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Approach to equilibrium in a one-dimensional multicomponent gas of Maxwellian particles
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The system of coupled linearized Boltzmann equations for a multicomponent gas mixture of par-
ticles interacting via a Maxwellian-type potential is solved for the spatially homogeneous case. The
ath component of the gas mixture is described by its concentration c, mass m, and the initial dis-
tribution of velocities h (u); the collisions with particles of species P are characterized by the in-

teraction parameter o p. The eigenvalue spectrum of the linearized collision operator for arbitrary
concentrations, masses, and interaction parameters is studied and the time-dependent velocity distri-
bution function for each component is derived, As examples the binary and ternary systems are dis-
cussed briefly. The time-dependent velocity distribution function for a binary mixture is calculated
for several mass ratios showing the development of two branches within the first few collisions.
Furthermore the mass dependence of Boltzmann s H function is studied in detail. Finally we dis-

cuss the time dependence of the mean velocity and mean-square velocity for each species in a ter-

nary mixture. %'hile in a binary mixture these quantities vary monotonically in time, there are mass
and concentration ratios in ternary systems, where one of the species —starting with less than its
equilibrium share of energy —can acquire more energy than its equilibrium value for a limited
period of time.

I. INTRODUCTION

We consider a spatially homogeneous, one-dimensional
v-component gas mixture consisting of quasi-Maxwellian
point particles characterized by their concentrations c„
masses rn, initial velocity distributions h, (U) and in-
teraction parameters trait (tz,P=1,2, . . . , v).

The level of our description is the system of collision-
coupled linearized Boltzmann equations, where the form
of the collision cross section takes care of the quasi-
Maxwellian interaction between the particles. The prob-
lem is then to find the eigenvalue spectrum of the col-
lision operator and to calculate the time-dependent devia-
tion from the equihbrium velocity distribution function
for each component subject to a given initial distribution.

Most investigations have been concerned either with
tagged (single) particle motion in systems with equal
masses or limiting cases in binary systems, where either
the mass and/or the concentration of a tagged particle is
considered to be much larger or much smaller than the
corresponding quantity of the bath particles. The cases,
where the interaction between the tagged particles can be
neglected, lead to the linear transport equations, encoun-
tered, e.g., in the neutron-moderation process. The simple
interactions between the particles considered are generally
of the repulsive type, V &(r)=tr ter ", with the cases of
hard-core (n = oo), MaxweBian (n =4), and Coulomb
(n =1) interaction of special interest. Exact theeretical
results, numerical simulations, and calculations from mas-
ter equations help to understand this fundamental prob-
lem of classical statistical mechanics.

The case of one-dimensional single-particle motion of
hard rods with equal masses was studied in great detail by
several authors. ' ' Far less work has been done for one-
dimensional systems containing different masses. "

For extremely rare and heavy particles' '
(c~ -0, rn~

&&mz—Rayleigh piston problem) and rare but light parti-
cles ' ' (ci -0, rn ~ &&rnz —I.orentz gas) the problem has
been solved. In the former case ( trt i &&rn 2 ) the
Boltzmann equation can be transformed into a Fokker-
Planck equation with time-dependent coefficients for
mi/rnz~ao or solved by the 0-expansion method for
large but finite mass ratios rni/mz. In the latter case
(rn, «mz) the Boltzmann equation can be solved due to
special properties of the scattering kernel. In either case it
is the mass ratio which makes the problem amenable to
treatment and the actual form of the interaction does not
play a central role.

In general the transport equation is nonlinear and one is
concerned with collision-correlated motion in low-density
systems. One hopes onsidering small deviations from
equilibrium only —that the transport equation can be
linearized and still produce physically meaningful results.
The model we are going to treat in Sec. II is the one-
dimensional spatially homogeneous multicomponent mix-
ture. Furthermore we assume a simple quasi-Maxwellian
interaction, which allows an analytical solution of the
linearized Boltzmaim txluations for this system. In Sec.
III some examples are presented: For a binary mixture we
show the time dependence of the velocity distribution
functions of the two species and how momentum and en-

ergy is exchanged between the constituents of the mixture
in the dynamical process to attain the equilibrium distri-
bution. For small times we compare the short-time ex-
pansion with the exact solution to elucidate the effect of
the first collisions in the development of the two branches
of the distribution function. Furthermore Boltzmann's H
function is computed and the dependence on mass ratio,
concentration, and initial conditions for short times is dis-
cussed. For a ternary mixture we show how momentum
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and energy relaxation exhibits a new behavior (nonmono-

tonic approach to equilibrium), a phenomenon which can
occur in the presence of more than two species.

8 0
ha(ulo~r) =g crap du20[ha(U11, r)hp(U21, l )

Br tl

II. THE ONE-DIMENSIONAL
v-COMPONENT MAXWELL GAS

The system of Boltzmann equations for v components
reads 1Q one dln1ens1on

=X 1 dU~O
l

U~a U~D
l

+ y[~ ~L'&&'~ll't@~U~)'~~

P

—h (Ulp, t)hp(V20, t)]

with the initial conditions

—ha(v10 l )hp(U20, r)] (3)

with the normalization f h (u, l}du=c and c =n /n,

gc =l.
Before linearizing Eq. (3) we cansider the case of equal

masses. In this case v~~
——U20 and U2~ ——U~0 holds and all

o p are equal and can be absorbed in the time scaling.
Carrying out the integration in Eq. (3}yields the following
system of differential equations:

where we have defined

hx(u, r):= ghp(u, r) .
P

h (u, 0}=h (v},
Taking the sum of the v equations (4), we get

(lb)

where v &~ and U2&—the post-collisional velocities —are

given by

U2& =

2Pll p U 2p + ( Pn a —Pn p )v 1p

m +my
2nl a U lo + (PPl p nl a )U20—

m~+mp

where o p—crp dePends on—the masses Pna and Pn p only.
In one dimension the post-collisional velocities are
uniquely determined by momentum and energy conserva-
tion [see Eq. (lc)], whereas in three dimensions they are
related via the collision cross section oap. In three dimen-
sions the dependence of o p on the relative velocity

I ulo —vlo I
for a purely repulsive r "-interaction poten-

» ls given by"
I U20 ulo I

wlllch leads ta a veloc1-

ty independent expression fol
I vlo —u&0 I oap «« =".

the Maxwell potential. This justifies one to call a particle
interaction in one dimension quasi-Maxwellian, if it obeys
Eq. (2).

After scaling the time by l =nt, where n =g n, and

also the distribution function, (1/n)h ~h, the system
(la) reads

and the velocity distribution function h is normalized to
the number density of species a, I h (u, t)dv =n (here

and throughout the paper the integration is extended aver
the whole real axis). Note that in the sum on the right-
hand side of Eq. (la} the term for P=a vanishes, since in
one dimension a collision between like particles merely ex-

changes velocities and therefore does not change the dis-
tribution.

In analogy to the three-dimensional case we assume the
collision cross section to be inversely proportional to the
relative velocity, i.e.,

0
I U2o v lo I oap=oap ~

which means that the sum of the distribution functions
does not change in time

hz(u, t)—=hz(v)=ghp(u) .
P

(7)

Now the system (4) decouples and can be solved easily for
every component yielding

ha(u, r)=c hx(u)+[ha(u) chx(u)—]e '. (8)

Equation (8) shows that the h do change in time, but
do not approach a Maxwell-Boltzmann equilibrium distri-
bution but the sum of the initial distributions multiplied
with a concentration, indicating a redistribution of veloci-
ties between particles of different species.

In the case of arbitrary masses we linearize the system
(3) in the usual way by setting

h (u, t ) =f (u)[1+@a(U,7 )], (9a)

/"T2 2

f (u)= ~ e, uz. ——
2kT

(9b)

and the function 4 has to fulfill the following normali-
zation condition:

g U@g U, 7 U=, O.

Furthermore we require that

lim @ (u, r}=0f~ ee

(10a)

(10b}

which is comn1only assumed, but does not hold in the case
of equal masses (see above}.

Inserting Eq. (9) into Eq. (3) and neglecting higher-
order terms in 4 yields the following system of linear-
ized Boltzmann equations for the deviation from the

where f denotes the Maxwell-Boltzmann equilibrium
distribution
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equilibrium:

@ (u,o,r)=g f dN p[4,(uii, r)++p{vii,&)

of Eqs. (13a) and (131) are functions of uio and u2o [see
Eq. (lc)], whereas on the right-hand side they are integra-
tion variables.

The system (1 la) now reads

-e (u,o,~)-@p(v»,~)],

(1 la)
where

4 (u, ~)=g f W p(u ~u')@p( u', r)du',
p

(15a)

d& p=& p~ v» —uio Ifp(v»)du» (1 lb)

W p(u~u') =5~p[S (u~u') P5—(u —u')]

+C p(u~u'), (151)

is the average number of collisions per unit. time between
a particle of species a with initial velocity uio and parti-
cles of species P with velocity u».

The system {1la} has to be solved subject to the initial
conditions and

S (u~u')=+co"„'(u~u')
y

(15c)

4 (u, 0)=4 (u):= h (u)/f (u) —1 . (12) C~p(v ~u'}=ro~~q(u ~u') ro~t'y—u ~v') . (15d)

and the collision frequency

P =QPr=+fdN „,
y

(14}

where (p and %p are arbitrary functions of the velocity.
Note that the variables u» and u2i on the left-hand sides

The system (1 la) can be written in the canonical form of
an integro-differential equation, if we introduce the fol-
lowing transition probabilities (integral kernels) (Ref. 23)

f 0'~(vii)dX~p ='.f oiILp(uio~vii)%'~(uii)duii, (13a)

v21 Nap =: Nap VIO~U21 + v21 v21

v2o &op =: ~a v~o~v2o v2o vs

C =8'C .
87

(16)

Next we want to show, that W is a negative semidefi-
nite operator, following arguments used in three dimen-
sions. Defining a scalar product by

(4,%)=g If (U)4 (U)W, (U)dU, (17)

we get, starting from Eq. (1 la)

This can be written in a more compact form by
introducing vector and matrix notation.
Defining 4 =(@i,@2, . . . ,4„) and W( )

v' 8'p v~v', me have

(@~Wq') =g ~ap f f fa(vio)fp(v»)[ 4(vii)++p{vz& }—'4(vio) —q'p{u»)]C'a(vio)dv»duio .
a,p

(18a)

In two steps: (i) interchanging a with P and uio with v2o in Eq. (18a), and (ii) performing a variable transformation
( uio, u») to ( u», uii ) according to Eq. {lc),we get

(@~Wq')= —
4 go'ap f f fe(uio)f p(u»)[~'a(vii)+@p(v2i }—@a(»o)—@p(v»)]

a,p

X [+a( v 1 1 )++p{v2 l } '4( v io ) +p( v»—)]du co du io (18b)

Putting (p=4 in Eq. (181)shows that

(4, W4) &0

and the equal sign holds only if 4 (u) is a linear combination of 1, m u, and m u .
Since me should like to expand 4' in a complete set of orthogonal functions, we investigate the kernels 8'~p in more de-

tail. The transition probabilities defined in Eqs. (13a)—(13c) can be calculated using Eq. (lc}:

{s) tfl~+Hl p PPl~+Nf p~ap{uio~uii ) =o'ap fp
2P72 p 2EFf p

{d) P22a+ J9l p ltga+M'p 2' a
~ap(vio ~uzi )=&ap fp

i m~ mp i m&z —mp —m&z —mp
I

oiap{uio~u») =o'apf p{v» } .{r) 0

(201)

(20c)
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The kernels (u'p and (u' p are of the same functional form and this type of function is related to the Hermite polynomi-
als H„(x)via Mehler's formula24

(1—z )
2 1/2

Putting

2

=e " g H„(x)H„(y), ~z
~

(1.
(1—z )' „()2"n!

(21)

and

z=(ma m—p)/(m +mp)

z =2(m mp)' /(m +mp),

respectively, we arrive at the following expansions for the transition probabilities:

2 2 n
Cp

—I'~~/' T l Pl —P?tp
CO 'p(u(O~u» ) =(Tap H„(u»/uT )H„(uio/uT ),~ 1TUT o 2 yg! HT~+PgP

r

(22a)

(d)
O)ap(u)O~u2) ) =(Tap ~ NUT

2(m mp)'/2
Hn(uzi /"T )Hn(ulo/uT

PPl~+Pl p
(22b)

This representation enables us to calculate the action of W p [see Eq. (15b)] on a Hermite polynomial

8'
p v~v' H v' vT v'=

p o ycy
r

Nf

me —~y
m~+my

1 +cTapcp
0 -&mo

(23)

where we have used the orthogonality relation of the Her-
mite polynomials

(a)
aO ——0

'r
(28)

e "H~xH„x x= m2 rn! ~„.
Equation (23) suggests the expansion of the functions

4 (u, ~) in a series of Hermite polynomials with time-
dependent coefficients, i.e.,

(a)( ) 0 (29)

which is an expression for particle conservation for each
species. Because of the requirement lim, „4(x,r)=0
we get

C (x,r)= g a„' '(r)H„(x).
n=0

Here we have introduced scaled functions according to

4 (u, r)~4 (u/uT, T)=C)a(X,r);

For m &1 we make the ansatz

a (r)=a e

which leaves us with the eigenvalue problem

(30)

(31)

a =8' a (26)

where a =(a'",a' ', . . . , a'"') and W is a vXv ma-
trix, the elements of which are zero for m =0, and for
m & 1 we have [see Eq. (23)]

(m) 0
~ap =&ay p

2(m mp)'

leaf ~+Ptl p
for a&P,

and in the same way we scale f, h, etc. Inserting Eq.
(25) into Eq. (16a) multiplying with e H (x), and in-
tegrating, yields the following systems of differential
equations for the time functions:

Next we want to investigate the eigenvectors and eigen-
values of W . Since the matrix C'/ W C '/, where
C =diag(ci, c2, . . . , c ), is symmetric, there exist real
eigenvalues A, I ', A,q™,. . . , A,, ' and v orthonormal
eigenvectors forming an orthogonal matrix

Q (Q '=Q ) so that

QTC)/2W C —1/2Q d (g(m) g(m) ) (m))

(32)

Defining P:=C Q, we find Pm W P =Am aiid
for Pm

' we obtain

(33a)

(m) ~ 0N~ = ~ 0'~yCy
y (~a) mal+my

(27b)
or

I' CP =I . (33b)

For m =0 we have This means, that the eigenvectors pa
' of W fulfill the
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foiiowjng condition:

(~)T Cm)
Cpp =&.p,

or—denoting the components of p' '
by p{r™'—

{m) (m)~ rpr. ~r, a=~~Ii
y

(33c)

r' '":= f r " rh (u, 0)H„(u)du
ir2"n!

f h ~ (u )H» (u )du,
25n )

we get from Eqs. (25) and (38}for x= 0

t() p ()

(39)

but we also have because of P P r =C

(33e)

Thus we have shown that the matrix 8' can be diago-
nalized and possesses v linear-independent eigenvectors

(p{,~',p{2™,. . . ,p'„')=P~, which fulfill Eqs.
(33a)—(33e}.

Since the integral operator W is negative semidefinite,
the matrices W are as well, meaning that all eigenvalues
are negative or zero. Since 8'0 —=0 we have v zero eigen-

values corresponding to particle conservation for each of
the v species. For m = 1 we find

where we have introduced the vectors
${»)=(${» s» s» )T ~d r{»)=(r{»),r{»), . . . , r{»))

With the aid of Eq. (33a) we get for the coefficients sr"'

(41)
P

Collecting the terms we finally arrive at the following
solution for the deviations from the equilibrium in a v

component Maxwell gas mixture in one dimension

(42a)

with

g '{((d ni ptU ~p =0 (34)
hf'"'r=p'"r happ(")r f hu(u)H„(u)du . (42b)

which shows that Wi has an eigenvalue A, '{"—0 corre-
sponding to the conservation by total momentum. The
respective normalized eigenvector [cf. Eq. (33e)] is given
by

gruu f «hu(u)du 0, =
P

(43)

Since we require lim, „4(x,r}=0,the coefficients of
the exponential with zero eiImenvalue, M"

i and M' 'i,

have to vanish. For M~ i this is equivalent to
[Hi(x) =2x, pfi I

——Qni~ from Eq. (35a)]

which has

pc„&ni„p„".'=0 for a&2

(35a)

(351}

and this is just the total momentum, since we assumed the
center of mass at rest [cf. E{I.(11b)];and every set of ini-
tial conditions h i,h z, . . . , h „hasto fulfill Eq. (43}.

In the case of M~ i ——0 this is equivalent to
[H2(x)=4xi —2, pfi i

——1 from Eq. (37a)]

g u)~p =0
P

that A, i '=0 "orresponding to energy conservation —and

p'i ' ——(l, l, . . . , 1)

(36)

(37a)

which means for the components of the other eigenvectors
of W2

as a consequence for the other eigenvectors of Wi. For
ni =2 we deduce from

g mp f u h~(u)du =kT
P

which is the total energy. But also total momentum and
total energy of the system have to be constant for all times
r; this requires that

gru f uf, (u)[1+rh, (u, r)]d«=0 for ull r.

Inserting 4 from Eqs. (42a) and (421), this is equivalent
to

perp{„".=0 for a&2.
y

(371)
gc~+pn~M~"r ——0 for y &2

In the Appendix we show that there are no other zero
eigenvalues of the matrices W~.

Since we have shown the existence of v linear-
independent eigenvectors, the time function is given by
[cf. Eq. (30)]

(38)
y

and the coefficients sr ' have to be determined from the
initial conditions. Defining "Fourier coefficients" ( n & 1)

ol

gc~V'rn~~i g QrnIipg~'„' f uhii(u)du =0 for y&2,
CK

(461)

and this is true because of Eq. (351}. In the same way one
can show, using Eq. (371), that the total energy is constant
over time.
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III. EXAMPLES

A. The velocity distribution in a binary mixture

In this section we will study as a first example the case
of a binary mixture (v=2) in more detail. We introduce

the mass ratio p:= m2/m i, and assume, without loss of
generality, p, & 1. We then get for the eigenvalues (m & 1;
the only interaction parameter o.

&2 has been absorbed in
the time scaling)

—i(1—b )+—,f(ci —c2) (1 b—) +4cic2p d ]', m even

——,[1+6 (ci —c2)]+—,'[(b +ci —ci) +4cicip d ]'~, m odd,

With 1,„++c2(1 b"}-
M., i =+ [{1—yi)"]'"H.{xi/&1 —yi)x+ —x„

The eigenvalue spectrum of a binary mixture for the
special case c i

——c2 ———,
' as a function of p has been re:ent-

ly studied by Dickman. According to the previous sec-
tion we have A, i+ ——A,z+ =0.

As initial conditions we select shifted normal distribu-
tions with mean-square deviation smaller than the equih-
brium value, i.e.,

c (pn)1/2dn
+ [(1—y )"]'~ H„(~jux2/Ql —y, ),

n 1/2 0M„-2=+
~+ [(1—yi)"] H„(xi /+1 —

y i)
a N

-(u-u~) /(y~uT )

Ii (u)=
Qny UT

y~&1, a=1,2 . A,„+-+c2(1 b")—
+ + [(1 yi)"]'~'H„(~—px, /+1 y, ). —

A,
+—A,

„

(52b)
This class of functions also includes the special initial

condition of a 5 function for y ~0. To be able to com-
pare numerical results we scale all velocities with the
same factor, i.e., we put x:= U/uT, as well as
x:=v jur, , a=1,2. We then get for total momentum

and energy, respectively,

In order to see the dramatic effects in the time develop-
ment of

h (x,r) =f (x)[1+@ (x,&)]

CiX ) +PC2X2 =00 0 (49a)

ci(x i'+ ,' yi)+c2-(uxP+ ,
'

y2) =-
In the case of a binary mixture momentum and energy

conservation uniquely determine {up to the sign) the
scaled initial mean velocities. For the "Fourier-
coefficients" [see Eq. (39)] we get "

C~ —[u —I}~)2/[y~I)T~ )I e H„(ujuz )du
surya Ur

=c [(1—y )"]'~H„((U /Ur )/+1 —y ). (50)

This enables us to write down the deviations from the

equilibrium distribution function explicitly

4i{x,r)= g {M„+ie" +M„ie" )H„(x),

4i(x,r)= g (M„+ie " +M„qe " )H„(~px),
) 2"n!

(51b)
with

we display two cases; one where the mass ratio is of order
1 (}u=1.5) and the other where the mass ratio is large
(@=15). For the sake of simplicity we select equal con-
centrations (ci ——ci ——0.5). In the first example (@=1.5)
both velocity distribution functions show a qualitatively
similar behavior, hence it suffices to look at one of them.
Figures 1(a) and 1(b) show the results calculated from Eq.
(51a} for the lighter component, viewed from the short
and the long-time side. Starting with an initial distribu-
tion of the form of a displaced Gaussian centered at a
negative initial velocity at x

&
with a mean-square devia-

tion of a fraction yi ——0. 1 of the equilibrium value [see
Eq. (48)], one can see in Fig. 1(a}how within the first few
collisions the initial distribution decays and at the same
time a new branch of the distribution arises. This new
branch looks similar in shape as compared to the initial
distribution, but is centered now at a positive velocity.
This shift of part of the distribution is caused by momen-
tum and energy transfer in collisions of unlike particles.
As time proceeds both branches of the distribution build
up the Maxwell-Boltzmann equilibrium distribution cen-
tered at mean velocity zero. The initial behavior can be
understood looking at the short-time expansion of the dis-
tribution function given by
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b )(x,hT) =(1—hrcg)jt $(x)

C1C2
exp

V ~ O'I)
I

p c~c2
h2(x, br) = (1—hrc

&
)It z(x)+ b r

(x b—x&)
2

11

1
exp

&22

)M(x+bx2)
2

&&2

(x —p, dxq)
2

22

1
exp

02&

p(x —dx i )
2

02'

brc—,fg(x)+O((br) ) (53b)

where

a, =b~y +pd~, a=1,2,
cr2 =pd y +b, a=1,2

(53c)

and shown in Fig. 2 for p = 1.5.
In the second example ()Lt=15) the light component

shows qualitatively the same behavior as the distribution

discussed above. The heavy component does not show the
development of two branches, since both the shift of the
initial velocity from zero and the velocity shift in the first
collisions are small (Fig. 3).

Since. for )M= 1 the velocity distribution function has a
special behavior [see Eq. (8)] and does not approach a
Maxwell-Boltzmann equilibrium distribution in one di-
mension, we show it in Fig. 4 for c&

——cz —0.5.
Expressions for the time-dependent mean velocity and

mean-square velocity for each species can be easily calcu-
lated

-2

.jt

l)~II& ~l', ii

/1". I I" &

I I[I)ls II.

0 )I',
,

I»''

T

2 0

-- 0,8

-- 0.8

-- 0,1

--02

|,'x ),(r) =c,x', e ' ',
p A, ] T(x),(~)=ctx,e

A, i
———1 b(ci——cq),

(54a)

(54b)

(54c)

(b)
-- 1.0

"0.7

--0 5

--0.4

-' 0.2 --0 3

0
Lion

FIG. 1. (a) The distribution of the 1ight component h](x, v. )
of the binary equimolar mixture and mass ratio p= 1.5 viewed
from the short-time side, ~here the fast increase of the second
branch can be seen. Note, that this increase is much faster than
the following approach to equilibrium. (b) The same distribu-
tion function h](x, ~) as in (a) viewed from the long-time side.
Here the fast decrease of the initial distribution, together with
the rather slow decrease to thermal equilibrium, can be seen.

FIG. 2. For ~=0.5, e] ——c2, and @=1.5 the exact solution for
h&(x, r) [see Eq. (5la)] is compared with the solution of the
difference equation [Eq. (53a)]. The mean velocity of the second
branch is determined by momentum and energy conservation in
the first collision.
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B. Boltzmann's H function

'0

80

-- 1.0

P

Since me have solved the linea
'

ed B 1

for a multicomponent mixture of
riz o tzmann uationeq on

e can use t is result to calculate Boltzma ' H f
example we discuss is again for a bina mix-

ture with mass ratios p&1.5. F r numerical reasons
a er mass ratios and 5-function-like init' 1 d' '

cannot be treated in a straightf d . '
e
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x.o--I

However, the mass ratio determines the approach to
equilibrium: As time increases, H(r) H—~ decreases fas-
ter and faster as p, increases from p= 1 to JM =4 and re-
verses this behavior as p tends to infinity. The numerical
calculations for the H function show the time scales noted
earlier in the discussion of the velocity distribution func-
tion quite clearly. After a fast initial decay there is again
a much slower approach to the equilibrium value ob-
served.

&.5

-1.0
10 15

C. Energy relaxation in a ternary mixture

Finally we want to discuss momentum and energy re-
laxation of a ternary mixture to equilibrium. In contrast
to a binary system, where the mean velocities and the
mean-square velocities of the two components approach
their respective equilibrium values monotonically, we find
a new possibility in a ternary system. Because of the
functional dependence of these quantities on time (a sum
of two weighted exponentials with different decay rates),
they can have an extremum for special mass ratios and
concentrations. In Figs. 6(a) and 6(b) we show an example
where mi. rn2. m3 ——1:2:20and ci ——c2 ——0.25, c3 ——0.5. In
this case one component (the lightest one) acquires, for a
given period of time, more momentum or energy than its
equilibrium value.
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FIG. 6. For a ternary mixture with cl ——c2 ——0.25, c3 ——0.5,
m~.m2. m3 ——1:2:20 and delta functions located at U~ ———3,
v~ ——6, u 3 ———0.225 as initial conditions, the time dependence of
{a) the mean velocities and {b) the mean-square velocities is
shown. Note, that for the lightest component the equilibrium
value is not approached monotonically.

(x,y) =g cax~ (A 1)

and investigate the qu ulratic form (x, W x) for x~0

In this Appendix we want to show that the matrices
W, defined in Eqs. (27a) and (27b) have negative eigen-
values only, except for IVi and Wz, which have exactly
one zero eigenvalue each. To this end we define a scalar
product of x =(xiyx2$. . . yx„) and y =(yi,ypy. . . yyy)
by

(x, W~x) =g caurap~xaxp
c,p a,p

2(m mp}'"
X~Xp+m~+mp

m~ —mp

m~+mp
2—I x

Interchanging a and P in Eq. (A2) and adding the result-
ing expression yields

2(rn mp)'~
(x, $V x) = ——,

' g cr ~ cp (x —xp)
p m~+mp

g~p .——1—{m). m~ —mp

m~+mp

2(m mp)'~'
(A4}

m~+mp

0 {m) 2
~apCacpgapxa &

a,p
For the coefficients g' p' the following inequalities can be
easily proved
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and

o=g p&g p« . g p & . . for m +mp (A5) For m = 1 the above argument does not hold, since g "~
might be negative. However, (x, W&x) can be written in

the form

g p &g.'p+ ' for n)1, (A6)

Therefore we have (x, W x) &0 for
means that 8'~, n &3, has only negative eigenvalues.
For m =2 we have (x, W2x) =0 if and only if x~ =xp for
all a and P, i.e., x =const for all a. This proves that W'2

has exactly one zero eigenvalue with corresponding eigen-
vector x =(1, . . . , 1) [cf. Eq. (37a)].

0 2m(zm p x~
(x, W&x) = ——,

' g tr~pc cp
a, P m~+mp

Xp

Qmp

(A7)

which shows that W& has negative eigenvalnes only, ex-
cept one zero eigenvalue with corresponding eigenvector
x =(Qm), +m2, . . . , Qm„) [cf. Eq. (35a)].
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