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Cross correlation between rotation and translation in spherical tops
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The nature of statistical cross correlation between center-of-mass molecular translation and rota-
tion of the same molecule is investigated for carbon tetrachloride liquid by molecular dynamics com-

puter simulation. It is shown that rotation and translation in this Tq-symmetry spherical top are
indeed correlated through the existence of the molecular Coriolis, centripetal, and nonuniform ac-
celerations of the rigid molecule, thus invalidating the Debye theory of rotational diffusion under

the conditions for which it was originally proposed. The simple cross-correlation function

(co(t)v (0) ) /[(cu'(0) &'"(u'(0) ) '"]

Uanishes, however, for all t and in all frames of reference for the spherical top diffusing in three di-

mensions in a bath of other spherical tops.

I. INTRODUCTION

It is now well established' ' that the center-of-mass
translational motion of a diffusing molecule is dependent
statistically on its own rotation, and that the effect of
translation should be introduced into the theory of rota-
tional diffusion ' in asymmetric and also in spherical
tops. These results have been obtained from computer
simulation and might catalyze some further work into ex-
tending the theory of molecular diffusion to involve the
new correlations now becoming available from simulation.
This paper therefore explores the nature of statistical
cross correlation between rotation and translation in the
Td spherical top carbon tetrachloride using molecular-
dynamics computer simulation. The various cross corre-
lations now known through the new rotating-frame theory
of molecular diffusion are evaluated using this numerical
technique at an ambient temperature of about 300 K and
a pressure of 1 b. The numerical results show clearly that
such cross correlations do in fact exist, thus proving the
need to extend basic theory, such as the great theory of ro-
tational diffusion due to Debye. ' At present, computer
simulation appears to be producing results that the analyt-
ical methods can only follow, showing the power of the
simulation techmque. The methods currently available '
for extending the Debye theory through the use of
memory functions and matrix-continued fractions, ' for
example, still leave open the formidable problem of sta-
tistical cross correlation for molecular diffusion in three
dimensions.

II. COMPUTER-SIMULATION METHODS

The classical equations of rotational and translational
motion for 108 interacting CC14 molecules were investi-
gated with the algorithm TETRA whose details have been
made available elsewhere in the literature. " This algo-
rithm is valid for three-dimensional diffusion in the asym-
metric top and is adaptable straightforwardly for the

spherical top. The potential energy was assumed to be
pairwise additive as usual, and was made up of atom-atom
Lennard-Jones terms as follows:

o(C-C) =3.20 A, e(C-C)/k =51.0E;
o(C1-Cl) =3.35 A, e(Cl-Cl)/k =175.0';
cr(C-Cl) = —,

' [o(C-C)+o(C1-Cl)];
1/2

e(C-C) e(Cl-Cl)
k

e(C-Cl)/k =

A1 Axe lx+ Aye ly+ Aze lz ~

A 2
——A„e2„+Ay e2y +A, e2, ,

A3 =A~e3~+ Aye3y+ Age3g,

where e1, e2, and e3 are unit vectors in the principal mo-
ment of inertia axes. Therefore the center-of-mass posi-
tion vector r, for example, would be defined by Eqs. (1) in
frame (1,2,3). The new rotating-frame theory of molecu-
lar diffusion involves r in a range of new cross correla-
tions in this frame, and these are explored for carbon
tetrachloride in this work.

III. RESULTS AND DISCUSSION

Previous work' with the rotating-frame theory of ro-
tation and/or translational diffusion in the asymmetric

A time step of 5.0XIO ' s was used to construct the
dynamical trajectory of each molecule over a span of
about 1000 of these. After equilibration, these were
dumped on to magnetic tape every two time steps and
running-time averages were used to construct autocorrela-
tions and cross correlations of time for the molecular
center-of-mass linear velocity and angular momentum and
velocity. These were computed in two frames of refer-
ence, the laboratory frame (x,y, z) and the moving frame
(1,2,3) of the principal molecular moments of inertia. The
definition of any vector A in the latter frame is
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top has uncovered the existence of several new types of
cross-correlation and autocorrelation functions involving
simultantxiusly both types of motion. The autocorrelation
functions (acf's) are the following:

(i) the acf of the Coriolis acceleration is 2' Xv;
(ii) the acf of the centripetal acceleration is ro X (ru X r);
(iii) the acf of the nonuniform acceleration is ia X r
These are illustrated for CC14 in Fig. 1 both in the labo-

ratory frame (x,y,z) and in the moving frame (1,2P). The
vectors (i)—(iii) are accelerations which involve the rota-
tional and translational motion of the molecule simultane-
ously, and therefore find no place in the simple theories of
rotational diffusion, where the center-of-mass linear velo-
city v and the position vector r are undefined. Similarly,
theories based on linear diffusion leave the angular veloci-
ty ai out of consideration. The new rotating-frame theory
of diffusion'2 involves both types of motion, but there
seems to be no contemporary method of solution apart
from analogue-circuit simulation. ' ' This is work in
progress. ' The existence of the acf's of these accelera-
tions is in itself sufficient to show that computer simula-
tion is capable of producing more information than both

(b)

the analytical theory and the various experimental probes
now available. ' '

IV. CROSS-CORRELATION FUNCTIONS

Many hundreds of new types of cross-correlation func-
tions (ccf) have recently been reported' for the CHzClz
molecule modeled with a simple 3X3 site-site potential.
Of the many possibilities available from the rotating-
frame theory it turns out that only a few exist. Therefore
the rules governing cross correlations between rotation
and translation are highly selective in nature. In this sec-
tion we report the existence of three of these types for
liquid carbon tetrachloride in the moving frame of refer-
ence. This provides further evidence that the rotational
and translational motions even of a spherical top molecule
are correlated as intricately as those of the asymmetric
top. For example, Figs. 2—4 illustrate for comparison the
relevant (diagonal) moving-frame elements of ccf's such as

Ci(t) = (v(t) Xm(t)v (0) ) /[(u (0) ) (co (0) ) ' ], (2)

(4)

C,(t) = (r(t) X to(t)r (0) ) /[(r (0) ) (tu'(0) ) '~'], (3)

(~(t) X[~(t)Xr(t)][~(0)Xr(0)] )
[&~'(0)&(~'(0)&'"("(0))]

for both CC14 and for a five-by-five atom-atom model of
CH2Clz described elsewhere in the literature. It can be
seen from these figures that the same types of cross corre-
lation exist in the moving frame both for the spherical
and for the asymmetric top. The fine details of time
dependence and amplitude are different but otherwise ro-
tational or purely translational diffusion theory is equally
inapplicable in both symmetries. The basic and simple
kinematic reason for such a seemingly unexpected result is
that the ccf's above are correlating an acceleration into a
velocity in the moving frame (1,2,3). For example, the
Coriolis acceleration can be cross correlated into the linear
velocity v with the result that the three diagonal elements
of the ccf tensor exist. The Coriolis acceleration is, of
course, a real acceleration in both frames, and is very well
known in other contexts, such as rotation and/or vibra-
tion coupling in infrared and Raman spectra. ' It seems
to have escaped detailed consideration in the theory of
three-dimensional molecular diffusion. The same can be
said of the centripetal and nonuniform accelerations.
These can all be cross correlated into the linear and angu-
lar velocity of the same molecule with positive results in
frame (1,2,3). Without a detailed analytical description of
these statistical cross correlations we do not in reality
have much knowledge of the molecular dynamics of a
liquid.

One of the significant results of this work is that the
simple ccf

0.5 t (ps) C (t)=(re(t)v (0))/[{co (0))' (u (0))' ] (5)

FIG. l. (a) Autocorrelation functions for liquid CC4 at 296
K. Curve 1, the acf of the Coriolis force in the moving (1,2,3)
and laboratory {x,y,z) frames of reference; curve 2, the acf of
the nonuniform force. (b) Same as in (a) at 100 K. Curve 1, the
acf of the Coriohs force; curve 2, the acf of the centripetal force;
curve 3, the acf of the nonuniform force in frame (1,2,3).

disappears for all t in both frames (1,2,3) and (x,y,z).
This has been checked by computing each element of the
matrix in Eq. (5) separately over at least two independent
segments of about 1000 time steps each. This is the first
conclusive evidence that simple cross correlations vanish
in both frames for the spherical top but, as shown, other
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