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A new Monte Carlo method, the incomplete-enumeration method, is used to calculate both the

square radii of gyration (Rn) and the number of animals a~ of size N up to N =30 in the case

d =3 and N =20 in the cases d =4—7. We obtain about 2' accuracy for aN and 0.2% accuracy
for (RN } for the 1argest sizes N. For d =9 longer runs yield values of aN and (R~ ) to better than

0.25% and 0.04% accuracy, respectively. Our data are consistent with upper critical dimension

d, =8 and with the Flory formula for all d ~ d, .

I. INTRODUCTION

vF(d)=5/2(2+d), d (8 (3)

which coincides with the exact result at d=3 and d=8.
In two dimensions, phenomenological renormalization
theory gives the very accurate result v=0.6404+0.0001.
This differs slightly from the Flory-type result
vF(d =2}=0.625. Gaunt et al have made .expansions in
the variable 1jo where o =2d —1 for oN on hypercubic
lattices and obtained estimates for 8 and 1I, for d up to 6.
At d=7, the exact series for az was obtained only up to
N =8. Since their result for 8 sterned to approach the
mean-field value —', within error bars (which are rather

large}, they concluded that d, =6 for the lattice-animal
problem as well as for the related percolation problem. '

There does not seem to be any other calculation, particu-
larly for the square radius of gyration (Rz ) and therefore
for the exponent v, in higher dimensions. The purIxnie of
this paper is to perform such a calculation using a newly
developed method, called the incoxnplete-enumeration
method which is capable of generating unbiased random
lattice animals in arbitrary dimensions. %'e have per-
formed calculations up to d =7 for an and (Rg ) and ob-
tained 2% and 0.2% accuracy, respectively, for size N up
to 30 in the case d=3 and N up to 20 for the higher di-

Lattice aniinals are models for branched polymers in a
dilute solvent. ' The system is believed to have the upper
critical dimension d, =8 at and above which mean-field
exponents are exact. The number of animals ttN and the
square radius of gyration (R~) of animals of size N
behave asymptotically for large N as

ott AN sA, ——, N ~ ao

(R~)-N ", N~oo

where 8 and v are universal exponents and A, is a
nonuniversal constant. By relating the animal problem to
the Lee-Yang edge singularity in dimension d —2 (Ref. 3)
the exact results 8= —,

' and v= —,
' for d=3 and 8=1 for

d =2 are obtained. A mean-field theory, exact in the limit
d ao, gives 8= —, and v= —,'.' 4 A Flory-type theory

gives for the radius-of-gyration exponent

mensions. For d=9 we have performed extra runs so that
the accuracy is now better than 0.25% and 0.04%, respec-
tively, for aN and (Rz). Our data for v are consistent
with d, =8 and with the Flory-formula prediction for all
d &d, . Estimates are also given for A, , 8, and A of Eq.
(1). The values obtained for A, and 8 are in general agree-
ment with those of Ref. 7.

II. INCOMPLETE-ENUMERATION METHOD

We have previously reported on this method and its ap-
plication to the lattice-animal problem in two dimen-
sions. It is essentially based on the exact series-expansion
method9 which is a very powerful technique for obtaining
physical quantities such as the critical exponents. Howev-
er, the computational effort needed to calculate the ¹h-
order term by exact enumeration increases exponentially
with N The situa.tion is even worse in higher dimensions.
The exact enumeration method is based on a we11-known
deterministic algorithm using backtracking. One starts
by choosing a rule for designating for each animal config-
uration one of its sites as the last-added site. Deleting the
last-added site from an N-site animal I, we get an
(N —1)-site animal I", called the parent of I'. The an-
imal configurations are then classified into a tree structure
according to their parentage. The unique one-site animal
forms the root of the tree. The N-site configurations are
at a height X—1 connected to their parents at height
N —2 by simple bonds. The exhaustive enumeration of
all animals having N sites proceeds by a systematic ex-
ploration of the genealogical tree to height N —1 (Ref. 9).

In the incomplete-enumeration method, we arbitrarily
choose a set of N —1 real numbers p; with 0 &p; & 1 and
i =2 to N Any configura. tion with r sites (2 (r (N} has
probability 1 —p, of being deleted from the tree (and prob-
ability p, of remaining on the tree) independent of the
state of all other configurations. All configurations which
are descendants of these deleted configurations are also
deleted. %e then systematically enumerate the remaining
N-site configurations in the genealogical tree. This can be
done very efficiently using backtracking. When a particu-
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TASI.E I. Quantities A, A, , X, exponent 8, and trial values ez, A, r for d =3 to 9.

1.50
2.00
2.25
2.50
2.75
2.50

8.0
13.0
19.0
25.0
30.0
40,0

1.5+0.050
1.95+0.225
2.25+0.200
2.45 +0.250

2.675+0.125
2.5020.05

0.153+0.016
0.128+0.069
0.117+0.043
0.103+0.041
0.107+0.028
0.047+0.004

1.046+0.005
1.037+0.015
0.996+0.015
0.979%0.020
1.010+0.010
1.020+0.005

8.368+0.04
13.481+0.20
18.924+0.29
24.475+0.50
30.300+0.30
40.&00+0.20

TABLE II. Quantities (Xtv ), (R~ ), and aN for d =3 to 9.

d=3

6
7

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

1.3429%0.0068
1 4525+0.0079
1.5586+0.0090
1.6622+0.0104
1.7596+0.0114
1.8584+0.0135
1.9535+0.0168
2.0530%0.0179
2.1495+0.0187
2.2445 +0.0218
2.3448+0.0255
2.4602+0.0285
2.5766+0.0315
2.6953%0.0343
2.8248+0.0386
2.9633%0.0410
3.1044%0.0439
3.2525 %0.0479
3.4149+0.0510
3.5745%0.0576
3.7391+0.0628
3.9164+0.0666
4.0975%0.0718
4.2749+0.0775
4.4670+0.0841
4.6714+0.0916
4.8952+0.0983

0.7327%0.0004
0.9792+0.0006
1.2300%0.0010
1.4839+0.0014
1.7425+0.0016
2.0038+0.0021
2.2658+0.0025
2.5311~0.0030
2.7973+0.0037
3,0675+0.0044
3.3370+0.0051
3.604710.0054
3,S701%0.0056
4.1370%0.0066
4.4076%0.0073
4.679620.0081
4.9468+0.0084
5.2178%0.0094
5 4886+0.0097
5.759720.0112
6.02s720.0122
6.2981J0.0132
6.5713+0.0148
6.8458%0.0163
7.1220+0.0163
7.3938+0.0165
7.6686+0.0165

0.8594g 10
0.5321X 10'
0.3475 X 104

0.2353 X 10'
0.1631& 106

0.1155y 10'
0.8291 g 10
0.6042 X10'
O.~~".2 &( 10~

0.3291g 10'
0.2461X 10"
0.1862' 10"
0.1416X 10'
0.10S2X 10'4

0.8329 y, 10"
0.6446 X 10"
0.5002 x 10"
0.3897' 10"
0.3052' 10"
0.2391 g 10'
0.1877&& 10'o

O. 1480y10"
0.1168y 10"
0.9209g 1022

0.7290' 10"
0.5786X 10'"
0.4610' 10"

4
5

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

1.7030+0.0053
1.8902+0.0065
2.0646+0.0083
2.2209+0.0087
2.3742%0.0111
2.5118+0.0130
2.6529%0.0150
2.7848+0.0164
2.9098+0.0178
3.0416+0.0201
3.1677%0.0223
3.2927+0.0246
3.4262+0.0274
3.5646%0.0302
3.7077%0.0329
3.8402+0.033&
3.9736%0.0352

0.6943J0.0003
0.9064+0.0004
1.1143+0.0005
1.3191+0.0008
1.5223+0.0011
1.7233+0.0012
1.9224+0.0015
2.1193+0.0016
2.3138%0.0020
2.5069+0.0023
2.7006+0.0029
2.8921+0.0032
3.0817+0.0034
3.2702+0.0035
3.4580+0.0040
3.6422+0.0042
3.8259+0.0045

0.2338y 10'
0.2159' 10'
0.2129' 10'
0.2188g 10'
0.232&X 10'
0.2530' 10'
0.2813X 10'
0.3173X 10"
0.3621' 10"
0.4193)( 10'
0.4895 X 10"
O.5762' 1O"
0.685OX 10"
O.82OS g 1O"
0.9899X 10"
O. 1196'1O"
0.1452 X 10"
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TABLE II. (Continued) .

&R„')

d =5

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

1.6241 %0.0070
1.7423+0.0080
1.8233+0.0084
1.8818+0.0093
).9249+0.0)00
).959)+0.0)21
).99))a0.0129
2.0094+0.0144
2.0196+0.0156
2.0)8)+0.0)82
2.0197+0.0203
2.0257+0.0227
2.0244+0.0249
2.0200+0.0268
2.0102+0.0287
1.9928+0.03)3
1.9829+0.0039

0.673640.0003
0.8688+0.0005
).0571+0.0007
).2389+0.0009
1.4162+0.00)0
1.5890+0.00)4
).7574+0.0017
).9231+0.00)9
2.0851+0.0022
2.2450+0.0027
2.3989+0.003)
2.5526+0.0036
2.7056%0.0039
2.8563+0.0039
3.0050+0.0045
3.1527+0.0053
3.2992+0.0065

0.4923 x 10'
0.6074 x )04

0.8013x 10'
0.111)x 10'
0.1599x 10'
0.2372 x 10'
0.3613x 10"
0,5S9)x 10"
0.8778 x)0"
O. )392x )0~4

0.2240 X 10'
0.3655 x 10"
0.6003x 10"
0.9929x 10"
0.1651X 10
0,2753 x )0
0.4638 X 10

d=6

5
6
7
8
9

10
)1
12
13
14
15
16
17
18
19
20

1.8556J0.0078
1.9904+0.0089
2.0912+0.0)04
2.1577+0.0) )8
2.1963+0.0)27
2.2277+0.0)37
2.2487+0.0)50
2.2570+0.0)49
2.2507+0,0)48
2.2341+0.0)57
2.2044a0.0)81
2.)730~0.0)96
2.)426X0.021)
2.)084+0.0234
2.065)+0.0239
2.0271+0.0246
1.9772+0.0259

0.66)9+0.0003
0.8459+0.0004
1.0214+0.0006
1.1899+0.0008
1.3S23+0.00) )
1.5087+0.00) )
1.6627+0.00) )
1.8109+0.00)3
1.9584+0.0017
2.1007+0.002)
2.2414+0.0022
2.3785+0.0028
2.5145+0.0033
2.6476+0.0041
2.7742+0.0042
2.9011+0.0048
3.0272+0.0058

0.9061x 10'
0.1391x 10
0.2316x 10'
0.4063 x 10'
0.7406x 108

0.1399x 10'
0.2716x 10"
0.5363x 10"
0.1076x 10"
0.2)85x )0"
0.4479 x 10"
0.9290x )0'~

0.1949x 10"
0.4120X 10"
0.8744 X 10 '

0.1875x 10"
0.4021 X 10

d=7
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
)9
20

2.4955+0.0)37
2.8277+0.0)7)
3.)082+0.0235
3.3536+0.0268
3.5803+0.0340
3.7442+0.0406
3.8900~0.045)
4.0226+0.0508
4.1531+0.0557
4.2513+0.0600
4.3620+0.0624
4.4580+0.0691
4.5206+0.0725
4.5924+0.0775
4.638840.0848
4.6862a0.09) )
4.7426+0.0930

0.6537+0.0004
0.8315+0.0007
1.0003+0.0009
1.1591+0.00)0
1.3)24+0.00)4
).4600+0.0017
1.6023%0.00)8

1.7388+0.00)9
1.8728+0.0025
2.0005+0.0028
2.1271+0.003)
2.2503+0.0034
2.3709+0.004)
2.49)7+0.0046
2.6075+0.0052
2.7207+0.0052
2.832240.0055

0.1489x 10'
0.2740 x 10'
0.5473 x 10'
0.) 159x 10'
0.2572 x 10'
0.5837x 10"
0.)362 x 10"
0.3250x 10"
0.7924 x 10"
0.1953x 10"
0.4902 x )0"
0.1243x 10"
0.3167x 10'o

0.8171x 10"
0.2116x 10"
0.5562 X 10 4

0.1457x10 ~
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TABLE II. (Continued).

d=9

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

1.6567%0.0016
1.7936%0.0027
1.9069+0.0046
2.0074+0.0057
2.1010+0.0075
2.1855+0.0094
2.2618+0.0118
2.3300+0.0145
2.3927+0.0170
2.4605 +0.0195
2.5247~0.0235
2.5860+0.0275
2.6391+0.0312
2.6901+0.0360
2.7385+0.0416
2.7881%0.0475
2.8364+0.0544

0.64250+0.0000
0.81193+0.0000
0.96980+0.0000
1.11855%0.0000
1.26014+0.0000
1.39603+0.0000
1.52614%0.0001
1.65158+0.0001
1.77217+0.0001
1.88941+0.0002
2.00300+0.0002
2.11404+0.0002
2.22184+0.0003
2.32777+0.0004
2.43074+0.0004
2.52995+0.0005
2.62771+0.0006

0.3313x10'
0.8214x 10
0.2214x 10'
0.6342x 10'
0.1902x 10'
0.5984x 10"
0.1875x 10"
0.6088x 10"
0.2012x 10"
0.6775 x 10'
0.2310X 10'
0.7966x 10"
0.2767 X 10"
0.9696x 10"
0.3423 x 10"
0.1218x 10"
0.4358 X 10

lar r-site configuration is first generated, one chooses to
ignore it and all its descen ants in the enumeration with

probability 1 —p„.
The probability that a particular r-site animal will be

enumerated in a given trial is p2p& p, =P„and is the
same for all configurations with the same r. The algo-
rithm thus generates an unbiased sample of configura-
tions. The number of S-site animals generated in one tri-
al is a random variable X~. Averaging over many trails,
we can estimate (XN ). Since the probability P„ that a
particular r-site animal will be generated in a given trial is
the same for all configurations with the same r, we have

(X~ ) =P~a~. Thlls ollr Inethod gives a direct estimate
of the number of configurations, hence of entropy, a diffi-
cult quantity to estimate by conventional Monte Carlo al-

gorithms. ' Furthermore, compared with conventional
methods, as developed by Metropolis et al. ,

"which relies
on the construction of a Markov process whose time aver-

ages replace the ensemble average, our approach is free
from problems of strong time correlations in samples and
slow approach to equilibrium due to critical slowing.
Having retained the backtracking aspect in our method, a
step that would lead to rejection makes the algorithm
backtrack to attempt another allowed completion, and not
to a rejection of the full configuration. Of course our al-
gorithm is not completely free of bias. Different configu-
rations produced in a single trial are correlated with each
other, being more likely to share a common lineage. This,
however, can be overcome by averaging over many trials.
There is also a small anticorrelation as a configuration
can occur at meet once in a single trial (sampling without
replacement). By judiciously choosing p;, we can get
(XN ) to be of order 1. Since the number of configura-
tions of animals of size X is very much larger than one
for large N, this bias caused by anticorrelation is very
small.

The method may be viewed as constructing a site-
percolation process on the genealogical tree, with the de-
leted configurations as the blocked nodes on the tree. The
enumerated configurations form the connected part of the
tree.

III. INCOMPLETE-ENUMERATION METHOD
IN d DIMENSIONS

Contrary to the (1/o) expansion of Ref. 7, our method
can be applied without much trouble to any type of lattice
in arbitrary dimensions. For convenience of comparison,
however, we study lattice animals on a d-dimensional hy-
percubic lattice d =3—9. The result for d=2 had been
reported before. We choose p„(d) to be of the form

p, (d)=[r/(r —l)j ' /A, T(d), r)28T(d)
(4)

where A. T and 8T are trial values for A, and 8 in (1). The
values of A, r and 8T are given in Table I. The average
number of animals generated per trial (X~) is related to
the number of animals az of size E by

&X~) =g p, aN
T=2

T Q~ . (5)

Equation (5) follows from the fact that the probability
that a particular animal configuration of size N be gen-
erated in a given trial is the same for all configurations
with the same N and is given by P~ ——A, T'

Using (1), (4), and (5), we have

(X (d))=A, (d)A(d)X @d'A, (d)~, (6)

where 68(d)=8T(d) —8(d) and A(d)=A(d)/AT(d). Tak-
ing 'tile ¹hroot of (6) gives
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TABLE III. Exact result for (Rz ) and a~.

d =5

Exact result for (R~)

4
5
6

8
9

10
11
12

0.732 558
0.979 326
1.230944
1 486388
1.744 884
2.005 720
2.268 396
2.532 565
2.797 982

0.69444
0.906 716
1.115269
1.320 83S
1.523 948

0.674242
0.869237
1.056 871

0.661 765
0.846510
1.022035

0.653 302
0.831 295
0.998 953

0.642S7
0.81224

4 86
5 534
6 3481
7 23 502
8 162913
9 1 152 870

10 8 294738
11 60494540
12 446 205 905
13 3 322 769 129

234
2 162

21 272
218 740

2 323 730
25 314097

281 345 096
3 178474 308

Exact result for a~
495

6095
80616

1 121 075
16 177405

240 196280
3 648 115531

901
13 881

231008
4057 660

74 174927
1 398 295 989

1 484
27468

551 313
11710328

259379101
5 933 702 467

3309
81 837

(7)

Equation (7) offers a way for estimating X since the first
factor approaches unity asymptotically linearly in I/N for
large N. The values of (X~) and (R~) are shown in
Table II, together with the values of a~ obtained using
(5). We have used 80000 trials for d=3 and 6, 160000
trials for d=4, 120000 trials for d=5, 30000 trials for
d =7, and 240000 trials for d =9. The standard error of
estimate shown was obtained by grouping the data into
about 40 equal parts and calculating fluctuations about
the mean value. The calculation for each of the dimen-
sions from 3 to 7 requires about 2 h of CPU time on a
Cyber 76 computer. For the calculation at d=9, 16 h
were used. For comparison, results of exact series expan-
sions for these quantities are shown in Table III. The re-
sults of the radius of gyration in d=3 for %=10 to
%=12 have been recently calculated by the present au-
thor' using an improved algorithm of Peters et al. '

Comparing the values a~ obtained by our Monte Carlo
method with those obtained by exact series, we verify that
they agree up to Monte (~lo accuracy. %e have there-
fore confirmed numerically Eq. (5).

To determine A, , we plot (Xz)' versus 1/N. These
curves are shown in Fig. 1. The values of A, which are
given by the intercepts with the |,'X~ )1™axis are shown
in Table I, together with values of A, =A,A, z. The errors
are obtained by taking reasonable estimates from the
shapes of the curves in Fig. 1. To determine A and 8, we
rewrite (6) in the form

ln((X~)E ™N)=in(iLzA)+N Ink, .

Now we can plot the quantity ln((X& )N") vs N for tri-
al values of x until a value xo is found such that the curve

XN&

1.05
1.046
1.037
1.020
1.010

1.00
0.996
0.979

0.95
0 0.04

i I i I I I I I I I

0.08 0.12 0.16 0.20 0.24

FIG. 1. Quantity (XN)'~~ vs I/N for d =3 to 9. Also
shorn are the values of the intercepts on the vertical axis which
give values for A,.

obtained using this value of x is a straight line at large N
with slope given by lnX. We can now identify xo with
—58=8—8z and the intercept of the straight line with
the ln((X~)N") axis as ln(A, zA). Figure 2 shows. such a
plot for the case d =3. The values of 8, A, and A, deter-
mined this way are also shawn in Table I. The error esti-
mates in these quantities result from the error estimate in
X. Our results for 8 and I, are cansistent with those of
Ref. 7. In Fig. 3 we shaw the exponents for the radii of
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1.0

FIG. 2. Quantity 1n(X~X*) vs N for d =3 and for different
values of x. The slopes of these curves should give ink, which in
this case should be 1.046. The intercept of the straight line with
the vertical axis then gives ln(A, TA }.

/
/05~ i i

0.02
I i i I i i I I I I

0.06 0.&0 0.&a 0.38 0.22 0.26

FIG. 3. Exponent 2v calculated by successive slopes vs 1/N
for d=2 to 9. The dashed lines give extrapolations to the very
accurately or exactly known values at d=2, 3, and 9.

gyration determined from the successive slopes

2v=ln((RN )/(R~, ) )/in[%/(N —1)]

taken from values of (Rz) given in Table I. The dashed
lines show extrapolations to the very accurate value
2v=1.2812 (Ref. 6) and the exact values 1 and —,

'
in d=2,

3, and 9, respectively. We have deliberately avoided the
case d=8 because of the anticipated logarithmic correc-
tion difficulty. We see that the corrections to scaling in-
creases with the dimension at least for the cases 1=2, 3,
and 9 where exact or accurate exponents are known. This
is in agreement with analysis of exact series in two and
three dimensions. ' ' Our result for v favors 1,=8 to
d, =6 since the latter case would require larger correc-
tions to scaling for d=6 and tI =7 than for d=9 in order
that they all extrapolate to the mean-field value v= —,'. It
is seen from Fig. 3 that our exponent v is also consistent
with the prediction of the Flory formula (3) for all d & d„
if corrections to scaling similar to that for d= 9 are taken
into account.

IV. CONCLUSION

We have shown that our incomplete-enumeration
method generates unbiased random lattice animals in arbi-

trary dimensions. We obtained with moderate computa-
tional time values of az and (RN ) for size N of the order
of 20 and dimensions up to 7 to about 2% and 0.2% ac-
curacy, respectively. With sufficient computation time,
we show that these values can be obtained for size up to
%=20 with 0.25% and 0.04% accuracy, respectively,
even for dimensions as high as 9. Furthermore our
method has the advantage that it can be applied with
more or less equal ease to any type of lattice. Our result
for the exponent v is consistent with upper critical dimen-
sion d, =8 but it also shows that corrections to scaling are
rather large at high dimensions. It is also consistent with
the predictions of the Flory formula if these corrections to
scaling are taken into account. We can conclude that ex-
cept for some slight discrepancy with the two-dimensional
phenomenological renormalization result, the Flory for-
mula is very accurate for all dimensions up to d, =8.
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