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%e consider the effect of periodic perturbations on open reactive systems far from the linear ther-

modynamics domain. The systems present a center-manifold contraction of the phase space
achieved by sustaining a hard-mode instability. The critical regime is governed by a Ginzburg-
Lmdau potential defined on the locally attractive, locally invariant center manifold. %'ithin the
framework of this reduction scheme, scaling properties of the Green's function sensitivity matrix are
obtained. It is demonstrated that the entrainment is produced by a projection of the perturbing

time-dependent field on the center manifold. Thus, the reduced equations for entrainment in the or-
der parameter space are derived. It is demonstrated that two inherent properties of the system favor
the entrainment: (a) a small sensitivity of the amplitude of the bifurcating limit cycle with respect to
changes in the control parameter, (b) the departure of the system from the region of marginal stabili-

ty. The results are applied in two different contexts: %hen there exists a separation of relaxation-

time scales (in a truncation of Hopf's model for hydrodynamic turbulence) and when there is only

one time scale involved (Brusselator). Agreement with previous derivations of the entrainment re-

gions is found. Finally, a realistic experiment coupling two oscillatory reactors is suggested in order
to test the theoretical findings. In this case, the frequency of the perturbation is a function of the bi-

furcation control parameter (the residence time) which measures the departure of the entrained sys-

tem from marginal stability. The results are applicable in the case of convection in a rotating layer
and convection driven by the Soret-Dufour effect since the oscillatory convection corresponds to a
center manifold contraction of the phase space. This manifold contains the dominant velocity

modes when the frequency of oscillation is sma11.

I. INTRODUCTION

The order parameters constitute a quantitative measure
for the loss of symmetry in phase transitions, their value
is zero in the symmetric phase. In this paper we shall
describe the order-parameter space for open reactive sys-
tems sustaining a hard-mode instabihty in a far from
equilibrium regime. The center manifold coordinates are
the order parameters corresponding to the excited relaxa-
tion modes for the symmetry-breaking instability.

We shall be concerned with the situations in which a
Ginzburg-Landau (GL) potential functional can be de-
fined on the space of continuous slowly varying order pa-
rameters. ' These variables are the slowly relaxing de-
grees of freedom which correspond to the excited modes
at the bifurcation point. The GL phenomenological ap-
proach yields the same results as those determined from
the Hopf-Birkoff theorem. The general restrictions for
the validity of GL mean-field equations in far from
equilibrium kinetics are stronger conditions than Hopf's
hypotheses for bifurcation. '

The contraction of the phase space represents the sta-
tistical enslaving of the fast-relaxing degrees of freedom
to the order parameters. it can be shown that this con-
traction corresponds asymptotically to the center mani-
fold (c.in. ) in the phase space. ' This hypersurface is
tangent at the steady state to the order-parameter space.

The dynamics corresponding to the center-manifold re-
duced equations remain qualitatively valid even for pa-

rameter values substantially far from those required for
double degeneracy. The results presented in this work are
thus applicable to doubly diffusive convection problems
displaying oscillatory convection, for example, convection
driven by the Soret-Dufour effect and convection in a ro-
tating layer. The order parameters are the amplitudes of
the dominant velocity modes when the frequency of oscilla
tion is small (cf. Ref. 6). The evolution equations for the
amplitudes of these modes are the center-manifold re-
duced equations. A linear local transformation of vari-
ables reduces the system to a normal canonical form near
a codimension-2 bifurcation.

The problem of the entrainment of an open system sus-
taining a Hopf's instability by means of external periodic
perturbations has been treated in the mathematical litera-
ture. " The cases considered do not present, however, a
separation of relaxation-time scales indicating the enslav-
ing of fast variables. The results were more recently spe-
cialized for the Brusselator. ' '

The aim of this work is to extend the theory to the case
in which there is a separation of time scales at criticality
and to provide a c.m. reduction of the perturbative vector
field. We shall prove that the projection of the perturba-
tive vector field on the c.m. is responsible for the entrain-
ment in a GL regime.

The inherent properties of the Poincare map associated
to the GL potential are worked out making use of sensi-
tivity analysis techniques. The first step is to find the
fundamental Green's function sensitivity matrix which
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determines the propagation of perturbations along the
c.m. The calculations are considerably simplified by ob-
serving that the c.m. reduction determines scaling rela-
tions among the matrix coefficients. An independent set
of coefficients determines the Gl. potential functional and
the Poincare map.

The sensitivity information obtained in Secs. II and III
plays a crucial role in the calculation of the entrainment
regions in the amplitude-frequency space for the perturba-
tion as shown in Secs. IV and V.

These regions are obtained by first projecting the per-
turbation on the c.m. , finding the reduced equations for
the slowly varying order parameters incorporating the
contribution of the perturbation term and finally making
a stability analysis of the periodic solutions. The results
are then applied to a system which presents a separation
of time scales and also, for the sake of testing the results,
to the Brusselator which does not present a statistical
enslaving of fast variables (since it involves only one time
scale at criticality).

In the case of a single time scale, the results of the c.m.
reduction are tested Uis a Uis p-re-vious treatments exhibit-
ing very good agreement. It is worth emphasizing that,
regardless of the external frequency, no entrainment will
occur if the projection on the c.m. is zero. This statement
will be illustrated in Sec. V.

In Sec. VI, a realistic experiment is suggested. We con-
sider a continuous stirred-flow tank reactor in which two
open reactive systems displaying, respectively, a subcriti-
cal and a supercritical Hopf bifurcation are coupled. It
has been established that one oscillator entrains the other
under suitable input concentrations. As demonstrated in
this work, the inequalities determining the entrainment re-
gion can be verified directly. Each oscillator has to be
considered separately, subject to the input conditions
which yield the entrainment when both systems are cou-
pled.

The frequency of the entraining oscillator is dependent
on the scaling parameter which measures the departure of
the entrained oscillator from marginal stability. The criti-
cal inherent frequencies for each oscillator should be
determined separately and, in addition, the dependence of
the frequency for the entraining oscillator on the flow rate
must be found experimentally.

II. POINCARE MAP AT GL REGIMES

The reduction of a dynamical system to the Poincare
normal form determines the fast (subordinated) degrees of
freedom and the order parameters. In what follows we
shall assume that such a reduction has already been per-
formed and therefore, that the Jacobian matrix at critical-
Ity, denoted J 18 III Jordiln (block dlagoIlal aIld lrrcduc1-
ble} normal form. Thus the type of unfolding of a dissi-
pative structure can be inferred by direct inspection of J,
(cf. Refs. 1 and 9). In the case of a critical Gl. regime,
the general evolution equations corresponding to a Hopf
bifurcation unfolding are

where A, and X are the complex conjugated eigenvalues
which cross the imaginary axis at criticality, that is, for
b =b, . The other terms in Eqs. (2.1) and (2.2) are defined
as follows. F is a complex valued function and G is a real
valued vector field; they are given, respectively, by

X=/X+ N(X, b) . (2.6)

As we switch to the (Z, Y) representation, the Jacobian
matrix g, transforms into J,. The phase-space vector X
admits a unique decomposition

X=Y+2Re(Zf) . (2.7)

The complex variable Z is the coordinate giving the pro-
jection onto the slowly relaxing eigenmodes and the com-
ponents of the vector Y are the fast relaxing degrees of
freedom. The subordination of the evolution of Y [given
in Eq. (2.2}] to the motion in the order-parameter space as
given by Eq. (2.1} is determined by the analytic c.m. ex-
pansion

I'j ——Fj{Z,Z, b)=
ao ZiZ rbk

Ply py ky J ~
) t gi+r+k=2

(2.8)

At criticality, we can obtain recursively the c.m. coeffi-
cients from the relations (the reader interested in such a
computation may find details in Ref. 5)

8 I' =By Y =0. (2.9)

The superindex 0 denotes the fact that the derivatives are
evaluated at Z=O. The operators Bz and B~ are defined

by

a . a 1 az= —I, Bg= +I, Z =U+lw.
2 BU BW 2 BU BW

(2.10)

Finally, we have

F.={8,PJ)[AZ+F(Z, Z, Y,b}]

+(Bz1;)[XZ+F(Z,Z, Y,b)]

=(J,Y)i+GJ(Z,Z,Y,b) . (2.11)

The system admits a potential functional' given by the
function

F(Z, Z, Y,b)= ge&X)[Y+2Re(Zf), b], (2.3)

G(Z, Z, Y,b)=N[Y+2RC(Zf), b]—2 Re(Ff) . (2.4)

The vectors e and f are, respectively, the eigenvectors of
J, and its transpose given by the relations

J,f=A,,f, J,c=X,C, i{(b,)=A,

The vector field N(X, b) represents the nonlinear part of
the original dynamical system: V„N~

~

=0 for every
component of N. Therefore,

Z=A{b)Z+F(Z, Z, Y,b), ZEC

Y=J,Y+G(Z, Z, Y,b),

(2.1)

(2.2)
P(Z)= ——

i
Z

i
+(u/4}

i
Z

i2 b,
(2.12)
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~
{U2+2)i/2 (2.13)

ce gj
b=b, + gsJ (2.14)

The expansion does not contain a linear term, this fact
follows from Hopf's theory. i'3

The sj's are elementary sensitivity coefficients. ' ' s„
r =2,3,4, . . . , can be interpreted as the rth derivative of
the control parameter with respect to the observable
evaluated at criticality:

'0

We denote by A the observable corresponding to the am-
plitude of the bifurcating solution which is assumed to
emerge for b &b, .The following sensitivity expansion
holds (cf. Refs. 1 and 2): sgn[M(b, )]&sgn(u) . (2.24)

This relation was obtained from Eq. (2.23) and it is in ac-
cord with previous findings.

The aim of the following section is to make use of rela-
tions (2.17) and {2.21} to obtain the coefficient u from
sensitivity information.

III. GREEN'S-FUNCTION SENSITIVITY
ANALYSIS UNDER GL REGIMES

(The exponential has been expanded in terms of powers of
A. ) The Poincare map is a contraction and the limit cy-
cle, asymptotically stable when the bifurcation is super-
critical, that is, when

Sr= (2.15) The fundamental sensitivity propaIi, ators along the c.m.
are the Green's-function coefficients'

Therefore, we can conclude that within the mean-field ap-
proximation, the GL coefficient u can be written in terms
of the sensitivity coefficient s as

ap(z) (Z =A)=0-+A = (2.16)

po=p~(to) (2.18)

Let n denote a vector in phase space locahzed at po and
perpendicular to the direction p(to). This vector will be
chosen in the following way. Let

~o= po+ g xjgj'
J

(2.19)

—1u= abc s2.
We shall now examine the Poincare map using the fact
that the limit cycle lies in the c.m. Consider a fixed point
po belonging to the limit cycle pq(t):

a Ft(t)
6;,(t, t')= „,, i,j =1,2, . . . .

aFJ t' (3.1)

6,,(t, t') =[a,P;(t)][a,r, (t')]-'6 (t, t')

+[a,r, (t)][a,r, (t )]-'6„(t,t ) .

The time scales for which that relation is valid are

(3.2)

t &t'& Supreme(
~
Rek~

~

'} .
J

The AJ's are the eigenvalues of J, different from A, and X,.
The order-parameter sensitivities are defmed as

The generic co'efficient 6;J determines the instantaneous
change at time t on the subordinated variable F; caused
by a perturbation at time t' in FJ. However, in the
asymptotic c.m. description, the functional dependence of
the subordinated modes on the order parameters, as given
by Eq. (2.8), determines the scaling relations among the
6,~'s. The asymptotic equations follow:

aLn=(exp[q{A)T(A)])n . (2.20)

denote the plane containing po and normal to p(to), then
we can consider the Jacobian matrix of the Poincare map
L defined on Po with respect to the variables xj's. We
shall denote this operator by aL. We now choose n as the
eigenvector of aL tangent at po to the intersection of I'o
with the c.m. (cf. Refs. 6 and 7):

aZ (t) [AZ +I' (Z,Z, Y,b, )](t)6 (t t')=
az(t') [XZ+Z(Z, Z, Y,b, )]{t')

'

[X,Z+E(Z, Z, Y,b, ) ]{t)
6s~(t, t') =

[A, Z+F(Z, Z, Y,b, )]{t')

(3.4)

(3.5)

q(A)= —,'M(b, )A s2, (2.21)

Here T(A } is the period of pz (t} and q (A) is the Floquet
exponent associated to n. This Floquet exponent can be
expressed in terms of u since

In order to apply the results obtained in the preceding sec-
tion to derive u from sensitivity information involving
only the observables, we sha11 introduce a representation
of the phase space vector X in hypercyclindrical coordi-
nates:

2nub, M{b, )A
aLn= 1+ n .

ImA, , (2.23)

M(b, )= —2 (ReA, ){b=b, )&0 .
db

The statement contained in expression (2.22) is one of
Hopf's hypotheses. For a fixed small amplitude we can
write, combining Eqs. (2.17) and (2.20)—(2.22),

(3.6)

The eigenvalue of the Jacobian matrix in the hyper-
cyhndrical framework calculated at the limit cycle corre-
sponding to the coordinate r is q =q(A) and the one cor-
responding to the phase coordinate is 1.

Thus, the subordination of the FJ's to r can be obtained
in the adiabatic elimination limit by setting Y=O (see for
example, Ref. 3), we get
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G;, (t, t')= Y, (t) Y, (t')r ' r
~(t ti)eq(A)(t —f')

(3.7)

where I is the Heaviside unit-step function.
The following alternative formula indicates that the

c.m. expansion and the GL potential determine the sensi-
tivity coefficients

f
1

BX3 c}L3
(3.14)

observables to changes in the control parameter as derived
from the GL potential.

The accuracy of the adiabatic elimination approxima-
tion to the c.m. reduction can be estimated making use of
the sensitivity analysis. This procedure is based on the in-
spection of the singularities of the sensitivity derivatives

G;,(t, t') = Y;(t)(r =A)
Br

Fj(t')(r =A)
Br

The latter derivative is evaluated by means of the adiabat-
ic elimination. The example studied above will serve as
an illustration. From relatian (2.16) we obtain

[M(b )ub Ai(t —t')1
xH t t'—e (3.8)

This relation gives the sensitivity at a particular value of
the observable. Thus„ in the limiting case, when the sys-
tem becomes insensitive to changes in the control parame-
ter (u 00), the autocorrelations ( Y;(t)YJ(t')) become 5
correlated and the corresponding power spectrum is a line
spectrum (cf. Refs. 17 and 18).

The following system, already in Poincare normal form,
displays a Hopf bifurcatian which can be adequately
treated making use of the mean-field GL approach (this
fact is proven in Ref. 1}:

ar
Bb 2b, u

(3.15)

1 1+
2 4

2b —4b, 'u-'

b —b,2

b, u

1/2 (3.16)

The singularity occurs at the bifurcation point ( b = —, ).
The adiabatic elimination (a.e.) yields

1/2
BX3 1 () b b, ——b+ b —4
ab ., 2ab bu

X( ——(2b —1)X(—Xi+X(X3,

Xi ——Xi + (2b —1)Xi+X2X3,

X3 —— bX3 —(X—i+Xi+Xi) .

(3.9)

Thus the singularity occurs at
1/2

4 Q
o ———1 — 1 ——

Q 4
(3.17)

For a fixed amplitude, the contraction is given by

Bl.n=(expI2ir[ —4A +0(A )]I )n .

Since,

(3.11)

M(b2)= —2 (2b —1)(b =b, )=—4
db

(3.12)

we get from relations (2.17) and (2.21), the sensitivity and
the GL coefficients

This system is obtained by truncating a model originally
proposed by Hopf to describe the early onset of hydro-
dynamic turbulence. ' The motion becomes quasiperiodic
only when a torus bifurcates from the first limit cycle
thus yielding a "Hopf upon HapP' bifurcation. However,
the second bifurcation does not follow a mean-field GL
regime. We shall therefore concentrate in a neighborhood
of the first critical point (b, = —, }, the steady state being
r =Xi =0. To a first approximation the c.m. can be ob-
tained from the adiabatic elimination, that is from the im-
plicit relation: bX3+(r +X3)=0.

The eigenvalue of the linearized Poincare map along the
n direction is given by the relation

BLn=(exp[[(3b —2)+(25bi —36b+12)'~
]m I )n .

(3.10)

Hawever, substituting u/4 by x we get

lim —[1—(1—X)'~ ]= —,
x~0 X

11m bo= ~u~0
(3.19)

IV. PROJECTION OF PERIODIC PERTURBATIONS
ON THE CENTER MANIFOLD

It has been established that a necessary condition for
entrainment is the existence of a limit cycle sufficiently
far from the marginal stability. " ' This condition is not
sufficient as it will be demonstrated in this section; we
also require that the projection of the perturbative vector
field on the c.m. must be nonzero.

Thus, it is crucial to calculate the contribution of the
perturbation to the right-hand side (rhs) of Eq. (2.1). The
inherent frequency of the system defined by Eqs.
(2.1)—(2.7) is

%e have that the adiabatic elimination becomes a better
approximation as the GL coefficient u becomes smaller,
that is, as the amplitude becomes more sensitive to
changes in the control parameter [cf. Eq. (2.16)].

(3.13) KO = IITlA, ~ (4.1)

These equations show how the rate of contraction of the
Paincare map increases depending on the sensitivity of the

We now add the perturbation f(t) to the rhs of Eq. (2.6)."
The complex order parameter will be written as
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b —b
b,

(42)
b, (b, —1)'+7(b, —2)'+1

12(b, —I ('~'

Then, the slowly varying complex variable z is subject to
the restriction [cf. Eq. (2.16)] X ~z ~'z+s(~) . (4.6)

liin lim (z
~

=—=A 1

t~co ((f(tl(( Q e u

In order to determine the contribution of the perturba-
tion to the order-parameter equation, we introduce first
the scaling r= e t to account for the fact that z is a slowly
varying parameter (cf. Ref. 8). The contribution will be
denoted by s(~). The projection of f(t) on the c.m. is
given, according to relations (2.3) and (2.5) by the scalar
product

[e,f(t)]=Z(f(t)) . (4.4)

X=ee ' [2Rezf]+O(e )

in which the c.m. complex coordinate has O(e) and all
other coordinates are higher-order infinitesimals. To
O(e ), we obtain the order-parameter equation with the
contribution from the perturbation term. This reduced
equation has the form (cf. Ref. 11)

This is the Z coordinate of f(t). By means of a c.m. -
asymptotic perturbation analysis"6 we can find to which
order in e does s (~}appear. Such an analysis requires the
initial substitution

It follows from Eq. (4.3) that

b, u
Q=

2
(4.7)

Given that Eq. (4.6} was obtained to O(e ) we can find
the z coordinate of f(t):

(f( )}=
p3

(4.8)

In order to display the r dependence of the perturbation
term, we average over the inherent period T of the system
( T =2n' jwo )

where w is the external frequency ( w-wo) and $0 gives
the phase displacement. Thus, if we represent the order
parameter Z in terms of a radial and a phase component
(denoted as, respectively, p and P)

Z=epe""+' ", (4.10)

then the entrainment region in the (so, w) plane can be ob-
tained by eliminating P from the steady-state equations
for p and P:

cp
2

b,
2

ttp +socosP=Mi(p, g)=0, (4.11)

From Eqs. (4.11) and (4.12) we obtain
2

2
ps 2

"ps —
2 +ps

(b, —1)i+7(b, —2)2+1

12(b, —1~'~' e

(b, —1) +7(b, —2) +1
2 so

(w —wo)e + p — sing=My(p, g) =0 .
p

2—so ——O.

(4.12)

(4.13)

From the stability analysis, it follows that so and w should be chosen so that the root of (4.13}obeying

Mi+ M2 ——b, [1—2itp, ] &0,
Bp

or, alternatively (without loss of generality, we assume b, & 0)

(4.14)

(4.15)

1s stable. That is,

BMI

clp
d" aM,

Bp

BM,

ay
0 e

BP

(4.16)

Thus, for small so we obtain
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w —wp (b2 —1) +7(b, —2) +1
& "u 1+e' 12

) b, —1
(

'"

' I/2

(b, —1)'+7(b, —2)'+1
12~b, —1('"

b,
$0 .

2"
(4.17)

Thus, a system such that the amplitude A of the bifurcat-
ing limit cycle is relatively insensitive to changes in the
control parameter b (i.e., tt is very large) is more easily en-
trained fthe region (sp, w) giving a stable root p, for Eq.
(4.13) is larger] than if the amplitude is very sensitive
(u=0). This conclusion follows from two facts. (a) For
large u we can write approximately,

method. ' '3 This system presents only 2 degrees of free-
dom and therefore, in its GL regime, there are no enslaved
fast-relaxing modes. The rate equations in reduced vari-
ables are given by (cf. Refs. 12 and 13)

—X) —ApX2—+e b,X)+h (X),X2),

(4.18)
—X2 ———X),
dt

Considering again, Eq. (4.17) for u « 1, the term equal to
u can be neglected in the expression under the radical and
in the resulting equation. (b) The term in tt

' dominates
over the term in u

h (Xi,X2)=
1 —Ao

Xf +2AXiXp
0

+X)(X2—X) )+ X),b,

0

V. EXAMPLES

We will now present the following examples.
(a) Any perturbation of the form

b, = 1+Ap, A,,=iAp,

steady state: X& ——X2 ——0,
2m%0=30,T =
A0

(5.5)

0
f(t)= 0

a cos(wt)

(5.1)

applied on the system given by Eqs. (3.9) (b- —,
'

) will not
produce entrainment regardless of the values of a and w
since the projection on the c.m. is zero.

(b) The entrainment region for the system given by Eqs.
(3.9), (b ——, ), and w-wp ——1 is given by the inequality

d 1+Ap A p+2z= Z- +E
d~ 2

430 —730+4

(5.6)

The last term in the rhs of Eq. (5.4) has been omitted in
Ref. 12. This term can only be neglected if the concentra-
tion of the external species Ap is such that

~
Ap —1

~
&~0.

The perturbation analysis yields (cf. Ref. 12)

m —1 17 1

2b —1 24 2

—3t2 r

26X 172
2+— '+

122
$0 . (5.2)

Thus, from Eq. (4.6) we can obtain the GL coefficient u
for the Brusselator:

Obseruation. Notice that as the system departs from
marginal stability, that is, the difference (b b, ) grows, —
then the range of frequencies in the entraining region also
increases. This general principle can be observed by direct
inspection of Eq. (4.7).

(c) The entrainment problem for the Brusselator has
been studied by means of the reductive perturbation

1 1

(b, —1) b,
1

2 1+
A0 1+30

(5.7)

Thus, combining Eqs. (4.5), (5.5), and (5.7) we obtain Eq.
(5 6).

The entrainment region is obtained from Eqs. (4.17),
(5.5), and (5.7), and it reads as

m —A0 4A 0 —7A 0+44 2

6Ap 1 1'+
A0 1+30

I 11+
A0 1+30

(4A', —7A,'+4)'
1+

1+30
6~03

* 1/2

50 . (5.8)
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This last relation is exactly the same as that obtained in
Ref. 12.

VI. ENTRAINED OSCILLATIONS IN A
CONTINUOUS STIRRED FI.OVf TANK REACTOR

OPERATING PAR PROM
THERMODYNAMIC EQUILIBRIUM

In recent years, there has b;xn considerable interest in
the dynamics arising when two eicillatory open reactive
systems are hnked through an internal species which cor-
responds to an internal degree of freedom for both sys-
tems. In particular (see, for example, Reft. 19 and 20), an
open oscillatory system (I) with input concentrations
[C10i ], [I ], [H+] has been coupled to another system
(II) with input concentrations [BrOi ], [I ], [H+] in a
continuous stirred-flow tank reactor (CSTR).

Each of the two coupled systems is a relatively simple
example of an uncatalyzed inorganic oscillator. We shall
regard the flow rate

r„'=b, r, =residence time of the CSTR (6.1)

as the bifurcation control parameter. The other control
parameters are the input concentrations for the external
species (in large excess with respect to the internal species
I2 and IO3 ), [C102 ]0, [I ]0, [BrOi ]0, [H+]0, and the
temperature.

The internal degrees of freedom are the concentrations
of stable intemsediates: [Iq], [IO3 ] (cf. Ref. 21). It has
been demonstrated2' that there exists a parameter region
for system (I) in which a Hopf bifurcation occurs. The
specification of this region is irrelevant for our present
purposes. The frequency of oscillations increases as the
flow rate grows past its critical value [r', (I)] '=b, i.

The kinetics for system (II) also displays a Hopf bifur-
cation but the frequency of the oscillations decreases as
the flow rate increases b p [v', (ll)] ' [see Ref. 22].

In both cases, of course, the critical value for the flow
I

rate depends on the input concentrations. It has been ex-
perimentally confirmed that for the following selection
of control parameters,

T =25'C, [I-],=4@10-'M [BrO,-],=2.5X 10-'M,
(6.2}

[C102 ]0——10 M [H+]0——1.5M,

and for a flow rate in the range 16.4X 10 —18.3X 10
sec ', the CSTR coupling both systems displays com-
pound oscillations for the internal species with a range of
frequencies very close to the oscillator (II). It is also ob-
served that the frequency of the compound oscillations
decreases as r„' increases, also in accord with the dynam-
ics for oscillator (II).

Systems (I) and (II) are linked through the internal vari-
able [I2]„however, the oscillations in (II) have large ampli-
tudes and those of (I) small amplitudes. A direct inspec-
tion of the inequality (4.17) indicates that the larger am-
plitude oscillator will have a wider range of frequencies
for entraining than the smaller amplitude oscillator.
Thus, the effect of coupling both oscillators in the same
CSTR is equivalent to introducing a periodic perturbation
flow term in the rate equations for species I2 in system (I).
This perturbation is responsible for the observed entrain-
ment of system (I} by system (II). It is worth noticing at
this point that the external entraining frequency t0«, with
respect to oscillator (I), cannot be varied independently of
the reduced scaling parameter

~„'—[r'„(I)]
[H(1)]-'

which measures the departure of system (I) from marginal
stability regime occurring at r„=r„(I). That is so since
r0« is a function of the flow rate. (Numerical values for
this dependence are given in Ref. 22.)

We can propose the following entraining inequality for
the CSTR [cf. Eq. (4.17)]:

io« —too, M [r', (I)] 22(I)M [r', (I)]
u) 1+7„—[H(I)] Q)

[+(I)]

(6.3)

[[&',(I)] ' —1) +7[[r'„(I)] ' —2)2+1
M(r'„(I) )=

2 ~[r'(I)] ' —1
~

'n

In order to confirm this formula, one needs to examine
separately each oscillator at the input concentrations that
correspond to entrainment when the oscillators are cou-
pled, that is, at the selection of control parameters given
by Eq. (6.2}varying the flow rate.

Thus, one finds the critical values ~', (I), v', (ll), and io0, .
The experiments hitherto performed consider bifurcation
points outside the entrainment domain and different for
each oscillator. The calculation of u, involves measuring
the second variation of the flow rate with respect to the
amphtude of the oscillations as given by relations
(2.14)—(2.17).

The final step would be to vary the r„dcaanlculate to«

(6.4)

l

versus r„[ laawysunder the external constraint given by
Eq. (6.2)]. These values can be used to confirm the validi-

ty of relations (6.3) and (6.4).

VII. CONCLUSION

The entrainment of a dissipative reactive system in a
Ginzburg-Landau critical regime by an external periodic
perturbation is determined by the projection of this per-
turbation on the center mamfold of the system. The
center manifold coordinates are the order parameters.
The ranges for the amplitude and frequency of the pertur-
bations depend on three properties inherent to the system.
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These properties are obtained from the Ginzburg-Landau
potential functional and from the center manifold equa-
tion, and are the following.

(i) The ehmination of the fast-relaxing degrees of free-
dom leading to scahng relations in the sensitivity coeffi-
cients.

(ii) The departure of the system from marginal stability
measured by the scaling parameter e.

(iii) The rates of contraction of the Poincare iterative
map along the eigendirections tangent to the center mani-

fold and perpendicular to the limit cycle. These rates
yield the Ginzburg-Landau coefficient u which defines
the amplitude sensitivity to changes in the control pararn-
eter for bifurcation.
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