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A simple model of quasirandomness is presented. The model is a self-similar space division: A
d-dimensional space is divided successively into smaller subspaces with randomness. Positions of
subspaces are fixed. Then centers of subspaces distribute quasirandomly. Two typical cases of the
model are discussed. In one case (repulsive case) the power spectrum of centers of subspaces exhib-
its a k ~* (a ~d) singularity in a broad range of a randomness parameter, where k is the wave num-
ber. This spectrum corresponds to a so-called 1/f noise spectrum for a one-dimensional time se-
quence. The k~7 singularity will be observed in the scattering intensity from a phase-separating
system if droplets cannot move freely due to the strong correlation. This singularity does not seem
to depend on details of the model, and is universal. We can show the same singularity analytically
for a modified model. In the other case (attractive case) the power spectrum exhibits a k=
(e ~0.4d) singularity in a broad range of the randomness parameter. This singularity is equivalent
to the typical singularity observed in the universe. The physical reason for this agreement is dis-

cussed.

I. INTRODUCTION

The particle configuration in an ideal gas is a typical
example of physical randomness: There is no correlation
among particles. On the other hand, the configuration of
atoms in a crystal is an example of regularity. The corre-
lation among atoms does not vanish even for infinite dis-
tance. In between these two states, there are physical
states: fluid, glassy, or amorphous. In such states the
correlations among atoms are, in general, of short range,
however. Only near the critical pont the correlations be-
come long range. In this sense the liquid, glassy, or amor-
phous state is a random state. In this paper we study a
completely different random state, which we call a
quasirandom state.

As an example, let us consider the breaking of a crystal.
A piece of crystal is broken randomly into 2¢ pieces in a
single try, where d denotes the space dimension. The
number of pieces is 24" after n tries. Here we set up the
model. (i) The breaking is done in a self-similar way. (ii)
The positions of fragments are frozen in during the whole
process. The centers of gravity of the fragments are part-
ly random due to the random breaking; but, due to the
condition (ii), they retain some of the initial long-range
correlation of the crystal. Therefore, the positions of the
crystal pieces are half-randomly and half-regularly distri-
buted. This is the reason why we use the term “quasiran-
dom.” The physical meaning of the freezing in of posi-
tions of fragments is that the whole breaking is completed
in a relatively short time compared to that for the ran-
domization or the equilibriation of positions of fragments.
Thus the situation is intrinsically off equilibrium.

We focus our attention on the power spectrum of the
model. One of the motivations of the present study is to
present a prototype of the mechanism of 1/f noise in a
physical and nonphysical systems.! Power spectra of the
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sound from a radio (music, speech, etc.) are known to ex-
hibit a 1/f singularity.? The electric signal of a static TV
screen also exhibits a similar singularity.> The appearance
of an f~# singularity in these situations is considered a
result of self-similar construction of the music or picture.*
However, the reason why a 1/f spectrum results is not yet
known. The 1/f current noise observed in electric circuit
is also a mysterious phenomenon. There are many singu-
lar behaviors showing an f 7 singularity of the correla-
tion function in physical systems in off-critical regions.
Our study might be more or less related to these unsolved
phenomena. We may answer the question why a long-
range correlation arises even in a disordered system.
Apart from 1/f noise, we investigate two concrete prob-
lems. One is the correlation among droplets or grains in a
thermodynamically unstable system. If droplets are
strongly correlated to each other (in a percolating state),
they coalesce into larger ones without changing their posi-
tions significantly. Therefore, the growth process of
droplets may be viewed as the inverse process of the above
model. Thus we speculate that a similar singularity may
occur in the droplet correlation function. The other prob-
lem is the correlation among stars or galaxies in the
universe. The observed correlations between stars or
galaxies exhibit an r~!'8 singularity, where r is the dis-
tance.” This correlation may be approximately repro-
duced by the present model.

The model we study in this paper is a static one. How-
ever, all physical quantities we study are snapshots of
dynamical phenomena. Therefore, we consider that the
present static model can represent the essence of the ob-
served phenomena.

The mathematical definition of our model will be given
in the next section. Our model is classified into two cases:
the repulsive case and the attractive case. An analytic cal-
culation of the power spectrum will be given in Sec. IIL
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Results of numerical simulation will be presented in Sec.
IV. In Sec. V, a qualitative explanation and several appli-
cations of the model will be discussed. Section VI is de-
voted to a summary.

II. MODEL AND ITS MODIFICATION

For simplicity we first consider a one-dimensional case.
A one-dimensional space of length L is prepared. Then
this space is divided into two subspaces. The boundary
between the two subspaces is set randomly within a given
region of the host space. In the second step we divide
each subspace further into two subspaces. The boundaries
are set by the same rule as in the first step. Namely, we
randomly set a boundary but in a self-similar way as in
the first step. This procedure is repeated up to the nth
step.

We consider two different cases of setting boundaries.
We divide a subspace into three regions: one center region
and two edge regions. The width of the center region is
1—2a for a subspace of unit length. In one case the
boundary is set randomly in the center region. We call
this case the repulsive one. In the other case, which we
call the attractive case, the boundary is set randomly in
one of the edge regions, which is randomly chosen. The
above two cases are illustrated in Fig. 1. In both cases a
boundary is randomly set in the shaded region. The dis-
tribution of boundaries is uniform in the repulsive case,
whereas it is not in the attractive case. In the repulsive
case a =0.5 yields a regular, evenly spaced lattice,
whereas in the attractive case a =0 yields a lattice with
only three distinct points (x =0, 0.5, and 1). Also, the
repulsive case with @ =0 is equivalent to the attractive
case with @ =0.5.

We now generalize the above model to the d-
dimensional case. We consider a division of a d-
dimensional cubic space of volume L? into 2¢ subspaces
in a single step. Each subspace has 2d (hyper) rectangular
sides. Boundaries in a single dimension are set by the
same rule as in the case of the above one-dimensional
model. After n steps we have N =2" subspaces. In Fig.
2 the two-dimensional model is illustrated for the repul-
sive case.

edge region
center regio
0 a 1-a 1
repulsive
(b)
attractive

FIG. 1. Rule for setting boundaries in a one-dimensional
space. (a) The repulsive case. A boundary is randomly set in
the center region. (b) The attractive case. A boundary is ran-
domly set in one of the edge regions chosen at random. In both
cases center region and edge regions are self-similarly set in sub-
spaces. This procedure is repeated successively.
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FIG. 2. Two-dimensional space division. Dashed lines indi-
cate boundaries between edge regions and a center region, and
h =1-—2a. A subspace is divided into four subspaces by two
straight lines which are drawn between two parallel dashed lines
(repulsive case). In the attractive case straight lines are drawn
outside the region between two parallel broken lines. This pro-
cedure is repeated.

It is not easy to treat this model analytically. There-
fore, we shall modify the model so that we can obtain an
analytic form of the power spectrum. This modification
may make the model somehow unrealistic. But we can
show a mathematical structure of the “universal” spec-
trum. In the modified model the space is divided into 2¢
subspaces with the same size in a single step: The space
division of the modified model is that of @ =0.5. Howev-
er, the mass of a particle in a subspace in the modified
model is determined to give the same center of gravity as
in the original space-division model. We consider the
one-dimensional case. In the above original model a one-
dimensional space of length L is divided into two sub-
spaces of lengths xL and (1—x)L (a <x<1—a in the
repulsive case and 1<x <a and 1—a <x <1 in the at-
tractive case), respectively. At the center of each subspace
a “particle” with unit mass is placed. In the modified
model particles with mass m and 2—m are placed at
centers of two subspaces with the same size, respectively
(see Fig. 3). The mass m is determined by the lever rule:

1x+3(14x)=5m++2—m), 2.1)

which gives m =2(1—x). Since a<x<1—a in the
repulsive case and 0<x <a and 1—a <x <1 in the at-
tractive case, we find that

2a<m<2(1—a) (2.2a)
in the repulsive case, and
O<m<2a, 2(l—a)<m<?2 (2.2b)

in the attractive case. That is, the range of variation of
m /2 is the same as that of x: the position of the boun-
dary between the two subspaces in the original model.
For a >0.05 in the repulsive case the two models may
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FIG. 3. Modification of model. (a) The original model.
Closed circles indicate particles with unit mass. The two sub-
spaces have length x and 1— x, respectively. (b) The modified
model. The two subspaces have the same length 5. Particle
masses m and 2— m in the two subspaces are given so that the
center of the gravity of the system may be the same as in the
original model.

well approximate to each other. Then the property of the
original model for a >0.05 in the repulsive case may be
suitably examined by the analytic treatment of the modi-
fied model.

In d dimensions the mass M in a subspace of the modi-
fied model is of the form

M=mm, - -my, 2.3

where m’s are independent variables with unit mean
(m;)=1 (j=1,2,...,d). Equation (2.3) is due to the
fact that space divisions in the original model are done in-
dependently in each dimension.

III. POWER SPECTRUM

The power spectrum Sy, is given by

N 2

ik-r;
e’

j=1

1
Sk-—N

_._1_ 1, ik(r—r') '
= Vf fG(r,r )e! drdr’ , 3.1

where 1; is the position of the center of the jth subspace,
which we represent by the jth particle with unit mass; G
is the correlation function; and V is the total volume of
the system. In this section we calculate G in an analytic
way.

We now consider the correlation function for the modi-
fied model. The step number is assumed to be n, so that
the number of the subspaces is 24". The mass of the parti-
cle in a subspace of the modified model is of the form
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FIG. 4. Two different subspaces in the modified model.
Shaded squares indicate two different subspaces, which belong
to the same outer subspace up to the (n —/)-step division, but
belong different respective outer subspaces after the (n +1—1)-
step division. 7o2'~! indicates an average distance between the
two subspaces.

MM, --M,,

where M’s are independent of each other, and (M;)=1
(j=1,...,n). Let us consider another subspace. As il-
lustrated in Fig. 4, let the two subspaces belong to the
same outer subspaces up to the n —/ step division, and
then the two subspaces belong to different outer subspaces
after the n +1—1 step division. The mass of the particle
in the latter subspace is of the form

MM, My _ My \ M, M, .

Therefore, the correlation between two subspaces is the
following:

Gi=(MIM3} - M} _ M, \_ M,
XMy i2 g MyM;)
=(M)" KM, 1 My 1) . (3.2)

Here we have used

(M, 2 My sy - M,M,)
=(My 2 XMy 3 ) MM, )=1.

Although M, ,_, and M, ,_; are not independent of
each other, the correlation (M, ,_;M, ,_;) is indepen-
dent of n and I. We have

(M 1My ) =(mm’)3=(2—(m?))?.

The average distance r between the two subspaces is given
by
r=rg2'-1, (3.3)

where ro(=L27") is a constant. Then the correlation
function as a function of r is given as
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I

G(N=G;=(MM'Y (M)~ 1"=C .
0

] ) (3.4)

where C=(MM'){M?*)"~! and
c =log,(M?) . (3.9

Notice that the r denotes an average distance between two
subspaces. Therefore, the correlation function as a func-
tion of the bare distance may not be such as (3.4), but may
be accompanied by a small correction. Since the model is
constructed in a self-similar way and therefore we can ex-
pect that the power spectrum or the correlation function
obeys a power law, such a correction is not important.
This is because the dependence of r as shown by the rela-
tion (3.3) is the only one that leads to the power-law corre-
lation (3.4). From (2.3) we have (M?)={(m?)%. Thus
¢ =d logy{m?). Therefore, we have the power spectrum

Si=[ G(re*drak—F, (3.6)
where
B=1—log,(m?) . 3.7
For the repulsive case we have
ay_ 1 -2, _4 2
(m )_2(1_20) fu midm =+(1—a +a?),
(3.8a)
and for the attractive case we have
ay_ 1 [ 2, 2 2 }
(m >_4a fo m dm—{—fz“_a)m dm
=2—-2a+%a?. (3.8b)

The exponent (3.7) with (3.8) must be very accurate for
the modified model, but is an approximation for the origi-
nal model. We consider, however, that the dependence of
(3.6) on dimension d must be valid also for the original
model. This will be ascertained numerically as shown in
the next section.

IV. NUMERICAL SIMULATION

We show in Fig. 5 two-dimensional patterns of centers
of subspaces for several values of a for the original
space-division model. For the numerical simulation the
power spectrum (3.1) is computed under the periodic
boundary condition, and therefore wave-number com-
ponents {k} satisfy

k,L/(2m)=1,2,3,... (u=12,...,d). 4.1)

If arbitrary wave numbers are used, then the power spec-
tra exhibit k ~2 dependence at small wave numbers. This
can be found as follows. We consider a regular lattice.
The density fluctuation p; of the regular sequence is given
by

N
px=N"1%"3 expliksm)

m=1

=N~Y2[1—exp(ikL)]/[1—expliks)] ,

where s is the nearest-neighbor distance, L =Ns, and N is
the total number of lattice points. Therefore, if arbitrary
wave numbers are taken, then the power spectrum is given
by

Sr=N""1—cos(ks)] '=N k=32,

However, if the periodic boundary condition (3.1) is taken,
then such a k ~? dependence does not appear. The effect
of k2 dependence to the power spectrum disappears in
the limit of large system size. Thus the k£ 2 dependence
at small wave number for a finite system size should be
removed. This can be done by the use of periodic boun-
dary conditions.

In the previous short communication,® the periodic
boundary condition was not used, and therefore the k —2
dependence of the power spectrum was not removed.
Therefore, the previous estimate of the exponent B for
large value of a in the repulsive case contains an ambigui-
ty. In Fig. 6 the power spectrum in the one-dimensional
repulsive case with a =0.35 are shown for several values
of the step number of the space division n. In Fig. 7 one-
dimensional spectra in the repulsive case for n =13 are
shown for several values of a. In Fig. 8 one-dimensional
power spectra in the attractive case are shown for several
values of a. All power spectra are for the original space-
division model. They are averaged over 25 different runs.
Also wave numbers are coarse grained. in Fig. 9 the ex-
ponent 3 estimated from these spectra is plotted. In this
figure the dashed lines indicate the theoretical value of 3
for the modified model, i.e., (3.7) with (3.8). We have also
done the numerical simulation for the modified model
with the step number n =13. The estimation of S for the
modified model is more accurate than that for the original
model due to the large number of data for the modified
model. This is because we can use the fast Fourier
transformation for the numerical computation for the
modified model. We found that the numerical simulation
and the theoretical calculation (3.7) in the modified model
agrees well with each other. We can find that the ex-
ponent B in the repulsive case for the original model
agrees well with that for the modified model for a > 0.05.
But they do not agree with each other in the attractive
case. This is because the particle configuration in the
original model is not uniform in the attractive case.

We now present results for the two-dimensional original
model. In two dimensions, we have made simulations
only for n=6. The number of divided subspaces is
N =45=4096. In Fig. 10 we show S;’s for the original
model corresponding to patterns in Fig. 5 as functions of
the scalar wave number k =(k?+k2)!/2. Here we have
computed S; only for positive values of the one-
dimensional wave numbers k; and k,. The Si’s are aver-
aged over 25 runs, but no coarse graining is taken over the
wave number. The dashed lines have the slope —28 (i.e.,
S <k ~2$), where B is the exponent in the one-
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FIG. 5. Set of centers of subspaces in two-dimensional original model with n =6 (N =4°). (a) Repulsive case with a =0.3; (b)
repulsive case with @ =0, equivalent to attractive case with @ =0.5; (c) attractive case with a =0.1.

dimensional model for the same value of a. One can find
that (3.6) hold for the original space-division model,
though there is a lot of scatter in the data due to the small
range of wave number.

V. DISCUSSION
A. Conservation law with quasirandomness

In the limit of the weak randomness (a—0.5 in the
repulsive case) we observe k —¢ spectrum. There is only a

weak continuous change in the spectrum near a =0.5.
There are several reasons for the appearance of this spec-
trum. One is the continuous nature of the model. A reg-
ular configuration changes continuously into a random
configuration by changing a parameter a from 0.5 to
smaller values. This gives continuous change in the value
of (m?) in (3.7). This continuity also guarantees a finite
density of state near the k¢ spectrum. In reality this
continuity comes from the conservation of mass, volume,
or other physical quantities such as momentum or energy.
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FIG. 6. Log-log plot of one-dimensional power spectra Si’s
in the repulsive case of the original model, for a =0.35 and for
several values of step number n. The data are averaged over 25
different runs, and wave numbers are coarse grained.

Therefore in a system with a conservative quantity, we
can expect a k ¢ spectrum with much generality. Also,
the k¢ spectrum is not an equilibrium spectrum. It
should disappear in equilibrium due to the randomization
of positions of subspaces or due to other dissipative mech-
anisms.

Another reason is the fractal nature of the model,
which we here call quasirandomness. To the present
model the fractal is not necessarily a suitable concept, be-
cause the fractal dimension D does not give the value of
the exponent 8 Owing to the conservation of mass, or the
volume, the fractal dimension D of the present model
seems to be always equal to the spatial dimension d. This
situation is the same as in the case of the devil’s staircase.*

FIG. 7. Log-log plot of one-dimensional power spectra Si’s
in the repulsive case of the original model for n =13 and for
several values of a. The data are averaged over 25 different
runs, and wave numbers are coarse grained.
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FIG. 8. Log-log plot of one-dimensional power spectra S;’s
in the attractive case of the original model, for n =13 and for
several values of a. The data are averaged over 25 different
runs, and wave numbers are coarse grained.

Here we derive k ~¢ spectrum in a heuristic way for the
original model in the limit of large system size. The d-
dimensional power spectrum S satisfies the following
three conditions. (i) S, =N for k <ko=2m/L, (ii) Sy =1
for k >k =Nk, and (i) S, <k~* for ko <k <kj.
Here condition (i) occurs because the largest distance be-
tween centers of subspaces is L. Therefore, for k <k,
exp(ik-r;) in (3.1) is replaced by 1. This gives condition
(i). Condition (ii) occurs because the smallest distance be-
tween centers of subspaces is approximately N ~!/%L. For
k >k, S; reduces to the correlation function of a nonin-
teracting gas. This gives condition (ii). Condition (iii)
occurs because the space division is self-similar. By set-
ting Sy=Ck~% we have N=Cky® from (i), and

1.0 T I = ~—
o ,,/" A
B /—' Repulsive |
Z/’ .
O' 51 /.”"—_—“
./: -
./ _x“Attractive ]
[
- . =
O / 1 ]
0 O 1 0. 2 0.3 04 0.5

a

FIG. 9. B vs a. Closed circles represent B for the original
model. The solid curve is drawn to guide the eye only. The
dashed curves indicate the analytic calculation of B, i.e., (3.7)
with (3.8), which is accurate for the modified model. Crosses
represent numerical results for the modified model.
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1=Ck7® from (ii). Thus we have N =(k,/kq)*
=(N'/4)* and therefore we have a=d. As is found from
this explanation of the k ~¢ spectrum this power spectrum
does not depend on details of the model. A factor signifi-
cant to the k ~? spectrum is the quasirandomness of the
distribution of centers of subspaces: The correlation
reduces to that of a random object for the smallest dis-
tance between subspaces (due to the random divisions of
subspaces), but it is not for larger distances (due to the

Y]
N3%W e log(kL/2m)
1> 2

_2L
_4r (b)
e a=0.0
_gb" . Yoy, Rep
2} :.s':‘.:‘s;l'
~ 9 SHIEE
\\‘\'&\.t{i';..
0 1 ~ 1 >
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log,, (kL/21L)
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Ioglo(kL/27l:)

FIG. 10. Log-log plot of the two-dimensional power spectra
Si’s for the original model with n =6. (a) Repulsive case with
a =0.3; (b) repulsive case with @ =0, equivalent to attractive
case with a =0.5; (c) attractive case with a =0.1. No coarse
graining over wave numbers is taken. Data are averaged over
25 different runs. Dashed lines indicate slopes —28, where B is
the corresponding one-dimensional exponent.

freeze in of subspaces). The inverse Fourier transform of
k7 is Inr. Therefore,the correlations between centers of
any distant subspaces do not vanish. This long-range
correlation can be understood as in Sec. I. Namely, the
positions of subspaces are fixed, and therefore the sub-
spaces retain the memory of the long-range correlation of
the host space. But the memory of the long-range correla-
tions is partly smeared by the random divisions of sub-
spaces. This is the reason why such a weak but long-
range correlation as Inr comes out.

We may also explain the value 8~0.5 at @ =0 in the
repulsive case (equivalent to attractive a =0.5) in one di-
mension as follows. The upper limit of the wave number
for which (3.6) is valid is determined by the smallest of
the two segments obtained in each space divison. The
average of this value may be evaluated as 4" times the
total length L after n steps. The evaluation is as follows.
For a =0 the nearest-neighbor distance becomes smaller
on the average by a factor 4 in each step of the space
division, since the boundary is set randomly on a half-side
of a subspace. The maximum wave number is 4"k, for
a =0, whereas 2"k, for a ~0.5. Sy ~1 at each maximum
wave number and Sy =~2" (=N). This means that B for

a =0 is half that for a ~0.5, i.e., 8~<0.5 for a =0.
B. 1/f noises

The present model may give one of prototypes of 1/f
noise. Let us consider a 1/f current noise. We first
prepare a regular fluctuationless current. This current is
disturbed by the interaction with the surroundings. The
disturbance may occur in the same way as the self-similar
space division, where centers of the subspaces are replaced
by centers of divided current pieces. When the distur-
bance is not too strong, the current power spectrum exhib-
its a 1/f singularity.

Previously we have proposed a current bifurcation
model of 1/f noise.” In that model the current bifurcates
successively into two pieces: One is frictionless and the
other is frictional. As a result, the current V(¢) obeys the
equation
172

Y (5.1)

where y is the damping coefficient associated with fric-
tional motion and F(¢) is the random force. Then the
power spectrum ( |V, |2) has a 1/o singularity. This
model resembles the present space-division model, though
the space-division model applies to configurational space,
whereas the bifurcation model applies to momentum
space. At this moment we have found no clear relation-
ship between the two models.

A 1/f noise which seems to have the same origin as the
above is observed in a depinned charge density wave
(CDW).! When the CDW is pinned, it behaves a a rigid
body. But it decomposes into many segments when it is
depinned, exhibiting a 1/f current or voltage noise.

C. k™ correlation in phase separation

We consider a different application of the k~¢ spec-
trum in d dimensions, namely the pattern formation that
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occurs during phase separation. In a phase-separating
system droplets or clusters coalesce successively into
larger ones until a completely phase-separated state is at-
tained.” When the volume fraction of the minority phase
is large, droplets are percolated. As a result, a droplet
cannot move freely. Under this condition droplets
coalesce successively into larger ones without changing
their positions. To evaluate the correlation among drop-
lets, we consider the equivalent correlation among smaller
droplets in a preceding stage of the phase separation. For
this purpose we consider the inverse process of successive
coalescence of droplets. Since droplets hardly move, the
inverse process is represented by successive divisions of
droplets into many smaller ones. Therefore, the present
space-division model can be applied. Thus the power
spectrum of the centers of gravity of droplets may exhibit
a k~ singularity if droplets cannot move freely. Com-
bining this correlation function with the mass continuity
law, one may expect that the structure function or the
scattering function has asymptotic form k¢ at small k.!°
Such a k¢ dependence of the scattering function at small
k has already been reported.'!

D. Correlation among stars in the universe

A plausible example of the attractive case is the distri-
bution of stars or galaxies in the universe. It is well
known that the correlation function of stars or galaxies in
the universe is found to be or~!83 The Fourier
transform of this correlation is K 2. The exponent 1.2
corresponds to 8=0.4 (in one dimension) of the present
model. The value 8=0.4 is a typical value of the attrac-
tive case of the present model. We now present a plausi-
ble model for the formation of the structure in the
universe. We start with a homogeneous cold dust in-
teracting through the gravitational force. This system is
unstable, and undergoes the Jeans instability.!*> In the
first stage of the instability a large scale mode becomes
unstable. Then some parts of the universe have high den-
sities. It is known that the characteristic time of the in-
stability depends on the mass density. This is due to the
long-range nature of the gravitational force. As the densi-
ty becomes larger, the instability proceeds faster. There-
fore, a denser part undergoes a faster instability. This
causes successive instability toward smaller scales. As
scales become smaller the density becomes larger and the
characteristic time becomes shorter. As a result, in the
formation of small structures, any larger structures can be
regarded as frozen in. Now let us consider our model of
the space division. All subspaces are simultaneously di-
vided. Therefore, all subspaces at the same step contain
the same number of inner subspaces. In other words, all
subspaces of the same step contain the same number of
points (centers of subspaces) which correspond to stars.
Therefore, the successive space division is equivalent to
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successive clusterization of N points. This clusterization
can be applied to the above model of the clusterization of
stars, since the larger scale structures are regarded as
frozen in in the universe.

The present discussion is not based on a dynamical
model. Therefore, we cannot determine the suitable value
of a. However, if we choose a typical value S=0.4 of the
attractive case (i.e., @ =0.25) for the original model, then
we recover a k ~!2 correlation in three dimensions, corre-
sponding to the » ~-® correlation observed in the universe.

VI. SUMMARY

We have investigated the power spectra of quasirandom
objects produced by a self-similar space division. Two
ways of performing the space division are considered. In
one way, space divisions are made so that the boundaries
of subspaces remain as far apart from each other as possi-
ble (the repulsive case). In the other way, divisions are
made so that boundaries of subspaces remain close to each
other (attractive case). In both cases the divisions are ac-
companied by randomness. Since the positions of the
created subspaces are frozen in, the inner subspaces keep
memories of the positions of outer subspaces. Therefore,
the destruction of the initial order is imperfect. This is
the reason why in the repulsive case long-range correla-
tions result corresponding to a k ~¢ spectrum in d dimen-
sions. The finite measure of the approximate k —¢ spec-
trum (as a function of the randomness parameter a) is due
to the continuous nature of the model, and this must be
closely related to the conservation law of volume, mass, or
other physical quantities. This spectrum can be regarded
as one of the prototypes of the 1/f noise spectrum. The
possibility of detecting the k~¢ spectrum of the k¢
asymptotic shape at small k of the scattering function of
a phase-separating system is also discussed. We have ap-
plied the attractive case of the present model to the distri-
bution of stars or galaxies in the universe: the correlation
r~% with a=~1.8, which is typically observed in the
universe, has been discussed.

The present study provides us with an interesting aspect
of the decay process of an ordered object, as well as the
ordering processes of a disordered object. It is interesting
to find that such process can obey the power law k ¢
which is not an equilibrium spectrum but is an off-
equilibrium spectrum. It would be interesting to investi-
gate the connection between the present study and other
fields of physics, such as patterns of precipitation, dislo-
cations in a crystal, discommensurations, and so on.
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