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The nature of statistical cross correlation between center-of-mass molecular translation and rota-
tion of the same molecule is investigated for carbon tetrachloride liquid by molecular dynamics com-
puter simulation. It is shown that rotation and translation in this T;-symmetry spherical top are
indeed correlated through the existence of the molecular Coriolis, centripetal, and nonuniform ac-
celerations of the rigid molecule, thus invalidating the Debye theory of rotational diffusion under
the conditions for which it was originally proposed. The simple cross-correlation function

(a(t)v7(0)) /[{0*0))"*(v¥0))/?]

vanishes, however, for all ¢ and in all frames of reference for the spherical top diffusing in three di-

mensions in a bath of other spherical tops.

I. INTRODUCTION

It is now well established! > that the center-of-mass
translational motion of a diffusing molecule is dependent
statistically on its own rotation, and that the effect of
translation should be introduced into the theory of rota-
tional diffusion®’ in asymmetric and also in spherical
tops. These results have been obtained from computer
simulation and might catalyze some further work into ex-
tending the theory of molecular diffusion to involve the
new correlations now becoming available from simulation.
This paper therefore explores the nature of statistical
cross correlation between rotation and translation in the
T, spherical top carbon tetrachloride using molecular-
dynamics computer simulation.® The various cross corre-
lations now known through the new rotating-frame theory
of molecular diffusion are evaluated using this numerical
technique at an ambient temperature of about 300 K and
a pressure of 1 b. The numerical results show clearly that
such cross correlations do in fact exist, thus proving the
need to extend basic theory, such as the great theory of ro-
tational diffusion due to Debye.>’ At present, computer
simulation appears to be producing results that the analyt-
ical methods can only follow, showing the power of the
simulation technique. The methods currently available® '°
for extending the Debye theory through the use of
memory functions and matrix-continued fractions,'® for
example, still leave open the formidable problem of sta-
tistical cross correlation for molecular diffusion in three
dimensions.

II. COMPUTER-SIMULATION METHODS

The classical equations of rotational and translational
motion for 108 interacting CCly; molecules were investi-
gated with the algorithm TETRA whose details have been
made available elsewhere in the literature.!! This algo-
rithm is valid for three-dimensional diffusion in the asym-
metric top and is adaptable straightforwardly for the
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spherical top. The potential energy was assumed to be
pairwise additive as usual, and was made up of atom-atom
Lennard-Jones terms as follows:

o(C-C)=3.20 A, €(C-C)/k =51.0K ;
o(Cl-C1)=3.35 A, €(Cl-Cl)/k =175.0K ;

o(C-Cl) = 5[0(C-C)+0(CI-CD] ;

172
€(C-C) e(CI-Cl)

e(C-Cl/k = X X

A time step of 5.0 107! s was used to construct the
dynamical trajectory of each molecule over a span of
about 1000 of these. After equilibration, these were
dumped on to magnetic tape every two time steps and
running-time averages were used to construct autocorrela-
tions and cross correlations of time for the molecular
center-of-mass linear velocity and angular momentum and
velocity. These were computed in two frames of refer-
ence, the laboratory frame (x,y,z) and the moving frame
(1,2,3) of the principal molecular moments of inertia. The
definition of any vector A in the latter frame is

A1=Axelx+Ayely+Azelz ’
Az ——‘Ax62x+Ay€2y+Azeh N (l)
A3=Ax63x+Aye3y+Aze3z s

where e, e;, and e; are unit vectors in the principal mo-
ment of inertia axes. Therefore the center-of-mass posi-
tion vector r, for example, would be defined by Egs. (1) in
frame (1,2,3). The new rotating-frame theory of molecu-
lar diffusion involves r in a range of new cross correla-
tions in this frame, and these are explored for carbon
tetrachloride in this work.

III. RESULTS AND DISCUSSION

Previous work!? with the rotating-frame theory of ro-
tation and/or translational diffusion in the asymmetric
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top has uncovered the existence of several new types of
cross-correlation and autocorrelation functions involving
simultaneously both types of motion. The autocorrelation
functions (acf’s) are the following:

(i) the acf of the Coriolis acceleration is 2@ X v;

(ii) the acf of the centripetal acceleration is @ X (@ X1);

(iii) the acf of the nonuniform acceleration is @ X r.

These are illustrated for CCl, in Fig. 1 both in the labo-
ratory frame (x,y,z) and in the moving frame (1,2,3). The
vectors (i)—(iii) are accelerations which involve the rota-
tional and translational motion of the molecule simultane-
ously, and therefore find no place in the simple theories of
rotational diffusion,” where the center-of-mass linear velo-
city v and the position vector r are undefined. Similarly,
theories based on linear diffusion leave the angular veloci-
ty @ out of consideration. The new rotating-frame theory
of diffusion’? involves both types of motion, but there
seems to be no contemporary method of solution apart
from analogue-circuit simulation.!?~!* This is work in
progress.'® The existence of the acfs of these accelera-
tions is in itself sufficient to show that computer simula-
tion is capable of producing more information than both
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FIG. 1. (a) Autocorrelation functions for liquid CCl, at 296
K. Curve 1, the acf of the Coriolis force in the moving (1,2,3)
and laboratory (x,y,z) frames of reference; curve 2, the acf of
the nonuniform force. (b) Same as in (a) at 100 K. Curve 1, the
acf of the Coriolis force; curve 2, the acf of the centripetal force;
curve 3, the acf of the nonuniform force in frame (1,2,3).
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the analytical theory and the various experimental probes
now available.!” 13

IV. CROSS-CORRELATION FUNCTIONS

Many hundreds of new types of cross-correlation func-
tions (ccf) have recently been reported!? for the CH,Cl,
molecule modeled with a simple 3 X3 site-site potential.
Of the many possibilities available from the rotating-
frame theory it turns out that only a few exist. Therefore
the rules governing cross correlations between rotation
and translation are highly selective in nature. In this sec-
tion we report the existence of three of these types for
liquid carbon tetrachloride in the moving frame of refer-
ence. This provides further evidence that the rotational
and translational motions even of a spherical top molecule
are correlated as intricately as those of the asymmetric
top. For example, Figs. 2—4 illustrate for comparison the
relevant (diagonal) moving-frame elements of ccf’s such as

C()={(v() X a(t)vT(0)) /[ {(v%(0)){0*0))/?], @)
Cy(t)=(r(t) X @()rT(0)) /[ {r*0)){0*0))/?], 3)

{(0(t) X [o(t) X1(t)][@(0) X r(0)]7)
[{(0%0)){(0*0))"2(r¥0))]

for both CCl, and for a five-by-five atom-atom model of
CH,CIl, described elsewhere in the literature. It can be
seen from these figures that the same types of cross corre-
lation exist in the moving frame both for the spherical
and for the asymmetric top. The fine details of time
dependence and amplitude are different but otherwise ro-
tational or purely translational diffusion theory is equally
inapplicable in both symmetries. The basic and simple
kinematic reason for such a seemingly unexpected result is
that the ccf’s above are correlating an acceleration into a
velocity in the moving frame (1,2,3). For example, the
Coriolis acceleration can be cross correlated into the linear
velocity v with the result that the three diagonal elements
of the ccf tensor exist. The Coriolis acceleration is, of
course, a real acceleration in both frames, and is very well
known in other contexts, such as rotation and/or vibra-
tion coupling in infrared and Raman spectra.®!” It seems
to have escaped detailed consideration in the theory of
three-dimensional molecular diffusion. The same can be
said of the centripetal and nonuniform accelerations.
These can all be cross correlated into the linear and angu-
lar velocity of the same molecule with positive results in
frame (1,2,3). Without a detailed analytical description of
these statistical cross correlations we do not in reality
have much knowledge of the molecular dynamics of a
liquid.

One of the significant results of this work is that the
simple ccf

Cit)={(a(t)vT(0)) /[{0*0))2(v¥0))!/?] (5

disappears for all ¢ in both frames (1,2,3) and (x,p,z).
This has been checked by computing each element of the
matrix in Eq. (5) separately over at least two independent
segments of about 1000 time steps each. This is the first
conclusive evidence that simple cross correlations vanish
in both frames for the spherical top but, as shown, other

Cy(t)= ) 4)
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ccf’s such as C;, C,, and C; do not. Therefore the theory
of rotational diffusion has no validity in the spherical top.
This result agrees with the theoretical predictions made in
Ref. 2 based on the rotating-frame theory of asymmetric-
top diffusion.! 3

It is worth noting that the other consequence of T,
symmetry is visible in Fig. 1. This is that the acf’s of the
Coriolis, centripetal, and nonuniform accelerations in
CCl, are identical in time dependence in frame (1,2,3) and
(x,y,z). Once we depart from spherical-top geometry this
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is no longer true, and evidence for this is available from
the molecular-dynamics simulation of dichloromethane,
reported in full elsewhere. !

V. CONCLUSION

Rotational and translational diffusion in liquid carbon
tetrachloride are correlated through the existence of the
Coriolis, centripetal, and nonuniform accelerations of the
diffusing molecule. Therefore the theory of rotational
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FIG. 2. Diagonal elemental ccf’s of C,(¢) in frame (1,2,3) in liquid CCly for the spherical top. (a) The (1,1) element; (b) the (2,2)
element; (c) the (3,3) element. The off-diagonal elements in frame (1,2,3) vanish for all ¢. All elements vanish in frame (x,y,z). (d)
Off-diagonal liquid dichloromethane for the C,, symmetry asymmetric top (see Fig. 1). Curve 1, the (1,1) element; curve 2, the (2,2)

element; curve 3, the (3,3) element in frame (1,2,3).
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diffusion has to be extended to include these results. This
is despite the fact that simple cross correlations such as
C4(t) vanish for all ¢ in both frames of reference.
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APPENDIX: GROUP-THEORETICAL ANALYSIS
OF CROSS CORRELATIONS IN FRAME (1,2,3)

Within the noise, each of the cross-correlation functions
in the text has equal elements on the diagonal of the
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FIG. 3. The ccf of C,(¢) for CCl, (see Fig. 2).
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FIG. 4. The ccf of Cy(t) for CCly (see Fig. 2). For clarity the
noise level on (1,1) is not shown.

correlation tensor in frame (1,2,3). This result has been
predicted in private correspondence with Professor D. H.
Whiffen. For example, C,(¢) is reducible in frame (1,2,3)
in an isotropic environment as 4, (or A;)+E +T,+T,,
nine elements, of which A4, is the only property which
survives after averaging in isotropic surroundings. For
example, if the tensor is the outer product of two vectors
(both polar or both axial) 4, applies and refers, for exam-
ple, to the triple product (v(z)X(f)-v(0)) which is a
scalar. The A, case refers to a pseudoscalar which might
be the product of an axial and a polar vector. These prod-
ucts are only nonzero on average for point groups which
embrace optically active molecules. Consequently, C,(t)
reduces to the renormalized triple product multiplied by
the unit tensor. This implies that the (1,1), (2,2), and (3,3)
elements must be equal in magnitude and time dependence
in the spherical top in frame (1,2,3,) in isotropic surround-
ings. At the time origin the triple product must separate-
ly vanish for all the molecules in ensemble because two
out of the three vectors in the product are parallel.

The application of group theory in this way shows
therefore that those elements which appear in this com-
puter simulation are precisely those expected on the
grounds of symmetry. It is concluded therefore that the
computer simulation provides the necessary evidence to
show the presence of rotation to translation cross correla-
tion in spherical tops.'®
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