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A formulation has been developed for the evaluation of the matrix representation, in sets of
SMs'LMj, )

~
SLJMJ), or

~
JIEMF) functions (as required), of the complete atomic Hamiltonian

operator consisting of the electronic, the Sl.-nonsplitting {specific mass, mass variation, Danvin,
spin-spin contact, and orbit-orbit) correction terms, and the fine- {spin-orbit and spin-spin dipole}
and hyperfine-structure {magnetic dipole, electric quadrupole, and magnetic octupole) interactions.
This formulation may be easily implemented in a computer program, appropriate for the accurate
evaluation of the energy levels of any atomic system.

INTRODUCTION

Impressive advances have been made throughout the
years in the study of atomic structure, at both the experi-
mental and theoretical levels. And yet, the scarcity of in-

formation available on atomic energy levels is overwhelm-

ing, especially for highly ionized atoms.
At the same time, the need for data is becoming more

and more pressing because of the developments in such
diverse field as astrophysics and nuclear fusion, plasma,
and laser research, all of them of fundamental importance
as well as practical impact.

Considerable efforts have been made, in order to face
this demand for results, in the development of theoretical
forinulations and in their implementation in actual calcu-
lations. Thus, for example, the formulation of Eissner
et al. for the matrix elements of some of the terms of the
Breit Hamiltonian has been used by Froese Fischers (with
multiconfigurational Hartree-Fock radial functions) and
in the program SUPERSTRUCTURE (usually employed for
configuration-interaction calculations with eigenfunctions
of the scaled Thomas-Fermi-Dirac-Amaldi potential, as in
the work of Kastner et a/. ). A more complete formula-
tion has been reported by Glass and Hibbert for the ma-
trix elements of the SL-nonsphtting corrections and the
fine-structure interactions; this formulation has been ap-
plied to calculations (e.g., by Glass, usin analytical radi-
al functions) and complemented by Glass with the matrix
elements of the magnetic dipole and the electric quadru-
pole hyperfine interactions in a basis of IJF functions.

In this work we present all the operators of the Breit
Hamiltonian, as well as those corresponding to the electric
quadrupole and magnetic octupole interactions, in tensor
form, which is then used to derive the expressions of the
corresponding matrix elements in a basis of SL functions.
The present formulation may easily be implemented for
practical calculations, as outlined below.

THEORETICAL FORMULATION

Hamiltonian operator

The Breit Hamiltonian operator, after elimination of
the dependence on the center-of-mass coordinates and

reduction to a nonrelativistic form (Schrodinger operator)
plus relativistic and magnetic terms, may be written (for
a system centered at the origin of coordinates, with total
momentum equal to zero, and retaining only the terms to
first order in 1/rn„where m, is the nuclear mass) as

H +H(m)+H(H)+H(mH)

The first term in this equation

H =He]+HsM+a Hre)

includes the electronic Hamiltonian H, ~
(electron kinetic

energy, nuclear attraction, and electrostatic repulsion), the
operator for the specific mass effect, HsM, and the rela-
tivistic corrections, consisting of the mass variation
(HMv), the Darwin corrections (Hn i and HD i), the elec-
tron spin-spin contact interaction (Hssc), the orbit-orbit
interaction (Hoo), the spin-orbit coupling (Hso i and
Hso i ), and the electron spin-spin dipole coupling (HssD ),
tz being the fine-structure constant. (The electron-nucleus
magnetic dipole interaction, which also appears in H, is
presented below together with the interactions with the
nuclear electric quadrupole and the nuclear magnetic oc-
tupole. )

The terms in H are defined (in units of fi=e =1, with
R =h /2n, and where h is the Planck constant and e
represents the absolute value of the electron charge) as

H, i
—(1/2/s )g p~ —Z g rz

' + g r~',

HsM ——(1/m, ) g (pp p ),
p, o'

(p&o)

HMv= —(1/Sm )+pe,

HD, (nZ/2m )+5(rp=),
P

HD2 —(n./m ) g 5(r——~),
p, cT

(p&e)

Hssc= —(Sm/3m2) g (se.s )5(r~),
p, O'

(p&o)
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Hoo ———(1/2m ) g Ir~'(pp p )
p, cr

(p&cr)

+rpn [r'pc (rp pp')pal j ~

Hso i ——(Z/2m )grp '[sp (rpxpp)],

Hso, =(1/2m') g r~'[sp (2r~Xp —r~Xpp)],
p, cr

(~cr)

HssD ———(1/m2) g r~'[3(sp r~)(s r~)
p, cr

(p & cr)

2—r~(sp's~)],

where the summations extend over the electrons, p and o.

Each electron is characterized by its position vector rp,
(referred to the nucleus), linear momentum vector pp, and
electron spin v~tor sp., r~ is the position vector

r~ ——rp —r . The electron mass is denoted by m, p stands
for the reduced mass, Z is the nuclear charge, and 5(rp)
represents the three-dimensional Dirac function.

The remaining terms (H' ', H' ', and H' ') will not
be considered here, as they are proportional to a /m„de-
pend on the external magnetic field, or both, respectively.

Tensor operators

The matrix elements are best evaluated using the tech-
niques of tensor operator algebra, which requires that the
terms of the Hamiltonian operator be transformed first to
tensor form. The resulting expressions (except for the ap-
propriate mass-correction factors ) are the following:

H, ) g(Tp ——Zlrp)+—g g (r(/r)+')[C' '(p) C'"'(a)],
p k per

(p&cr)

8 = (1/m—, ) $ I[C"'(p) C'"(o)]B 8 —v 2[C'"(p) R""(o)]r '8
p, cr

(p &cr)

—v 2[R""(p)C'"(o)]r '8 +2[R""(p)R""(o}]r 'r

HMv ———(a /2)g Tp,
P

HD i
——(ira Z/2)+5(rp),

p

Ho, = —(a /4) g r 5(r )g(2k+1)[C'k'(p) C'"'(o)]
per k

(p&cr) .

Hssc ———(2a /3) g rp 5(r~)[s'"(p) s'"(cr)]g(2k+ l)[C'"'(p) C'"'(cr)]
p, cr k

(p&cr) .

Hoo ——(a2/2) g g boo(p, o )

per k
(p&cr)

with

g(p, o) = [C'+(p) C+( )o]( t [ (kk +1)/(2k —1)](r '/r" ) —[k (k +1)/(2k +3)](r"+'/r"+ ) j BpB

+{k/2}[{r,"-'/r."+'}5,—{r.'-'/r, '+' }5,]+[(k+1)/2][—(r,'Ir". +)a,+( 'Ir'+r')5. ]}
+[C'"'(p) R'"'"'(o)](I[k(k+1)]' /(2k+3)j[ —k{r"+'/r"+ )+(@+3)(r"+'/r" + )]

+I[k(k+1)]' I(2k —1)j[(k—2)(rp 'Ir ) —(0+1)(r 'Irp)])r Bp

+[R' '"'(p).C'"'(o')](
I [k(k +1)]'~ I(2k +3)j [(k +3)(rp+' Ir +

) k(r" +' Irp+')]-

+ I [k (k+ 1)]'r /(2k —1)j [(k + 1)(rp '/r~) —(k —2)(r~ '/rp )]}r 'B~

+[R'""'(p).R'" +(cr)]I[k(k+3)/(2k+3)](r(+'/r)+ )—[(k —2)(k+1)/(2k —1)](r '/r" ) jr 'r

—[R'" '"'(p) R'" '"'(o)]I[2(2k —1}/(@+1)]{r"/r +')r 'r

—[R' ' '(p).C' '(o }][k(2k—1)I2]' [(rp Ir"+') (r" Irp+ )]-
[C(k)( ) R(k —1,kj( )][k(2k 1)/2]i/2[( k/ k 3) { k —2/ + }]

Hso ——(Za /2)grp [s'"(p) ~ 1'"(p)]+(a /2) g (1+T~)[s"'(p)+2s"'(cr)] g( —1) +'h
s( o, po}

P p, cr k
(p &cr)
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h s(o) = [C(k)(P) XC'"'(0)]'"[k(k +1)(2k +1)/3]'/'[(r~ '/r +')+(r" /r~+')]&~

+[R'"'"'( )XC(")((r)]("[(2k+1)/3]' '[&(r /r +
) —(k+1)(r /r + )]

[R(k —i, k)( ) XC(k —1)( )](i)[(2k + 1)/3]1/2(2J 1)(rk —) /rk+2)

+[R'"+'"'(P)XC'"+"((r)]"'[(2k+1)/3]' (2k+3)(rp '/r"+ ),
HssD ——(a /~/5) g g( —1)"[k(k+1)(2k—1)(2k+1)(2k+3)]'/2

p, n k
(p~n)

X([s'"(P)Xs'"((r)]' ' I(r~ '/r"+ )[C'" "(P)XC(k+ "((r}](i)

+( k —1/ k+2)[C(k+1)( )X C(k 1)(~)](2)))

g(r — {1(i)(P) ( lo))/2[s(i)(P) XC(2)(~)](1)]+ &

&
—&5(„)s(1)( )).N(i)

Hg ——[V 6Q/2I(2I —1)]grp-'[C("(p) I")],
P

(
& ))/2 g r —5

I [6—() r 5(r )][8 1)(P)X C i)(P)](3 2[C(2)(P)X1())(P)](3)I.N(3)

P

where the expressions for the interactions with the nuclear
magnetic dipole (HD), the nuclear electric quadrupole
(H~), and the nuclear magnetic octupole (Ho) are those
given by Armstrong. ' In the above expressions, T stands
for the kinetic energy operator, r & and r & are the lesser
and the greater, Bz is an abbreviation for 8/(}r, ps is the
Bohr magneton, and g, is the electron g actor; T~
denotes the transposition of p and cr The .nuclear spin
vector is denoted by I and the nuclear tensor operators
N'"' are characterized by the expectation values (for
Mt I)——

p,t = (IMt
i

N'" i(IMt ),
0= (IMt i

N' ')(—IMt),

where pl and Q denote the nuclear magnetic dipole and
octupole moments, respectively. (The nuclear electric
quadrupole moment is represented by Q.) The modified
spherical harmonic tensors have components

C,'k'= [4~/(2k+1)]'"~,'"'

(where F~"' denotes a spherical harmonic) and

R(k, k') (C(k) X 1( l))(k')

Matrix elements

The matrix elements are evaluated for
~

CPSMsLMt )

functions (when only the electrostatic and SL-nonsplitting

I

CIBSMsLMt g f(rp)T( '(P) C'P'S'MsL'ML
P

I

interactions are considered),
~

CPSLJM& } functions (when
the fine-structure coupling is included}, or

~

CPJIFMF)
functions (when the hyperfine-structure interactions are
included}, where C denotes the configuration and S, Ms,
L, Mt, J, Mz, I, F, and Mt; are the usual quantum num-
bers, while P includes all the additional details needed in
order to completely label the state.

Application of tensor algebra yields the expressions of
the matrix elements as expansions of radial and angular
integrals and SL-coupling coefficients, denoted in this
work as (Ii) Im)M]„MsML ~PSL), where Ii] and [mp)
stand for the sets of quantum numbers 1(,lz, . . . , l)v and
m i@),m 2@i, . . . , tri))()(i)v, E being the number of electrons
and m; and p; the orbital and spin angular momentum z-
component quantum numbers.

The resulting expressions are as follows.
a. Electronic and SL nonsplit-ting terms The one- .and

two-electron tensor operators in the electronic and non-
splitting terms of the Hamiltonian operator may be ex-
pressed, in a general fashion, as

T(0)(p ) [S(0)(p ) .g(0)(p ) ]
T(0)(p ~) [S(wa6)( ~).1 (kk0)( )]

where S'" ' and L' " ' denote composite spin and orbital
angular tensor operators. Denoting by f ( rq ) and

f(rz, r ) the corresponding one- and two-electron radial
components, the corresponding matrix elements may then
be written, respectively, as

=5(SMsLML, S'MsL'Mt )g g (II] Imp]„MsMt
~
PSL)(Il'] Im'p'I, MsMt.

~

13'SL)

Xg e;R (n;1;;n I )5(i;m;pt, i m p,'),
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CpSM, L,M, g f(r, ,r. )T(o)(p,~) C'p'S'MsL'Mt,
p, 0'

(p«]

=5(SMsLMt, S'MsL'Mt }gg (I II Imp]„MsM, ~

PSL)((I'] Im'p']„MsML
~

P'SL)

COIJPl~jR (n(I(~njIj~nl~ll~~nJ~1J~)( 2)M( 2)Mj ) S() (1&2) ( 2 9&2 p'j )
E,J

(i &j)

X(I;mtljmj (
L()"" (1,2)

~

I/'mt'Ijmj')

where the summations over i and j extend to the spin or-
bitals and the summations over u and U extend over the
sets of quantum numbers Imp]. The coefficient e; may
take the values 1 (for all i, when the two configurations
are identical), 5,& (if the two configurations differ only in
the spin orbitals at the P position), and 0 (if the two con-
figurations differ in two or more spin orbitals). The coef-
ficient tt);j takes the values 1 (for any i,j, if the two con-
figurations are identical), 5N (if the two configurations
differ in the spin orbitals at the (I position), 5;~5' (if the
two configurations differ in the spin orbitals at the p and

q positions), and 0 (if the two configurations differ in
more than two spin orbitals). P,"j stands for 1 —Tj, where
T',"j denotes the transposition of the spin orbitals

~

n I m It, ,') and
~ njljmjjsj } The symbol 5 rePresents the

usual Kronecker delta.
The one- and two-electron radial integrals are given by

I

R (n;I;;njlj ) =f r dr R;(r)f(r)Rj(r),

R (n;I;,njlj;n I,njlj )

r~ r] r2 r~R; r] R r& r&2 Rj r2 Aj f2

respectively, where R; denotes the radial function of the
orbital n;l;.

b. Fine structure -coupling The .one- and two-electron
tensor operators in the fine-structure terms are of the gen-
eral form

T(0)(p)[S(ir)(p)g()r)(p))

T(0)(p o) [S(KKE)(p +) Q(k/c K)(p o)]

and the elements of the interaction matrix are given by

CPSLJMJ gf(r~)T( '(p) C'P'S'L'J'Mz
P

5' L' J
=5(MsMt JMJ,MsMt J'MJ)( —1) + + [(2S+1)(2L+1)]' [(L'ML KO

~ LML )(S'MsKO
~
SMs)]

Xy y (II] I mlj I „MsMt
~
13SL)(II'] I m'P'}),MsMt

~

P'S'L')
Q U

Xg e; R (n; I;;n I )( —,')M; (
SI)"'(1)

f
—,')MI )(I;m;

J LI) '(1)
[ I m )

CPSLJMJ g f (r&, r~)T( '(p, o) C'P'S'L'J'MJ
p, o'

(P &0)
I I

=5(MsMt JMj,MsML J'MJ)( —1) + + [(2S+1)(2L+1)]' [(L'MtKO~LML)(S'MsKO~SMs})

Xg g (Il] Imp]„MsMt
~
pSL)(II'I Im')M'I, MsML

~

13'S'L')

Xgco;jP,"jR(n;I;,njij ,n I,njij)( 2p'; 2pj [SI)"" (1,2) [ 2 ';'2pj}(I;m;Ijmj (Lo" (1,2)
)
I m Ijmj)

where the standard notation has been used for the Clebsch-Gordan coefficients and the 6-j symbols.
c. Hyperfine-structure corrections. The one-electron tensor operators in the hyperfine-structure terms are of the general

form
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T(o)( ) {[S(a)(p)X l (k)(p)](K).N(K)
j

and the elements of the interaction matrix are given by

C)8JIEM, gf(r, }T(o)(p) C P J'IEM,'

=5(MsMgFMp, MsMLE'Mj )( —1) + + [(2I+1)(2J+1)(2J'+1)(2L+1)(2S+1)(2K+1)])~2
r

F
' S L J

Xl(IMr&0 I IMs}«'Mr. k0
I LMc)(S™stI SMs)] '(IMs

I No ' I I') '

J I I(,
-

k X

Xy y ({Ij {mac j„Ms'. ~
PSL)({l'j{m'p'j„MsML

~

jn'L')
Q V

X pe;R (n(l;;n('I )( ,'p;j —So",'(1) j —,')M()(l(m; j
Lo"'(1)

j I m )

where the standard notation has been used for the 9—j
symbol.

The specific expressions for the matrix elements of the
individual components of the Hamiltonian operator may
be easily generated from these general relationships by
evaluating the integrals for So", Lo ', and No( ' for each
case, as exemplified below for some chosen interactions.

(i) For the electrostatic interaction one has

T' '(p, (r) =r =@(r /r"+' }[0' '(p).C'"'((r)]
k

so that

S(two)(p &)

g(kkO)(p &) [g(k)(p) c(k)(p )]

l

(2)u 2pI IS' '(1.2)I 2I'2) j)=5(p() l)5(VJ) J»
(I(m(IJmj j

Lo'kko'(1, » j I('m)'ljm, ')

=5(m(+ mj, m('+ mI')( —1)s

X [(21('+1)(2IJ+ 1)/(21;+ 1 }(21J+ 1)])~

X {I m('k —q ~
l(m; j {l&mI'kq

~ ljmj j

with q =m, m=—mI' ma—nd where

{Jlmj kq ) ljmI j = (IJ'mI'kq
( ljmj )(II'Ok 0

~
IIO) .

(ii) For the spin-own-orbit interaction one has

T(0)(p)[s())(p) 1(()()]

so that

( —,'p( js()"(1)I
—,'p, ';)(I m; j I()' (1) {I m )=5(py()(1/v 2)(-,')u&10

I
—,'p, , )( —,

' Ils'"II —,
'

)

X5(m(, m )(2l;+1) ' (I('m(10] ;1m)( If[i'"f lj,
'

}

=5(l„l&')5(m(&m(')5(p& &p( )m(p( .

(111) In the case of the nuclear electric quadrupole interaction one obtains

(CPJIFMp.
i Hg i

C'P'J'IF'Mp)
I+8+L'+F

r

Xg ({Ij {mVj„Ms' ~
pS, L)({I'j{m'p'j„Ms'

~

p'SL')

Xg e(Rg(n;I;;n I )5(m(, m )5()((,;,p, ';){Irn;20
~

I m; j [(21 +1)/(21;+1)])~~

(g/2)5(SMsMr EM@,s MsMLE MF )( 1)
J' E J' L' 5

X[(I+ 1)(2I + 1)(2I+3 )(2J + 1)(2J'+ 1 )(2L + 1 )/I (2I —1 )]'"(L 'M 2() L J $ 2 L J

[l(1)Xy())](2)

1 I+I
2 6

I I +(2/v6)I, ',

(IMy
~
I()"

~
IMg) =I(2I —1)/v 6 (for M~ I)

Rg(n&l&, n(I )=(n;I( )r
~

1 'n) ).&
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PRACTICAL IMPLEMENTATION
The expressions given above for the matrix elements be-

tween SL functions are appropriate for calculations
within the framework of a configuration-interaction treat-
ment. The general organization of the calculations could
be summarized as follows.

(a} The configurations to be included are selected and
the common set of atomic orbitals listed.

(b) The radial functions are determined, as accurately as
possible (see below), for the atomic orbitals listed above,
with the condition (imposed by the formulation) that
those corresponding to orbitals of the same symmetry
designation be orthogonal. Although, in principle, any
method that yields such functions is acceptable, it may be
convenient to carry out the calculations within the frame-
work of a multiconfigurational self-consistent-field ap-
proach (e.g., using the Hartree-Fock program of Froese
Fischer" ).

(c) The Sl.-coupIing coefficients for the interacting

monoconfigurational states are determined (using, e.g., the

program of Nussbaumer' ). In this connection, it should
be mentioned that care should be exercised in choosing the
Mq and ML (and, therefore, the corresponding vector
coupling coefficients} for which the matrix element is to
be evaluated.

(d) The energy matrix representation of the chosen
Hamiltonian operator is constructed, in the set of ap-
propriate states of the configurations under consideration,
for each symmetry designation. The contributions to its
elements must be corrected by the appropriate factors
needed in order to account for the relativistic mass correc-
tion.

(e) Each energy matrix is diagonalized, yielding the
eigenvalues for the corresponding symmetry designations.

(fl The final energy-level prediction is then obtained by
referring all the energy values to the lowest one, taken as
ground state, and correcting for the normal mass effect.
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