb(ti+fb (f (ti+f (xo)))))) ti+ti&t&ti+ti+ti

(2.12a)

(2.12b)

(2.12c)
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(2.13a)

(2.13b)

for the odd and even intervals of the process. Thus when F(0)=a we have

and so on. For this realization the distribution g, (t) governs the odd time intervals ti, t3 tz i . . . , and gb(t)
governs the even ones. In the following we shall use the notation

z.-1=X( 2 -1)=4"( z.-i+0. '(4b( z. z+yb '(4. ( z. 3+

xz =X—(tz )=4'b(tz +4'b (0 (tz i+-4' (eb(tz z+—' ' ' ))))}

xz„ i ——P, (tz„ i+/, '(xz„z)),
xzn =4'b(tz. +6 '(xz«

(2.14a)

(2.14b)

(n =0, 1,2, . . . ), where tz„ i is governed by P, (t) and tz„by gb(t). On the other hand if the Process starts with
F(0)= bwe—have

xz. -i =Nb(tz. -i+6 '(xz. -z»

xz„P,(——tz„+P, '(xz„ i))

(n =0, 1,2, . . . ), where now tz„ i is governed by gb(t) and tz„by p, (t)

(2.1Sa)

(2.1Sb)

III. FIRST-PASSAGE TIME PROBASII.ITY DENSITY

Our goal is to calculate the conditional first-passage time probability density p (t;xo) defined as follows:

p(t;xo}dt =—Probability that the process X(r) [given that X(0}=x,]

crosses z, or zz in the time range t & r( t +dt

without ever having crossed either of these levels

during the time span 0 & r ~ t . (3.1)

To calculate p (t;xo} it is useful to denote each time range t„between switches as an "interval" and to define the auxili-
ary probability

p„(t;xo)dt =Probability that the first crossing of zi or zz

occurs during the nth interval in the time range (t, t +dt) . (3.2)

Clearly, the first-passage time probability density is

p(t;xo)= g p„(t;xo) .
n=l

(3.3)

p"'(t;xo) ~p (t;xo)
I F(oi=a (3.4)

The existence of two realizations of the stochastic pro-
cess F(t) in (2.1) leads one to define the two probability
densities

a~ bs

Pb

1 ~2~

2

(3.7)

and

p' "(t'xo)~p(t;xo) Ib&oi=-b (3.S)

[the same definitions apply for p„" '(t;xii)]. Therefore
if too(a

~
xo) [ too( b~ xo)] is the —probability that

F(0)=a [F(0)= b], given that—X(0)=xo, then

p(t;xo}=p"'(t;xo)uio(a
~
xo)+p' '(t;xo)iao( b~ xo) . —

we obtain p' "(t;xo) and similarly, given p' '(t;xo }one
can obtain p"'(t;xo)

The probability densities p„(t;xo) can be constructed
explicitly from the trajectories (2.12). Let us consider a
realization that begins with F(0)=a, as detailed in Eq.
(2.12). We wish to insure that no crossing of the levels zi
and zz has occurred in the first (n —1) intervals and that
a crossing does occur during the nth interval. During the
first interval no crossing occurs if

(3.6)

The distributions p "(t;xo) and p' '(t;xo) are not in-
dependent of one another since there exist symmetry rela-
tions between them. Indeed, from the description of the
model in Sec. II, it is easy to see that if in the expressions
for p'"(t;xo) we make the replacimients

xi P, (ti+P, '(xo)) &zi——
or, equivalently, if

S)

«o f(X)+a
The probability that the inequality (3.8b) holds is

(3.8a)

(3.8b)
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~1

Prob(ti &~,)=, C.(t, )dt, , (3.9) ri ——r(xo) . (3.18)

where 4, (t) is the probability density for the first inter-
val. For example, in a "modified renewal process"' the
usual choice ls

4, (t)=A,, f f, (t r)—dr .

In general, 4, (t) depends on the preparation of the sys-
tem. No crossing during the second interval occurs if x2 =Nb(t2 +6 '(x2 -i»&z2 (3.19a)

To proceed with our explicit construction we must
choose the parity of n: If it is odd then a crossing during
the nth interval can only occur at z], while an even n can
only lead to a crossing at the level z2 [and the converse if
F(0)= b, —see Fig. 2]. We select n =2m and note that
the z2 level mill be crossed during the 2rnth interval if

x2 =A«2+kb '«1» »2 (3.1 la) i.e., if

i.e., if

1

f(X)—b
(3.11b)

The probability that this inequality is satisfied is
'2

Prob(t, & ~2) = gb(t, )dt, .
0

Similar conditions can be written for the probability that
each successive interval up to and including the (n —1)st
does not lead to a crossing. The explicit expressions are

2i —1

Prob(t2l 1 & F21 1)= g» (t2l 1 )dt2i 10

Z2

2m f(X) $ 2»& (3.19b)

I(b{~(t)+Nb (X2m —1)) Z2 (3.21)

The probability that this inequality is satisfied is

Prob{t2m )z2m)= f fb(t)dt . (3.20)
2ttf

Finally, we must specify when during the 2mth interval
the crossing actually occurs. For the crossing to occur at
time t it is necessary that

i =2,3,4, . . . , (3.13) &(t)=t —(ti+—t2+ +t2 1) . (3.22)

2l
Prob(t2; & r2;) = gb(t2&)dt2;, i =1,2, 3, . . . ,0 (3.14)

Taking into account Eq. (2.12) we can write Eq. (3.21) as
follows:

'2 1h(t)= f dX (3.23)

$1

~2; 2 f(X)+tt
and therefore Eq. (3.21}is equivalent to

(3.15)
~1+t2+ +~2 —1++2 (3.24)

and

dXf(X) b— (3.16)
5(t (t1+t2+ +t2m —1+T2m )) ' (3.25)

The probability density for this crossing event is the delta
function

ri —ri(xi 1)=r(ti l&ti 2, . . . , t2&tl )

for i =2,3,4, . . . , and

(3.17)

As can be seen from Eq. (2.13) the quantities r; are func-
tions of the switching times t; i, t; 2, . . . , t, : Collecting the results (3.9},(3.13), (3.14), (3.20), and (3.25)

immediately gives the following integral expression for
the probability density p'2m (t;xo):

p2'(t;xo) =f dti 4, (ti )

2 2m —1

X
0 dt2pb(t2) f dt2 1$,(t2m, )

t$+t2+ ' ' '
+t27yg 1+&27/(2'

for m & 1. For odd n similar reasoning lemds to

p2 i(t;xo)= dti 4, (ti)(a)
0

2 2' 2
«2 A(t2) " f, «2 2 A(t2 -2)

(3.26}

X f, «2. 14.(t2. 1)@t-(ti+t2+ ".+t2. 2+~2. i))
+2rsI —1

(3.27)
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for m & 2, and

p'i'(t;xo) =5(t —ri) f dti (}(),(ti ) .

Similar expressions can be obtained for p„' "'(t;xo) [see Eq. (3.7)].

(3.28)

IV. INTEGRAL EQUATION FOR THE EVOLUTION OF THE FIRST-PASSAGE TIME PROBABILITY DENSITY

Our next step is to Laplace transform Eqs. (3.26)—(3.28) according to the definition

p(s;xo):—f dt e "p (t;xo), (4.1)

and to establish an integral recursion relation to connect the nth and (n +2}nd densities. The recursion relation leads to
an integral equation for the Laplace transform p(s;xo) of the first-passage time probability density. From Eqs.
(3.26)—(3.28) and (4.1) we have

p 'i'(s;xo) =e ' dt, 4, (t, ),
Tj,

p z~mi —i(s'»0) = dti @g(t& }
0

T2 T2 —2
X t2 b t2 ' tP

(4.2)

2m —1

{g) 1 2 2ttt —1

p, (s;x, )= dt, 4, (tl ) dt, y, (t, ) dt's, it. (tz~ i )

(4.3)

2ltl

lf we define the auxiliary functions

I&i)I (2 s; xl)= f dt, yb(t, )f dt3$, (ti) f dt's~ 2fb(t2yg i)

(4.4)

t2m -1 a t2m —1

Xe
—s{t2+t3+ . +t2 2+T2 i) (4.5a)

T2 r3 2
i(&;&|)=J, d(g gb((2) f d(, y(), ) f , g(, , y, (), , )

-S(&2+&3+ ' + S2~ l +T2X at2 yb&t2 ~ea
25$

in terms of which

p„'(s;xo)= f, «1 @,(ti)e 'I'„',(s;x, (t, )), n&2,

we obtain the recursion relation

T2 j T3

~2(&PO)= I d)2 & 'Q&()z) f dt's e 'Q()i)I'„'(s;x3((,3 )p)), m & )

Summing this recursion relation from n =1 to n = ao leads to the integral equation

2 r3I '"(s;x
1 )=I '&'(s;x1)+I z"(s;x t )+ dt's e 'gs(t2) dt's e 'fo(ti )I "'(s;xi(t3,'t2) )0 0

(4.5b)

(4.6}

(4.7)

(4.8)

(4.10)

where

I'"(s'x)= g I"(s x) (4.9)
n=1

In terms of this function the Laplace transform of the first-passage time probability density [for F(0)=a) is

l

p "'(s;xo)=P'i'(s»0)+ dt) 4, (t& }e 'I "(s;x,(t, )) .

By means of the equivalence given in Eq. (3.7), it is straightforward to find the analogous expressions for I ' b'(s;x) and
p '-"(s x ).

2 T3I' '(s;xi)=I'i '(s;xi)+I& '(s;xi)+ f dt2e 'P, (t2)f dt3e 'gb(t3}I' '(s;x3(ts, t2)) (4.11)
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and

P
' '(s;xo)=p'i '(s;xo)+ f dt, @b(t, )e 'I' b'(s;xi(t, ))

where

(4.12)

S
f

+2' "2n -I

2 1
, =f dX (4.13)

dX
1

(4.14)X +a
[Note that now the trajectories x~ are given by Eq. {2.15}.] Finally, the Laplace transform of the first-passage time
probability density [Fq. (3.6)]for arbitrary F(0) is

p{s«xo) =p ~'~(s»o)too{a
~
xo)+p ~ ~(s ixo)iao( b~ x—o) . (4.15)

The entire problem has been reduced to solving the integral equation (4.8). However, as has been pointed out previous-
ly, 's ' exact solutions of such integral equations cannot be found for arbitrary forms of the p, b(t), even in the simplest
case f(X)=0, although one can construct approximation schemes for specific forms of these functions. Nevertheless
there are situations when the integral equations can be solved exactly for special, but relevant, forms of g, b(t). In the
next section we give two such examples.

We should note a further simplification in these results when the system, as often happens, is prepared in such a way
that 4, b{t)=g,b(t) (this is the case of an "ordinary renewal process"' ). In this case the auxiliary functions are
I(s;x}=p(s;x) and the probability densities p "(s;xo) and p' '(s;xo) themselves satisfy the integral equations

'r T2

P "{$;xo)—P i"{s',xo—)+P2'{$',xo)+ f dtie '4, (ti)f dtze 'A(tz)p "( ;sx(zt it&)} (4.16)

—st) 2p' "{$'»o)=p i "{s'xo)+p2 {s'»o)+ dti e 'pb(ti) dt2e 'f, (t2)p' '(s;xz(t2, ti)) .
0 0

(4.17)

V. APPLICATIONS

In this section we evaluate the first-passage time of the bound process (1.4} for various forms of g, b(t) for which the
integral equation (4.8) can be converted to an equivalent differential equation that can be solved analytically with the ap-
propriate boundary conditions. For simplicity we take 4(t) =g(t), although other forms of 4(t) can be easily incorporat-
ed.

A. Dichotomous Markov process F(t)

If F(t) is a dichotomous Markov process, then the distributions g, b(t) are exponential,

gz(t) =Aqe ~, p=a, b, (5.1)

where A,, ' and Ab
' are the average residence times in the states F(t)=a and —b, i.e., A,, ' and Ab

' are average times be-
tween switches. In order to insure that the fiuctuations are zero centered we impose the condition aAb bA, F,or th——ese
fluctuations we show in the Appendix that the integral equation (4.16) is equivalent to the second-order differential equa-
tion

dp ($;xo) $($ +kg+Ah)+ p "'(s;xo)=0
dxo If{xo)+a][f(xo)—b]

together with the boundary conditions

(i) p "(s;z&)=1,

d P "'(s;xo) f'(xo) s+lL.b s+A,,+
dxo f(xo)+a f(xo) b f(xo)+a— (5 2)

(5.3)

dp "'(s;xo)
(ii) = [—A,,+{s+A,, )p"'(s;z2)] .

dxo xo=z2 zz +a (5.4)

The first boundary condition insures that a process initiated at the upper boundary with positive slope is immediately
trapped with certainty. The second boundary condition is not of the usual form for a Fokker-Planck process in which
trapping at the lower boundary is also guaranteed if the process starts there [i.e., p "'(s;z2)= 1]. The physical interpreta-
tion of condition (5.4} is not straightforward.

A differential equation for the mean first-passage time T'i"(xo) can be obtained using the defining relation
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Ti'(xo)=— dt tp' '(t;xo)= — p"'(s;xo)
0 s s=0

d Ti'(x()) f'(x()) Ab+
dxo2 f(x())+a f(x()) b —f(x())+a

Ay+Lb

[f(xo)+a][f(xo)—b]

The boundary conditions for (5.6) are similarly obtained from (5.3) and (5.4):

(i) T'i'(zi }=0
dT()"(xo)

(ii)
dxo

[~.T", (z, ) —1] .
z{) z2 z2 +a

The solution of the problem (5.6}—(5.8) is straightforward and is given by

T"'(x )= ' V")(x)e-~""'dx+C" e ~""'dx
~l g)

The derivative of Eq. (5.2) with respect to s evaluated at s =0 yields the differential equation

dT'i" (xo)

dxo

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

I(,)( )
& f'(x) 4 a

f(y)+a f(y) —b f(y)+a

( )
x Ag +Lb bt{g)(

[f y +al[f(y) bl—

(5.10)

(5.11)

$2—V"(z, )e "+ ~. I V("(x)e-""""'d»—1f(z2)+a
—st{')(z, ) ~(o}(„)e "dxf(z2)+a

(S.12)

Following a similar method we can easily obtain closed
analytic expressions for all the first-passage time mo-
ments, T„(xo). We can therefore assert that the problem
of extrema statistics for unidimensional stochastic process-
es driven by dichotomous Markov noise has been complete
ly solved.

Before closing this section we evaluate the mean first-
passage time for two particular forms of the drift f(X).
One is the previously treated case of no drift, i.e.,f(X)=0. (This is the only case which has been treated by
a variety of methods in the literature. ' ' } The second
example is that of a linear drift f(X)= —pX.

1 =2 k 2 z.g I T, (x())dx()——— z + —.—S 3@~ Q
(5.15)

(5.17)

These results are shown in Figs. 3 and 4.

For comparison, we note that the corresponding results
for a diffusive process with diffusion coefficient D are'4'"

Ti(x())=(z2—xo)/2D

I No drift (Ref.s. 19 15)— 2. Linear drift

In this case

f(X)=0. (5.13) f(X)= —pX ((M & 0) . (5.18)

For simplicity we choose: a =b, A., =A,b =A., zi ——z,
z2 ———z; wo(a

~
xo) = —,', and u)o( —a

~
xo)= —,'. Then

from Eqs. (5.9)—(5.12) we obtain

Ti(xo)=——,[T'i'(x())+Ti "(xo)]= (z —x())+-
a

(5.14)

which agrees with previous results. ' ' An average of
Ti(xo) over a uniform distribution of initial conditions
yields the averaged mean first-passage time' "

In this case the solutions of the differential equation (1.4)
for E(t)=a, —b are

X,(t)=——(a —pxo)
Q t

p
(5.19)

Xb(t) =— +(b +pxo) "' . — (5.20)
p

We see from these equations that (a/p, ) [ (big)] is the-
asymptotically stable fixed point of X,(t) [Xb(t)]. There-
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I.O " terms of hypergeometric functions. The resulting expres-
sion is not particularly instructive in its most general
form. In order to obtain a more transparent form we note
that the hypergeometric functions reduce to elementary
functions for certain choices of the parameter values. In
particular, with the choices a =6 =1, A,, =A,q

—2, @=1,
z/ ——z, z2 ———z (

~
z

~
(I), No(a ~xo)= —,', alld

i00( —a
~
xo) = —,', Eq. (5.9) gives the simple form

DiffUsive

2
'

1 —xo 2 (xo —2)2

Ti(xo) = —,
' ln

1 —z 3 (1—xo)
(z'+z —4)

3(1+x)(1—z)

(5.22)

o
—0.45

I

0
The averaged mean first-passage time for a uniform initial
distribution is

Xo

FIG. 3. Mean first-passage time T&{xo) as a function of the
initial location xo with parameter values P =2, a =1, and
z =0.45. The driftless processes depicted are diffusive ( ———),
dichotomous Markov { --- ), and dichotomous rectangular
( ).

(5.23)

T, (xo)=8 J due~" J e ~ dy (5.24)

—3S +2z +3z
3(1+z}(1—z)'

The corresponding results for a diffusive process are's

fore the process X(t) can only reach the critical values z&

and zi if they lie within the interval ( —b/p, a /p), i.e., if
2

Ti =2 p8 —j.
g 0

b a
(Z2 4Z~ Q

LM P
(5.21}

These results are compared in Figs. 5 and 6.

Rectangulor

Introducing Eq. (5.18) into Eqs. (5.9)—(5.12) yields an
expression for the mean first-passage time Tt(xo) in

(5.25)

gular

s

I
I

I
I

Dif fusive

0.5-

-0.45
Xo

FIG. 4. Mean first-passage time TI as a function of separa-
tion between absorbing boundaries (2z) for various driftless pro-
cesses. The processes shown are diffusive (———), dichoto-
mous Markov ( - - - ), and dichotomous rectangular ( ).

FIG. 5. Mean first-passage time T~(xo) as a function of the
initial location xo with parameter values k, =2, a =1, and
z=0.45, The hnearly bound processes shown are diffusive
(———), dichotomous Markov ( --- ), and dichotomous rec-
tangular ( ).
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0(t& 2

P

0, otherwise . (5.26)

Here once again A,~
' and A,b are the mean times between

switches. In order to allow the process a finite probability
of reaching the boundary zi or z2 even in the first time
interval we restrict our analysis to the parameter domains

f(X)—b
(5.27a)

8. Non-Markovian Auctuations:
The ro:tangular proams I' (t)

One example of a simple non-Markovian dichotomous
process is a rectangular process in which the distributions
fz(t), p=a, b, are given by

i.5-

05-

Diffusive

s
l
I

t

s

Markov ~,'
I

/
/

/'

..~

2

f(X)—b
(5.27b)

In the Appendix we show that in this case the
transform p '"(s;xo) satisfies the differential equation

s

0.25 0.5
7

FIG. 6. Mean first-passage time T] as a function of separa-
tion between absorbing boundaries C, Zz) for linearly bound pro-
cesses: diffusive ( ———) and dichotomous Markov (- - -).

d p "'(s;xo) f'( x)os s

dxo f(xo)+tt f(xo) —& f(xo)+tt2 +

where

dp '4'(s;xo ) s —A,,A,b /4

dxo [f(xo)+a][f(xo)—b]

(5.28}

G(a) . a' 1A. /2 —Sf+(Z~ ~SO) ~$ —Sfy(Z2 iso)
j2

G s;xo)= f(xo)+tt f(xo)+tt f(xo) b —f(xo)—&
(5.29)

t, (u, u) =—I dX
X)+a '

Q 1
t~(uu) JdX, —=

The boundary conditions for Eq. (5.28) are

(5.30a)

(5.30b)

(i} p "'(s;z i ) = 1, (5.31)

dp "(s;xo)
(ii)

dxo x,=z, f(zi)+a 2

The equation for the mean first-passage time obtained from (5.28) is

d T'i" (xo) f'(xo) dT'i" (xo)

f(xo)+a dxo
'2 '+ A,,A,b/4 (a}Ti' (xo)[f(xo)+&][f(xo) &]—

—~, l2 A,, /2 ~a '2 dX2+ 1 — —,(5.33)[f(xo)+a] [f(xo)+&][f(xo)—&] 2 ~0 f(X) b—
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~ith boundary conditions

(i) T'i" (zi }=0,
dT',"(x,)

(ii)
dxp ~,=,, f(z, )~a 2 ~2 f(x)~a

(5.34)

(5.35)

L No drift These results are shown in Figs. 3 and 4.

With f(X)=0, zi ——z, and z2 ———z we get the differen-
tia1 equation

d Ti (xp) A, Ab, ,

T',"(x,)
dxo

For the case

f(X)= —pX,

2. Linear drift

(5.41)

Ag a +b AgAb
(z+xo) (5 36)

4ab'

with a =5 =1, A,,=As ——2, @=1, zz ———z, and zi ——z
[ ~

z
~

g (e —I)/(e ~1)],we obtain the equation

%vith boundary conditions

(i) T'i" (z) =0,
dT"'(x )(")

dxp 2
xo ——-z g

The solution of (5.36)—(5.38)
A,,=A,s =2, and

~

z
~

& 1 gives

(5.37)

(5.38)

with a =b =1, with

1 exp
+ln

XO 1 —z

, d'T", (x, ) dT", (x, )
(1—xp) 2

—( 1 ~xp) ~ TI'(xo)
dxp dxp

(5.42)

2(1—z)cosxp
Ti(xo) =

~ 2 +z ~

COSZ —81IlZ
(5.39)

Eq. (5.39) coincides with the expression of Ti(xp) that we
have given elsewhere. ' ' An average of (5.39) over a uni-
form initial distribution gives

(i) T'i'(z) =0,

dT"'(x )(.. )
1 0

dXO

1 1+z
xp= —z 1+z

i
1 z

(5.43)

(5.44)

2(1—z)sinz
+Z ~

z (cosz —sinz)
(5.40)

In this case the mean first-passage time is given by

Ti(xp) = —,
' [( 1 ~xp)a(xp) ~(1—xo)a( —xo)]~ —,

'
[P(xp) yP( —xp)]

1 —Xo+Y~[P(xo)(1+xo)—P( —xo)(1—xp) /2czxo]ln +|-"1+&2 ~

1+XO
(5.45)

T

0 1~xa(xp) = — 1 ——,
' (1—x)ln

0 1 —z
1+—,(1+x)ln 1+x dx (5.46)

P(xp) = —,(1+xp) (xp —2)ln
1+xo
1 —z

1 25 (5.47)

1 I 1 —z
c, = ——. [a(z)~a( —z)]~ [P(z)—P( —z)] ~ —,ln

2 1+z 1+z + 1+1Q
1 1 —z

1~Z 1~z (5.48)

C2=—
2

[p(z) ~p( —z) ]~
1 I 1 —z+ —,1n

1~z ' 1~Z

1a(z}—a( —z)—
1~Z

1 I —z
1n1~z l~z (5.49)
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VI. CONCLUSIONS

Herein we have considered the problem of the extrema
statistics of one-dimensional non-Markovian processes
stimulated by dichotomous fluctuations. The first-
passage time problem has been reduced to solving an in-
tegral equation for the Laplace transform of the first-
passage tiine probability density function. This integral
equation is valid for dichotomous fluctuations possessing
arbitrary correlated properties. The method we have con-
structed for the treatment of such problems' ' relies on
the explicit construction of trajectories. We are able to
select those trajectories that reach the critical values at a
given time and to properly weigh their contribution to the
first-passage time distribution.

In some cases it is possible to convert the above integral
equation for the first-passage time probability density to a
differential equation. From this differential equation one
can directly construct a differential equation for the mean
first-passage time. This result, which generalizes a simi-
lar one obtained for unbounded processes, 's '5 bears no
resemblance to those generated by Fokker-Planck ' ' or
master equation processes. s' In this paper me have con-
sidered two particular examples where the integral repre-
sentation of the first-passage time density can be convert-
ed to a differential one.

Let us now summarize the principal results that can be
deduced from the examples considered in Sec. V. For an
unbound process the first-passage time from an initial lo-
cation xo to z or —z is shorter if the process is diffusive
than it is for a process driven by correlated dichotomous
fluctuations (cf. Fig. 3).' ' The trapping efficiency of
the dichotomously driven process depends on the correla-
tion properties of the fluctuations. Thus, for the value of
z used in Fig. 3 (z =0.45), the relative trapping efficien-
cy of the Markov and rectangular processes depends on
the value of xo. For smaller (larger) values of z the rec-
tangular result lies below (above) the Markov one for all
values of xo. This behavior is also reflected in the mean
first-passage time averaged over a uniform initial distribu-
tion (cf. Fig. 4).

When the process is linearly bound to the origin, we see
from Fig. 5 that the mean first-passage time is larger than
that of the unbound process depicted in Fig. 3. It should

l
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APPENDIX: DERIVATION
OF DIFFERENTIAL EVOLUTION EQUATIONS

It is convenient to introduce new variables of integra-
tion into Eqs (4.16}and (4.17). We make a change of vari-
ables suggested by the dynamics of the system:

x) =e.(ti+e. '(xo))

xz 4b(tz+4——b '(x) )),
or, equivalently, by

X) I
t) —— dX:—t~(x)', xo),.0 X)+a

X2 1
tz dX— :tb(xz,'x) ) . —

(Ala)

(A lb)

(A2a)

(A2b}

In terms of these new variables we can write Eq. (4.16) as

be emphasized that the results in Fig. 5 are the first exact
mean first-passage times reported for bound non-
Markovian processes. We note that the diffusive result
still lies below those with memory. The relative ordering
of bound- processes is again seen to be dependent on the
type of memory. The crossover between the rectangular
Markov fluctuations occurs for smaller z (z &0.45) in the
bound process than in the free process. In Fig. 6 we com-
pare the mean first-passage times averaged over a uniform
initial distribution for the diffusive and dichotomous
Markov bound processes. Note the difference in scales in
Figs. 4 and 6, and that T( for the bound processes is
therefore about twice as long as for the free ones.

The explicit trajectory calculations constitute a formal-
ly tractable method for determining the extrema statistics
of non-Markovian processes. We are presently extending
this formalism to systems of more than one variable and
to fluctuations with more general statistics.

p "(s;xo)=p 'i'(s;xo)+p z'(s;xo)

) fu(4(x)ixo}) —st (x(',xo) 2 1('b(tb(xz xi)} stb( t,x()— '

(A3)

A similar replacement can be made for (4.17).

1. Derivation of Eqs. (5.2}—(5.4) for Markov F {t}

When 1(„gb are the exponential forms (5.1), Eq. (A3) becomes

—(s+A, )t (x&,xo) z —(s+Ab)t&(x&, x&)
1 2

p "(s;xo)=h"'(s;xo)+A, ,Ab dx) dx2 p "'(s;x, )
0 x( +(t 1 f(xz) b— (A4)
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h {~'(s;xp)—p'i'(s;xo)+p2" (s;xp) .

The xp derivative of (A4) is

p '"(s;x())= h"'(s;xo)+ [p "(s;xp)—h "(s;x())]— I dx2 p "(s;x2) .
(x2 b—

Another xp derivative and reorganization of terms yields

f (xp) Ab+s A.,+s d s(s+A,,+Ab)
2+ + p {"(s;xo)f(xp)+a f(xp) —b f(xp)+a dxp [f(xp)+a]ff(xp) —b']

~b+s ~.+s d (&.+s)(&,+.)
2+ + h "(s;x,) .

dxp f(xo)+a f(xo}—b f(xo)+a dxo ff (xo)+a][f(xo}—b]

Using the explicit forms

p 'i"(s;xp) =e ' dt, P, (ti )
7 ]

(A7}

pz (s's»o)= I dtie ' 'it, (t, )f "dt2fb(t2) (A9)

we get

))"(sxe)=e ' ' ' '+1,, J dx~ exp{ —(A{,,+ ) s(S, x; x)+e(A +s) s(essex) {{"o xi +a (A10)

p "'(s;z, ) =1. (Al 1)

One easily shows that the right-hand side of Eq. (A7} van-
ishes identically„ thus yielding Eq. (5.2}.

One boundary condition is obtained by setting xp ——zi
Eq. (A4). The integrated term vanishes and

h"'(s;zi) =1, so that

2
t, ( xi'„xo)(

2
tb(xz, xi) g

(A13)

The second boundary condition is obtained by setting
xp ——z2 in Eq. (A6):

On the other hand, observing that X,(t) [Xb(t)] is an in-

creasing [decreasing] function of time we also have

dp "(s x )

xP =$2

1
[—A,, +(A,, +s)p "(s;z2)] . (A12)

z2 +a

S]
t, (xi,xp) & dX

'2 +a

g2 1
tb(x2, x, ) & dX

Therefore, if

(A14)

2. Derivation of Eqs. {5.27)—{5.32) for rectangular F{t}
1 i

']
d~ 1

If p, and pb are of the rectangular forms (5.26) then in
order to allow the process a finite probability of reaching
the boundary zi or z2 even in the first time interval we
must have, for the quantities t, (xi,xp) and tb(x2, x, ) that
appear in Eq. {A3), the following bounds:

j $2 ]

the integral equation (A3) becomes

(A15)

The xp derivative of (A16) is

~i
—St (X],Xp) —st&(x2, x i )

a b i e
"o (x) }+a "{ (x2) b— (A16}
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/4 g
—stbtx2'xo)

p "(s;xs)= b "(s;xs)+ [p "(s;xs)—b '(s;xs)] — I dxs p "(s;xs) .

(A17)

Another xo derivative and reorganization of terms yields

d' f'(xo) S s d s —A,,A,b/4+ + p "(s;xo)
dx,' f(xo)+a f(xo) b —f(xo)+a dxo [f(xo)+a][f(xo)—b]

d' f'(xo) s 5 d 5 (a)+ h '(s;xo) .
dxzo f(xo)+a f(xo)—b f(xo)+a dxo [f(xo)+a][f(xo) b]—

The inhomogeneous term h'"(s;xo} has the explicit form

(A18)

2
tb(ZZs—X, }

—tt (zt, xo) ~tt ~ith"(s;xo)= 1 — t, (z„xo) e dx&a 4 "o x, +a
Using (A19), the right-hand side of Eq. (A18}becomes

—S [t~ (X l,'Xo)+ tg(Z2,'X ) )]'e (A19)

A,e /2

f(x,}+a

—st&(z2, x& )
1 -st (z&,'ro) ~b G(g)IS f(xo)+a f(xo) —b 2 f(xo)—b

(A20)

As before, one boundary condition is obtained by setting xo ——z& in Eq. (A16):

p "(s;z~ ) = 1 .

The second boundary condition follows from (A17) if we set xo ——z2.

(A21)

dp "'(s;xo)
dxo

~tt tt~ t t t,t2)-
xo ——z2 z2 +a 2

(A22)
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