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Shankar P. Das and Gene F. Mazenko
The James Franck Institute and the Department ofPhysics, The University of Chicago, Chicago, Illinois 60637

(Received 23 December 198S)

%e study the fluctuating nonlinear hydrodynamics of compressible fluids. Development of the

appropriate field-theoretical description for this problem requires treatment of nonlinearities which

arise through the relationship g=pV, where g is the momentum density, p is the mass density, and
V is the velocity field. %e show how this constraint can be naturally included in a field theory of
the Martin-Siggia-Rose type. %e analyze the structure of the resulting field theory using the avail-

able fluctuation-dissipation theorem. %e also develop the perturbation-theory expansion in powers
of the temperature and evaluate the contributions from the nonlinearities to one-loop order. %e
show that the theory is renormalizable in the hydrodynamic limit. This field-theoretical model is

used to systematically investigate the origins and viability of the nonlinear density feedback mecha-
nism first identified by Leutheusser as a source of the liquid-glass transition. While we find that the
nonlinear couplings driving this mechanism are present, we also find contributions, arising from the
nonlinear constraint relating I, p, and V, which cut off the mechanism. The cutoff arises from a
nonhydrodynamic correction not treated in previous work. %hile we find that there is no sharp
transition, we do find evidence for a rounded version of the transition.

I. INTRODUCTION

The development of an understanding of the nature of
the liquid-glass transition has been elusive. This is not
surprising considering the nonequilibrium nature of the
problem and the very strongly varying time scales. There
have been suggestions that glassy relaxation is universal. '

More recent experimental evidence suggests that glassy
relaxation should be classified along a continuum ranging
from "weakly" to "strongly" coupled glasses. The weakly
coupled systems show a much weaker power-law tem-
perature dependence for the viscosity than the more
strongly coupled systems which show an Arrhenius
behavior. The underlying physical distinctions among
these systems are not yet understood. There appears to be
some evidence that some of the more weakly coupled sys-
tems correspond to simpler, structurally lesy hindered sys-
tems. In this paper we use fluctuating nonlinear hydro-
dynamics to investigate the nature of the glass transition
in these simpler systems. Our main new result is that the
dynamical transition predicted in earlier work is even-
tually cut off when a careful analysis is carried out for the
full nonlinear problem.

Recently hope has been raised that a theory of the glass
transition in simple systems is evolving. The first step in
this evolution was the bold step by Leutheusser of assum-
ing that a very simple model, abstracted from previous
very involved work in kinetic theory, ' could be applied to
a very dense and low-temperature fluid. A similar model
was developed independently by Bengtzelius et al.
Analysis of this model indicates that it has an intrinsically
dynamic transition at higher densities with many of the
characteristics of the liquid-gas transition. While trans-

port properties vary strongly near the transition, the ther-
modynamic properties are insensitive to the transition.
Thus the viscosity diverges as one approaches the transi-
tion, while the structure factor and the isothermal
compressibility are very insensitive to the transition. The
large viscosity is only one of several features of this tran-
sition which identifies it with glass formation. One also
finds that transverse sound propagates in the "glass, " and
there is strong viscoelastic behavior.

While this model is extremely suggestive (and some of
the results appear to be quantitative~), it has no firm
theoretical basis and one does not know how to investigate
for corrections. In Ref. g it was suggested that the model
developed in Refs. . 6 and 7 could be understood in terms
of the nonlinear fluctuating hydrodynamics (NFH)
governing compressible fluids. Let us first make clear the
point that the glass transition is not intrinsically a
hydrodynamic —long-distance and long-tine —phenom-
enon. As one approaches the glass transition the freezing
occurs first at small or intermediate length scales. How-
ever, the effects of freezing should eventually propagate
out to scales" governed by hydrodynamics. Thus the hy-
drodynamic regime should be influenced by the glass tran-
sition. At least the hydrodynamic regime wi11 be pushed
out to much longer distances and times. An important
question is whether, as one approaches the liquid-glass
transition, the hydrodynamic equations must be supple-
mented through the introduction of additional "slow"
variables (like for example the staggered magnetization in
an antiferromagnet' as one approaches the Neel transi-
tion or the layer field displacement in a smectic-A crys-
tal' ) or whether the freezing is reflected in the equations
of NFH without modification. The identification of any
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new slow variable is more subtle than in previous exam-
ples since one expects any such variable will not show any
strong equilibrium behavior as one approaches the glass
transition and there will, therefore, be no associated sym-
metry change in the system. %Phile it seems likely that
there are additional variables which might be important in
more complicated systems, ' we restrict ourselves here to
the simplest case where we include only the hydrodynam-
ic variables and ask whether this simplest description is
sensitive to the hindered dynamics appropriate to the glass
transition.

In this paper we present the detailed calculations fol-
lowing up on the work reported in Ref. 8. We find some
significant differences from the conclusions drawn there.
These differences arise from a more careful treatment of
the model developed in Ref. 8. A full appreciation of the
origins of our new results requires considerable formal
development:

(i) In the next section we construct the equations of
motion appropriate for the fluctuating nonlinear hydro-
dynamics of compressible fluids in the absence of energy
fluctuations. Our results are similar to those found previ-
ously by Enz and Turski. "

(ii) We develop the appropriate field theoretic formula-
tion for this problem in Sec. III. This nontrivial step in-
volves a generalization of the Martin-Siggia-Rose' (MSR)
method to a case involving nonlinear constraints.

(iii) The results of Sec. II can be used to construct a for-
mal perturbation theory expansion in powers of k~T,
where T is the temperature, for the correlation functions
of interest.

Using these results we can investigate the influence of
the nonlineuities on the transport properties of the sys-
tem. Our main new results are:

(i) If one ignores all nonhydrodynamic corrections
(terms of higher order in wave number) then one easily
makes contact with the results of Ref. 8 and the earlier
works in Refs. 6 and 7. In this case there is a sharp
dynamic transition at a particular temperature or density
where the viscosity diverges with a power-law behavior,
the system becomes nonergodic for higher densities "in
the glass" and the hydrodynamic structure of the system
is modlf1ed slgnlf1canfly.

(ii) We have found, however, that there are nonhydro-
dynamic corrections, which have been ignored in previous
work, which, when taken into account, cut off the sharp
nature of the transition. The new picture, which results
when a complete analysis is carried out, is that the system
is ergodic for all values of the density and temperature
and, if one goes to long enough length and time scales, hy-
drodynamics is recovered in its conventional form. How-
ever, the role of the Leutheusser mechanism is not insigni-
ficant. Density Auctuations do tend to drive the viscosity
to larger values in a manner consistent with the experi-
mental results of Taborek et al. ' As the viscosity be-
comes large, however, one does not find, as speculated in
the previous work, that the Laplace transform of the
density-density correlation function goes as 1/co, where co

is a small frequency. Instead one finds, arising from
nonhydrodynamic corrections, that the correlation func-
tion is proportional to 1/(co+iyq ). Thus one obtains a

diffusive mode, the previous nonergodic behavior is des-
troyed and correlation functions decay to zero with a life-
time ~=(yq ) '. lt is important to realize that this result
holds only outside the true hydrodynamic regime which
has now been pushed to much longer times and dis-
tances. ' We find, in keeping with previous findings, '

that the longitudinal viscosity increases with a power-law
behavior I -(A,' —A, ) for k less than A,

' where A,
* is the

critical value of the coupling in the Leutheusser transi-
tion. However, as A, approaches A,

' there is a crossover to
a behavior I -(A, —A, ') which holds for A, greater than A, '.
I is smooth for A, near A,'. This behavior is discussed in
more detail in Sec. VIII.

In our analysis here we ignore the role of energy fluc-
tuations. This does not mean that we believe there is
nothing interesting' going on with the heat transport in
systems near the glass transition. Rather, we believe that
any strong dependences on the heat transport as one ap-
proaches the glass transition are driven by the density
fluctuations. We intend to include the heat variable in fu-
ture work.

While, from a formal point of view, we have been able
to set up a sensible perturbation-theory expansion, from a
practical point of view things are not completely satisfac-
tory. As we shall see, the theory is more complicated
than one might guess a priori. Indeed even at second or-
der in ka T things are too complicated to be worked out in
detail. More sobering is the fact that while the expansion
is systematic, it is in terms of a dimensionless expansion
parameter which is not small. Thus while things are
under control in a formal sense, they are not controlled
(quantitatively accurate) in a practical sense. Therefore,
while our conclusions are consistent, they cannot be con-
sidered definitive.

Much attention has been paid to the Kauzman para-
dox which is associated with the hypothetical tempera-
ture where the entropy of the supercooled liquid becomes
lower than that of the associated crystal. It should be
pointed out that the identification of such a temperature
and its relationship to any glass transition temperature
would require inclusion of terms in the effective Hamil-
tonian which could lead to crystallization. Since we as-
sume crystallization can be avoided, we do not include
such terms here, and can, therefore, make no estimate of
this temperature in our model.

While we set up the equations of NFH rather generally
in the next section, we restrict most of our analysis to the
simplest possible situation where the effective Hamiltoni-
an controlling the density fluctuations is quadratic and
where there are no gradient terms. %hile this will simpli-
fy the analysis a great deal and we will be able to get a
feeling for the structure of the theory, we do not believe
this wi11 give a good approximation for real dense liquids
where the structure factor has substantial structure away
from q=o. Indeed, as demonstrated by the work of Kirk-
patrick, one expects the slowness of fluctuations for wave
numbers near the peak in the structure factor to enhance
any instability. Thus a quantitative treatment of this
problem must include a more realistic treatment of the
wave-number dependence of the equilibrium correlations
than we give here.
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II. EQUATIONS OF NONLINEAR
FLUCTUATING HYDRODYNAMICS

FOR COMPRESSISLE FLUIDS

g;(x, t)= g P' (t)5(x—R (r)) (2.7)

While the Navier-Stokes equations ' have been well es-

tablished for over a century, the appropriate nonlinear
equations in the presence of thermal noise have only been
developed 2z recently. The case of incompressible fluids
has been extensively studied. As ~e shall sec, the general-
ization to compressible fiuids introduces some new com-
plexities which have not, to our knowledge, been dealt
with previously.

The first stage in our analysis is straightforward and
follows the development in Ma and Mazenko. i We as-
sume that the set of slow variables includes the mass den-
sity p(x} and the momentum density g(x). In principle,
we should also include the energy density, but, for the
reasons mentioned in the Introduction, we neglect it here.
p(x) and g(x) are components of a vector f; (where i la-
bels the type of field, the coordinate label, and the vector
index on g) which satisfy the generalized Langevin equa-
tion

where i is a vector label. It is straightforward to show
that p and g satisfy the Poisson bracket relations

tp{x),g;(x') j = —V',[5(x—x')p(x)], (2.&)

Ig;(x),plx') j =V'„[5(x—x')p(x)],

Ig, (x},gj(x') j =—VJ[5(x—x')g;(x)]

+V'„[5(x—x')g, (x)] .

(2.9)

(2.10)

In order to complete the determination of the streaming
velocities, we must specify the effective Hamiltonian
F[g]=F[p,g]. The momentum dependence of F is
governed by the requirement that p(x, t) satisfy the con-
tinuity equation

P = —Vg. (2.11)

Comparing (2.1) and (2.11), one finds that I +
——0, and

81nce

= V, [f] Q I';1 —+B;, (2.1)

where V;[f] is the "streaming velocity" representing the
reversible part of the equation of motion and given by

Vz(x)= g f d x'[p(x),gz(x') j
J gJ x

= —g J d'x' '|)',[5(x—x')p(x')]
5g;(x')

V [i)'1= g I 0 PJ j (2.2) = —g Vj„p(x)
5g, (x)

(2.12)

and Ig;,PJ j is the Poisson bracket between the "slow"
variables (see following for a more careful definition}. In
(2.1) and (2.2) F[g] is the effective Hamiltonian govern-
ing the equilibrium behavior of the P;. Thus equilibrium
averages of the fields P; at equal times are given by

JD~4~~ "'~='A4, » (2.3)

where

we require

5F gj{x)
5g, (x) p(x)

(2.13)

This leads to the natural assumption that F is the sum of
a kinetic energy term, F~, and a potential energy term,

Z g) ~
—P~I:fl (2.4)

is the partition function, P= (ks T), and D(f}indicates
a functional integral over the fields P;. The I;J in (2.1)
form a "bare" damping matrix and the e; are Gaussian
noise sources satisfying and

F=Fg+Fu

Fg=g Xg X PX

(2.14)

(2.15)

&e,{i)e,(r')) =2k, rr,,5(t —r ) . (2.5)

P(x, t)=rn g 5(x—R. (i)),

assuming the particles have mass m, while the momentum
density is given by

Evaluation of the Poisson brackets in {2.2) means in
pra«i« ' identifying the fields g;(x) with microscopic
variables g;(x), evaluating the Poisson brackets in the
usual way, and then replacing P; by the f;{x) in the re-
sult. For a classical fluid with N particles specified by the
phase-space coordinates R and P, o.=j.,2, . . . , X, the
IDass dcns1ty 1s given by

F„=F„[p(x)]. (2.16)

Vg(x) = J d x' Ig;(x),p(x') j
5p x'

Using (2.13),

+ g Ig;(x),g;(x') j
6F

5gj (x') (2.17)

5F g (x') 5Fu

5p(x') 2p'(x') 5p(x') '

The derivation of the kinetic energy term starting from a
microscopic point of view is discussed by Langer and
Turski. "

The streaming velocity for the current is given by
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and the Poisson bracket relations, we obtain

F„V'(x)=-p(x)V, " -gV (g,g /p).' 5p(x)
(2.18)

ten in the form

&g(x)= —g V, o,j(x)
J

(2.27)

The only quantity left to specify is the damping or dis-

sipative matrix I;J-. %e choose the I;J to give the ap-
propriate linearized theory. Therefore

I ~,(x)= I's.p(x) =0,
while

I s,s.(x)=Ltj(x)

= —i)o( —,
' V;VJ+5,JV )—gov;VJ

(2.19)

(2.20a)

(2.20b)

where rlo is the bare shear viscosity and go the bare bulk
viscosity. We define the bare longitudinal viscosity
I o=0o+4rlo/3

Our generalized Langevin equations then reduce to the
continuity equation (2.11) and

Bg; = —pV —g V (g g&/p) —g L;.(g~/p)+8;,1 & V

where the noise is Gaussian and satisfies

(2.21)

Each term on the right-hand side of (2.21) should be fami-
liar. If we assume that F„[p] is a local functional of p(x)
and V~p(x},

F„[p]=J dix f(p(x), Vp(x))

and define

=(V,p)H(p(*), Vp(x)),
V p

J

then it is straightforward to show that

pV;5F„/5p=V;P+ g VJ[H(V;p)(V;p)]

(2.23)

(2.24)

(2.2S)

where

—f +H(Vp) —V —Vp
z

2
(2.26)

In the absence of spatial fluctuations, Vp=0, we see that
(2.26) reduces to the usual thermodynamic expression re-
lating the pressure P to the free-energy density f. Thus
(2.26) serves to define the "fluctuating" pressure and the
first term on the right-hand side of (2.2S) gives the usual
force term in the Navier-Stokes equation.

The second term on the right-hand side of (2.2S) gives a
contribution which depends explicitly on the spatial fluc-
tuations in the system. The second term on the right-
hand side of (2.21) is just the usual convective term as it
appears normally in the equation for g. We return to this
in the following.

We note that the streaming velocity for g can be writ-

{,'8;(x, t)8 (x', t')) =2k TL; (x)5(x—x')5(t t') . —(2.22)

0'gg (x )=5'P +H Vip VJp +g(gj /p (2.28)

is the reversible part of the stress tensor and is manifestly
symmetric in i and j.

While the equation of motion for g; should be familiar
once we identify pV;5F„/Sp with the force term, the par-
ticular form of (2.21) looks a bit unpleasant because of the
explicit factors of p

' in the convective and dissipative
terms. Typically such terms are not evident because one
works with the velocity field V(x, t) which is defined by

g=pV . (2.29)

For the incompressible case, where p(x, t)=po, this rela-
tionship is trivial, but in the compressible case this non-
linear relation must be handled with care. In the next sec-
tion we discuss one way of dealing with this technical
problem. If we use (2.29) in (2.21) then we are dealing
with the set of equations given by the continuity equation
(2.11),

III. FIELD-THEORETICAL FORMULATION

The model we have developed is strongly nonlinear in
its structure and we want to study the perturbative correc-
tions to the linearized theory due to the various nonlinear-
ities. The approach we will follow is in its general struc-
ture, now standard and first described by MSR. '6 The
development allows one to develop the theory in the stan-
dard field-theoretical form and to carry out perturbation
theory in a manner that facilitates conventional renormal-
ization methods.

While the general method is standard, it is also a bit
involved. We therefore give a quick review of the basic
steps in the formulation, which allows us to set up some
definitions and conventions.

Let us, for the moment, return to the general case
where we have an equation of motion of the type

a (1) =Hi[/]+8(1) . (3.1)
Bti

where the index 1 labels space, time, and any other index
carried by the field t/i. Averages of the form
(g(1)g(2) . P(&) ) correspond to averages over the
noise source 8(1)

(G(y))= f D(8). ' G(1J),
Io

(3.2)

where G(g} is some function of f, which, in turn, is a
function of 8. Io is defined such that (1)=1, and the
Gaussian nature of the noise requires that the weighting is

= —v P —g v, [(H v p vp)+pv v, +L,,v ]+8,
J

(2.30)

and the nonlinear constraint (2.29).
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given by

Ao(8}=—f 11f 128(1)I '(1,2)8(2) .

Using the identity

(3.3)
(P(1)g(2) . P(&)}

1 5 5
ZU 5U(1} 5U(2} 5U(N)

3.7

pie, an N-point correlation function is generated from ZU
Qsmg

D 8 2e =0
58(1)

(3.4)

and, assuming I (12) is symmetric, it is straightforward
to show that the autocorrelation of the noise is given by

ZU, given by (3.6), is not very convenient for generating
the perturbation-theory expansion. We can transform it
into a more manageable form by using the identity

-~,(e)
8

(8(1)8(2)) =2kii Tl (1,2), (3.5)
=I~ D exp — 1 2 1 'I 12 2

as required by (2.5). The generating functional for all of
the correlation functions of interest is of the form +i8(1)17(22)5(12)] (3.8)

The left-hand side is obtained by completing the square in
the fi integration and choosing I2 to cancel the constant
coming from the resulting Gaussian integration. We have
seen that

Z I g) e 0
exp 1 U

I

where I& is some normalization constant, and, for exam-
l

Ze=I&le f 2)(8) f 2)( d)exp f dl U 1() did)e xp —f dl f d2[(3(l)P P(1,2)()(2)+(8())3(1,2)()(2)] . (39)

The final step in transforming ZU is to change variables
of integration from 8 to g. We will use a "causal" con-
tinuation from discrete to continuous time where the
Jacobian of the transformation is a constant and obtain

Specializing to the fiuid case, where 1=(xi,t i ), we note
that the density variable is a bit peculiar since there is no
dissipative coupling (I + ——0) associated with it. There-
fore the only appearance of p in the action is in the form

(3.10) i 1p1 (1) +V g(1) (3.14)

where I3 is a constant, and

A [$,212]= f 11f 12$(l)p 'I'(1,2)1()(2)

+E' 1 1 1 — 1U 1 1

We then replace the noise, using (3.1}in the form

so that

AU[((fi, f]= f 11f 12$(1)p '1(1,2)f(2)

(3.11}

(3.12)

and the functional integral over p reduces to a 5 function-
al enforcing the continuity equation.

Similarly the relation g=pV is enforced via a 5 func-
tional constraint. One has then, in ZU, the construction

—i IdlykiH)[y) f D(/ g 5( /)
X

At this point, after integrating by parts, so that L,," and
—VJ operate on g; in f(1)Hi [)],one can set g; ~pV; in
the "equation of motion" H, [g]. Finally we introduce
the additional fileld V;(x, t} in the integral representation
for the 5 functional 5(g —pV) which generates the term in
the action

+i 1 1 4(1}—Hill] i f 1 1 g V;(1)[g;(1)—p(1)Vi(1)] . (3.15)

1U1 1 (3.13)
The action, in tlm absence of the source term propor-

tional to U, is given then by

e

A [2fi,g]= f 11 gg;(1)p 'L;,(1)gj(1)+ip(1) +V).g(1)
Bt)

+i gg;(I) g;(I)+p(1)V'& + g IV'i[p(1}V(1)V,(1)]j+L;,(1)V;(1)
Bti 5p(1)

+ i g V;(1)[g;(1)—p(1) V,(1)] (3.16)
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A key reason for changing over to this formalism is
that AU is a polynomial in the P and P's, and standard
field-theoretical methods can be used. If we carry out the
rescaling

F„[p]=—,
' f d xX '(5p) (3.17)

whe«5p(x) =p(x) —po. The potential energy density then
reduces to f= —,'X '(5p) and the pressure is given byi9

1((1)-P-'"y (1), P =pent '5p+ —,
' X '(5p)i . (3.18)

f(1)~ f'( I ),1

we see that the quadratic components are of 0 (1) and the
higher-order terms are of O[(k&T)"~ '] where n is the
power of P in the nonlinear term. Thus we can systemati-
cally compute corrections to the Gaussian theory in
powers of AT.

As discussed in the Introduction, we study here the
simplest case where the potential part of the effective
Hamiltonian is quadratic and local:

As pointed out in Ref. 8, it is the nonlinear term in (3.18)
which drives the density feedback mechanism proposed to
explain the liquid-glass transition. Putting the quadratic
form for F„ into the action (3.16) generates a cubic term
of the form i g,. g;(1)—,'X 'V;(Sp) .

In characterizing our field theory it is useful to intro-
duce some notation. Let 1i (1}be a vector where a runs

over p, p, g;, g&, V;, and V; and 1 labels space x] and time
ti. We also use the notation a to indicate a set including

the hatted variables j, g;, and V;. The action can then be
written in the symmetrized form

3 [Q]=—,
' f d 1 f d2 + 1( (1)[G p'(1, 2)]'gp(2}+ —,

' f d 1 f d2 f d 3 g V p„(1,2, 3)g (l)gp(2)f~(3)
a, P a,P, y

+ l f d 1 f d 2 f d 3 f d4 y. V.p„„(1,2, 3,4)y.(1)yp(2)Q, (3)f„(4), (3.19)

where the [6 '( l2)] are given explicitly in the next sec-
tion. The symmetrized cubic vertices are given by

V~py(1, 2, 3)= —,
'
[ V~pr(1, 2, 3)+ Vp r(2, 1,3)

+ Vyp (3,2, 1)+Vamp(1, 3,2)

IV. LINEARIZED THEORY

The linearized theory is generated by neglecting the cu-
bic and quartic couplings in the action A [P]. Defining
the correlation functions

+ Vp„~(2,3, 1)+Vr~p(3, 1,2)], (3.20)
G p(1,2)=(it (1)fp(2)), (4 1)

3

V p~(1, 2,3)= g V"p„(1,2„3) (3.21) it is trivial to show for the Gaussian theory, denoted by
the superscript 0, that

with

V~py(1, 2,3)=i g5 -()"i 5(1,2}5(1,3)5pp5r p

g f d3[G '(1,3)] ~G„p(3,2)=5 p5(1,2) . (4.2}

from the pressure term (3.22)
After Fourier transformation over space and time, (4.2)
reduces to

Vapv(1 2 3)=ipo+5 ",Vi5p, v5r, vj5(1~2)5(1.3)

from the convective term, and

(3.23)
g [G '(q, co)] „G„p(q,co)=5 p,
y

(4.3)

V~pr(1, 2, 3)= i +5 - 5p p5—y v (3.24)

from the nonlinear constraint g=pV. The symmetrized
quartic vertex is —, the sum of all pair-wise permutations

of the set of variables (a, 1), (P, 2), (y, 3), and ()Li,,4) label-

ing the unsymmetrized vertex V~pzz(1, 2, 3,4) where

V prp(1, 2, 3,4)

=i +5 -5pp5r vs v~7'i[5(1, 2)5(1,3)5(1,4)] .
l,J (3.25)

where the matrix elements [G '(q, ~)]op are given;„
Table I.

The inversion of the matrix (G ') to obtain G is fa-
cilitated by the realization that the transverse and longitu-
dinal components of g, V and their hatted counterparts
can be treated separately. The transverse components,
q.g, =0, do not couple into the density and its hatted con-
jugate p and one easily finds the various correlation func-
tions given in Table II.

We note several properties, valid for the G, which hold
quite generally:
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TABLE I. The inverse of the zeroth-order matrix 6 p.

P
gr'

V;

P
gf

Yf

0
0
0
0

iLfJ-

—ipj

0
0
0
0

qJ.C p

iLc~

0
2P 'I.;;

0

0
i5;,

—Epp5]~

0
0

6&& (q, pi)=0
f j (4.4) Gr, p 2& 'r)oe'

~ +(rjpq /pp)'
(4.5)

and the 6&& and 6& &
act like, and we shall refer to

i j j
them as, response functions. Note that they are either re-
tarded or advanced. 6& & (q,pi) is analytic in the lower

half of the complex ro plane.
We also note, for example, that the transverse current

correlation function,

has the usual hydrodynamic form. '2

The longitudinal correlation functions can also be
worked out explicitly and are given in Table III. The ana-
lytic structure is the same as in the transverse case, but
the spectrum now involves the traveling waves associated
with sound propagation.

V. PERTURBATION-THEORY EXPANSION

Finding the corrections to the linearized theory due to the nonlinearities amounts to the development of standard
Feynman-graph methods for handling a theory with an action

AU[%] = g —,
' %(1)Go '(l, 2) Il(2)+ —,

' g V(1,2,3)W I )p(2)'p(3)+ -,
' g V(1,2, 3,4)p( 1 )p(2)+(3)%(4)—g +(1)U(1)

12 1,2, 3 1,2, 3,4

(5.1)

where we have included a source term, and, in this section only, have incorporated the index a& with xi and ri into the
single index 1. Defining the generating functional

Ut ] (5.2)

the correlation functions of interest are given by

6(1)=, i~,=&W1)&,5

which vanishes by construction as U~O if we include 5p(1)=p(1)—(p(1) ) in our vector 4, and

6 (12)= 6 (1)= (5%(1)5%(2))
5

(5.3)

(5.4)

where 5%(1)=%(1)—(%(1)). The perturbation-theory development is standard. In the end one can set the source equal
to zero and obtain the set of equations:

g 6 '(1,3)G (3,2) =5(1,2)
3

(5.5)

6 '(1,2)=Gp '(l, 2)—X(1,2)

defines the self-energy X(1,2). The self-energy is given by

X(1,2)= —3g V(1,2, 3,4)6(3,4)+ g V(1,6,3)6(3,4)6(6,5)P(4, 5,2)
3,4 3,4,5,6

—2 g V(1,3,4, 5)6(3,6)6(4,7)6(5„8)r(6,7,8,2)
3,4, 5,
6,7, 8

—g V(1,1',3,4)6(1',9)6(3,6)6(4,5)P(5,6,7)6(7,8)P(8,9,2),
3,4, 5,
6,7,8,
9, 1'

(5.6)

(5.7)
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where the three- and four-point vertex functions are given by

I (1,2, 3)=2V(1,2, 3)—3 g:"(1,2, 3,4)6 (3,5)6 (4,6)P(5,6,3)+ g:-(1,2,4,5)6 (4,6)6 (5,7)l (6,7,3), (5.8)
4, S,6

P(1,2,3)=I (1,2, 3)+ g I (1,2,4,5)6(4,6)6(5,7)l (6,7,3),
4, 5,6,7

4, 5,6,7

(5.9)

I (1,2, 3,4)=:-(1,2, 3,4)+ g:-(1,2, 5,6)6(5,7)6(6 g)1 (7 8 3 4)
5,6,7,8

(5.10)

and S. Continuity equation

5X( 1 2)
56 (3,4)

(5.1 1)

It is straightforward to then generate the graphical expan-
sion for X as a power series in the Vs and the fully in-

teracting 6's. Here we shall only need the lowest-order
graphs in this expansion. These are given in Fig. 1. As
we shall see below, despite the compact simplicity of the
notation we have used, there are many contributions even
to one-loop order.

VI. NGNPERTURSATIVE RESULTS

The field theory we have constructed is rather compli-
cated and involves a large number of objects: the correla-
tion functions, G~, and the "response" functions G~
and G~. In this section we indicate the degree to which

the theory can be simplified.

If we use the general identity

D P ~
—~If) 0

5/41}

we obtain

Setting a =p, and using (3.13) to obtain

5W =i (1)+V.g(1)
5p(1) Bti

we find

1 Gpp(1, 2)+Vi G~y(1,2) =5p 4(1,2),a
ar,

(6.3)

(6.4)

(6.5)

(6.6)

A. Symmetry

The first important result is that

which is a restatment of the continuity equation. Fourier
transforming over space and time, we find

6 p(q, c0)= —6~(q, r0) . (6.1)
+a)Gpp(q, ai) —q 6~(q, c0)=5p -. (6.7)

The derivation of this result is given in Appendix A. As
can be seen from Tables D and III, (6.1) is satisfied at
zeroth order. It is then clear from the Dyson's equation
(5.6), defining the self-energies, that

Thus we have a simple relation between Gzp and the long-
itudinal part of G~.

C. Fluctuation-dissipation theorem

X &Qq, co)= —X~(q,co) . (6.2}
In a number of problems there is available a

fiuctuation-dissipation theorem (FDT) relating G~ and

TABLE II. The transverse part of the zerath-order matrix
6 p. 8'o ——Ppa)+iq go.2

V,

X(I2) = 2-

V,

2P 'goy'po

8'o 8'o
&P 'g(e'po

'os'o

Po
8'o

Ro

&0 'goq'po

Wo 8'o
2P 'g(g'

W'ohio

1

'o

ICE

8'o

Po

$Vo

1

W'o

lN
8'o

+(-4)

FICx. 1. The diagrammatic expansion for the self-energy

given in (5.7}up to second order in ( k~ T}.
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TABLE III. The longitudinal part of the zeroth-order matrix G~p. Do ——po(co —q co )+i coq I o.

2P 'I oq'po

DoDo
2P Ioq ~po

DoDo

2P I oq capo

DoDo
—(pea) —«I oq )

—qpp

D Q

—I pq'

2P I oq capo

DoDo
2P-11 +2 2~2

DoDp

2P Ioq popo

DoDo
—qcopo

Dg
—capo

D+
—coI oq

Dg

2P I oq copo

DoDo
2P I oq co po

DoDo

2P 'I oqicoi

DoDo
2—qcp

D Q

DQ

«(~' —q'c,')

P

pgco+ I oq

Dp

qcopp

Do

qcp

Dp Dp

r~'
Do

NI 1

Dp

+i(a) —q co)
Dp

G~. In the present case, as shown in Appendix 8, one
has the fiuctuation-dissipation theorem

Gi;p(q, co) = —2P 'ImG-&(q, ~) (6.8)

where p is an unhatted variable. It is straightforward to
verify that (6.8) is satisfied by all of the zeroth-order
quantities in Table II. Using (6.8) we can relate a number
of the response functions and correlation functions.

q ri=q rio+iX~(q, co) .

We also find that

MpG~—

where

M p
———(M~)" .

(6.17)

(6.18)

(6.19)

D. Transverse self-enerlies

The full matrix G can be divided into its longitudinal
and transverse parts as in the linear case (Sec. II). In a
similar fashion the self-energy X ~(q, co), where a; and

i J

pj are in the set of vectors (g;,g;, V;, V;) and i and j are
vector labels, can be written in the form

in keeping with the general symmetry relation
G,p

———(Gp )'.
The correlation functions are given by

.,
5"""

where the matrix C is given by

X .p(q, co)=qqJX p(q, oi)+(5;, q;q, )X gq, oi—) . (6.9) C--= —X--+5--~--2P q bio
—1 2 (6.21)

G &(q,oi)= (6.10)

where the M
&

are given by

Since the transverse case contains only the components of
the vector fields, it is less complicated and we will consid-
er it first.

Using the simplification discussed above, we can invert
(5.6) to obtain the response functions in the form

We use the FDT, (6.8), in (6.20) to obtain, after multiply-
ing from the right by G~ ' and from the left by IV,

—i

g Mvp&p- ——,g Im(M-pW)(G~' ) . (6.22)

This equation can be solved to give the matrix C, which
depends on the self-energies of the form X-&, in terms of
the self-energies between hatted and unhatted fields on the
right-hand side of (6.22). Using the result

M -=pT,
8R

2M -=q&,
gV

(6.11)

(6.12)

(6.13)

(6.23)

derived in Appendix A, we find that (6.22) rixluces to the
relations

M -=is,
VV

while

8'=pT~+iq g,

(6.14)

(6.15)

X -(q,co)=0,

X--(q, co) —AX „-(q,co) =2P 'X~(q, co),

AX- -(q,co)+X -(q, co) =+2P 'X- (q, co),
g V

(6.24)

(6.2S)

(6.26)

pT po i X-„(q,—c—o), — (6.16) where, as usual, the single and double prime indicate the
real and imaginary parts. %e can use these two relations
to obtain the expression
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2P
—1

G~(q, oi) = Re{prG -)—
N Of

DiX- - =+2p 'N~Re(pL N~)+
~ N~

~

C-

where

(6.40)

while

Gyp(q, co) =2P 'ImG~,

Gyg(q, co) =2P 'ImG -,
(6.28a)

(6.28b)

which follows from (6.8) and (6.1). Thus, using the
fiuctuation-dissipation theorem, we can express all the
correlation functions in terms of the "response" self-
energies, with exception of the X"-/co term in (6.27).

with the matrix N given in Table IV, and

E. Longitudinal case

In the longitudinal case we follow a procedure similar
to that in the transverse case. However, this case is more
complicated since we have three fields (p,g, V) in both the
hatted and unhatted sets. Inverting the 6 ' matrix in
(5.6) we obtain the response functions in the form

G &(q,~)= (6.29}

D ) ——N"-X~+X' -X~, (6.41)

and we have, for clarity, suppressed the index L on the
X's. We have not succeeded in finding useful simple ex-
pressions, as given by (6.28) in the transverse case, giving
G~, G~, and G~ in terms of the response functions.
This can, however, be achieved in the hydrodynamic lim-
it. The DDT can be used to express Gi&, Gis, and Gvv
simply in terms of G-, G-, and G~, respectively.

gpss of 0 g

F. The hydrodynamic limit

We now analyze these self-energy relations in the hy-
drodynamic limit. In the transverse case, where the hy-
drodynamic pole is diffusive, we are interested in the self-
energies X (co-q', q) as q~O. In the longitudinal case
one has a traveling mode and we are interested in the
self-energies X (oi-cq, q) as q~O.

I. Transverse case

D =pi, (co' q'c')+—il. (a)+iqX~ },
Vp

I.{q, co) =q I'o+iX~(q, c0),

qc'(q, co) =qco+X- (q, co),

pr, (q, co) po i X —(q, o)-) .

Similarly

where

N p (N p)'. ——

The correlation functions are given in this case by

(6.30)

(6.31)

(6.32)

(6.33}

(6.34)

(6.35)

The hydrodynamic hmit is easily accessed if one identi-
fies the explicit factors of q and c0 necessitated by a sym-
metry and the conservation laws. We have, for example
that

X~—— iq2y~—(q, co),

X--(q,co) = —q y--(q, e),T

X -(q,co)=q y -(q, co) .
gV ' gV

(6.42)

(6.43)

These results follow from conservation of momentum
which says that every external g; vertex contributing to
X(q, co) will supply a factor of q;. Since the system is
isotropic one finds that all X-@ must be of 0(q ). We
then use (6.24}—(6.26) to obtain conditions on the y's as q
and ai go to zero. From (6.25) we obtain

(6.36)
y, 5

where the summations are over p, g, and V. C is given
by

y- -(0,0)=2P 'y g(0,0),
while (6.26) gives

X- -(0,0)= lim —2P 'X- (O, co) .

(6.44)

(6.45)
C-"=—X-"+5--5" -2P q I'o (6.37)

and is zero if a or P equals P. So C has only four
nonzero elements.

We can then, as in the transverse case, use the I'DT to
obtain expressions for the elements of the matrix C~ in
terms of the self-energies, X & which determine the
response functions. After notmg that X-- and X-- areI. L

gg VV
real and X„- imaginary, and carrying out some algebragV
we obtain the relations

This tells us, since X--(0,0) is nonzero and finite, that
VV

X- (0,0)=0.
Using (6.44) and (6.45) we can write down the trans-

verse correlation functions in the hydrodynamic limit in
the same form as the zeroth-order result given in Table II.
po and qo are now replaced by their renorrnaiized counter-
parts pT and g, respectively. The renormalized q is given
by

DiX'-' =2p 'N"-Re(pl N~)+Im(N -N~)C-', (6.38)
Vg VV g VV g Vg '

D, (X--—2P 'X~)= —2P 'N"-I (pmN'-)
gg g VV VV

i}=no+y'- p(0 o)

ri=rio+ z Py-"(0 0)

(6.46)

(6.47)

+[N -i C'-„, (6.39)
while
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pz. (0,0)=po+X-„(0,0) . (6.48) G~(q, co) =+2p 'X~(q)lmG- (q, co), (6.62)

X~———&q y,
2QAA~ ~g fAA

gg gg '

&pg =trpb

A ~q jl A

pV pV
'

C-' =2P 'q2yL .

(6.49)

(6.50)

(6.51}

(6.52)

(6.53)

2. Longitudinal case

As in the transverse case we can extract certain explicit
factors of the wave number using the conservation laws

and symmetry. %'e have

where P~(q) is the Fourier transform of (5p(x)5p(x') ).

VII. ONE-LOOP THEORY

In the last section we derived a number of relations
among the different self-energies. In this section we
evaluate these self-energies explicitly to 0 {ka T). We then
identify those contributions which appear to be important
as one approaches the glass transition and we also verify
the self-energy relations found in the last section.
shall restrict ourselves to one-loop order [0(ka T)] in our
analysis. Higher-order corrections can be generated fol-
lowing the development in Sec. III. We assume a "fiat"
static structure factor

Starting with (6.38), we find, since X'-' must vanish as
Vg

0 (q co) for q and co going to zero, that

y~(O, co) = —y"-(O,co)y'-'„(O, co)ho (6.54)

yVV ~py' -(0,0}/c
pV

(6.55)

where the renormalized density ls

p(0, 0) =po+ X'-' (0,0),

and the renormalized speed of sound,

c =co—y'-(0, 0},
pg

(6.39) reduces to the result

,
y"-(0, )

y--(0, 0)—2P 'y p(0, 0)= lim 2Pgg Q)~p Q)

and (6.40) reduces to

(6.56}

(6.57)

(6.58)

C- -(0,0)=—2P-'py' (O,O)/c'.
VV pV

The renormalization of all of the correlation functions
in the hydrodynamic limit simply involves the replace-
ment polyp conc, and I o~l' in the zeroth-order re-
sults, where I' can be computed as

(6.59)

I = I o+y~(0,0)+ lim
op~p

py"-(O, a) }
(6.60)

I = I o+ —y--(0, 0) .
gg (6.61)

We can, because of the interrelations among the self-
energies, compute the nonlinear correction to the viscosity
by analyzing either X-- or the response self-energies X~gg gY
and X- . In the next section we will calculate the one-loop

gp
contribution to these renormalized quantities.

Note that in the hydrodynamic limit the correction
function 6~ can be computed as

po/c, q ~A
X~(q)= O, A

where A serves as a large wave-number cutoff.
We use the diagrammatic expansion discussed in Sec. V

to obtain the contributions to the self-energy matrix to
one-loop order. In Fig. 2 all such diagrams that can be
d~awn for the four vertices, given by (3.22)—(3.25), are
listed. They are either the bubble-type diagrams or a
Hartree-type diagram with one correlation function closed
on itself. As before, we divide the self-energies into longi-
tudinal and transverse parts and consider the transverse
case first.

A. Transverse case

As shown in the last section the effect of nonlinearities
is to renormalize the shear viscosity and the ambient den-
sity. As shown in Sec. VI, the correction to the viscosity
can be obtained from either X~ or X--. In the present
situation, where we are considering a flat static structure
factor, the contribution to the transverse parts of these
two self-energies came only from the diagrams involving
the convective vertex (3.23). These contributions have
been extensively investigated in the context of mode cou-
pling theory and incompressible fluids. One finds the
usual long-time tails in three dimensions, while for two
or less dimensions there are serious divergences in the
small q and co limit and conventional hydrodynamics
breaks down. This means that such contributions must be
treated carefully and will compete with the nonlinear den-
sity feedback mechanism in low-dimensional systems. We
shaH assume thai in three dimensions the contributions
generated by the convective nonlinearities simply renor-
mallze YJp.

In the flat spectrum case there is no coupling between
the shear viscosity and the density fluctuations. Such a
coupling is generated by gradients of the density in the ef-
fective Hamiltonian F„[p]. Such a model will be treated
elsewhere.

Next we consider the renormalization of the density,
which from (6.48), is given by X-„(0,0). Evaluating the

four graphs contributing to this self-energy, shown in Fig.
2, in the small q and m limit, we obtain, using the zeroth-
order correlation functions,
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+2„
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+
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~
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V)
+
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Vj~ V;

A

V)

FIG. 2. The diagrams contributing to 0 (,k~ T) for all the different elements of the self-energy Inatrix.
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p=po 1 — i, [Al —tan '(Al)]
$23c 3

where

l =[iso(ih+ I o)]' l(Poc)

is a length.

(7.2)

(7.3)

have a convective vertex in it. Instead it involves the den-
sity feedback mechanism identified by Leutheusser6 and
in Ref. 8 and is given by

X--(q,oi)

=qipy i f— f,G~(k, oui)
(2ir)'

8. Longitudinal case

In this case the renormalization of the longitudinal
viscosity comes from either X& and X- or X--. As inf fP ff
the transverse case, the diagrams involving convective ver-
tices give constant contributions in three dimensions and
they can be absorbed in the renormalization of the bare
transport coefficient I o. All the contributions to X- are
of this type. The first diagram for X-- in Fig. 2 does not

)(G~(q —k, co —&t) ~

(7A)

Comparing (6.60) and (6.61), one finds that there must be
a related contribution in X. It is given by the flrst
graph contributing to X in Fig. 2. Using these results
we can define an effective longitudinal viscosity which
can, using (6.60) or (6.61), be written as

dtoi f dorp f d&k G~(k, oii)G~(q —k, o)i)I'(q, oi )=I o+ijR
217 2K (2ir) to —oi~ —top

(7.5)

or

I (q,oi) =I'o+~ f dt e'"' f i G~(k, t)
Q (2~)'

x6~(q —k, t)

(7.6)

y- =lim —X'- (q, 0) =, (IT+IL)}, e

q o q "& 3P 'p
(7.7)

with

I,=f, G (k,n)G' (k,&),
(2m)i 2ir

(7 8)

where I'o contains the constant contributions from the
other diagrams. We shall look at the consequences of this
nonlinear coupling between the longitudinal viscosity and
the density correlations in the next section.

We consider next the renormalization of the sound
speed as indicated by (6.67). This requires evaluation of
X'- . Explicit evaluation of the seven graphs contributingfP
to X- in one-loop order (see Fig. 2), shows thatfP
lim~ oX'- /q=0. Thus the hydrodynamic sound speedfP
remains unchanged at one-loop order. The renormaliza-
tion of the density is the same as in the transverse case.
This completes the one-loop determination of the dif-
ferent quantities contributing at leading order in the small
oi and q limit. We want, however, to consider a particular
nonhydrodynamic contribution that will play a key role in
our analysis in the next section.

The 0(q) contribution to X -, for fixed co, from the
pV

one-loop diagrams can be conveniently computed from
X- - using (6.59). Evaluating the graphs for X„-- given inVV
Fig. 2, we obtain the explicit expression for y -:

pV

It. ——f G~(k„Q)Gyy(k, 0) .
2m 2m

(7.9)

Using the zeroth-order expressions for the different corre-
lation functions one finds that

Ir ——
2 [Al —tan (A/)]

P-'po

3c n rlol

poP
'

A

3c'm I o

with l given by (7.3).

VIII. IMPLICATIONS
FOR THE GLASS TRANSITION

(7.10)

(7.11)

Having identified the contributions to the various self-
energies in the one-loop approximation, we can now look
at the implications of these results in the case of a very
dense system. There are two main points we want to
make. The first point is that we can make direct contact
with the model proposed by Leutheusser and others to
describe the liquid-glass transition. The second and very
important point is that we find an additional contribution
which acts to cut off the dynamical transition predicted
by the Leutheusser model. Its physical interpretation
seems to be associated with the development of a nonhy-
drodynamic diffusive mode. The most important con-
clusion of this paper is that there is not a sharp dynamical
transition in our model as one lowers the temperature or
increases the density. However, at least within the context
of the oversimplified model we analyze in this section,
there are strong remnants of this transition and the overall
behavior looks very similar to that found in recent experi-
ments. '

Any model which includes the density fluctuations
which drive Leutheusser's mechanism must include
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a&here

y(q, to)=
~ f dt e' ' f i G—~(k, t}cP;g d'k 1 d

3p P (2n'} k

x —„G~(q—k, t), (8.2)
dt

and we could write a similar expression for yr(q, co)
which reduces to (7.8) in the hydrodynamic limit. It is
clear in the simplest model, while there is a fiat structure
factor [see (7.1)] and no coupling between the density
feedback mechanism and the transverse viscosity, that yr
will be insensitive to any glass transition and X -(q, co)

will, in the sense discussed in detail below, cut off the
transition. Since we expect, in a more realistic model,
that the shear viscosity will be coupled back to the densi-

ty, the lack of sensitivity of yT to the feedback may be
misleading. In other words, if one couples the density to
the transverse fiuctuations, yr may be driven to zero as
one approaches the glass transition and X - may not

modify the nature of the transition. To test this possibili-
ty we will set yr ——0 (which requires rip very large) and
ask whether y is driven to zero as one approaches the
transition. We assume for the rest of this section that

(8.3)X -(q, co)=qy(q, pi)
pV

with y given by (8.2}. With this set of assumptions we
find, using (6.33}and Table IV, that

pto+iq I'(q, co)

p(p)2 cq )+iq2I —(q, to)[a)+iq y(q„oi)]

(8.4)

and we can use (6.62) to determine Ge~(q, to). Thus we
have a set of nonhnear equations for I,~y, and G~ which
appear to give the dominant contribution in the high-
density and low-temperature limits. In gaining a feeling
for these equations it is useful to follow the original
analysis of Leutheusser. First let us ignore the contribu-
tion from y and assume that the viscosity is, as we make
the system progressivdy denser, growing larger. Then,
for fixed wave number, we eventually reach a point where
co is small compared to I q and (8.4) reduces to

nonhydrodynamic corrections. Thus we must allow for
the frequency dependence of the viscosities. We will,

however, be somewhat discriminating and only include
the frequency dependence associated with the density fluc-
tuations in the contributions to I (q,co). We assume that
the other contributions to I'(q, pi) ean be absorbed into an
additive bare contribution and start with (7.6) as our basic
approximation for the longitudinal viscosity. We assume
that the density and speed of sound are simply constants p
and c.

It will be crucial that we include in our analysis the
contribution to the self-energy X -. This term is negligi-

pV
ble in the hydrodynamic limit, but, as we shall see, plays a
crucial role near the "glass transition. " Using the results
at one-loop order we can write, as finite q and co generali-
zations of (7.7)—(7.9):

(8.1)

TABLE IV. The matrix 5 "determining the response func-
aP

tiou 6
&

in Eq. (6.29).

p

V

pL6)+/I
pL, qe +I.X-

Vp

qc +EcoX~
Vp

pLq
pL6)

e+iqX-
Vp

i(co~ —q~e )

G -(q, to)=[to p—ci/iI'(q, to)] (8.5)

Notice that G -(q,co}, as given by (8.5), has no explicit
PP

dependence on wave number if the static structure factor,
which is inversely proportional to c, and I'(q, co) are
wave-number independent. One obtains self-consistency if
the correlation functions inside the integrals in (7.6) and

(8.2) are taken to be independent of wave number and they
can be rewritten in the forms

1(to)=l p+M f e'"'$2(t)dt, (8.6)

y(to) =—f dt e'"'[p(t)]i= —1(pi)
3

(8.7)

where f(t) =G -(t), the coupling A, is defined by

(ks T)A~

6m pc2
(8.8)

or

P(t) =t &pe(t)+y„(t) (8.9a}

TA&LE V. The longitudinal viscosity I, I, and o [see Eqs.
(8.7) and (8.13}]as a function of A, resulting from a numerical

integration of (8.11). The values of q/A used was —,
' .

0
I
2
2.5
3
3.5
3.75

4.25
4.5
5
6
7
8
9

10

0.4054
0.1434
0.0837
0.0443
0.2247
0.0166
0.0132
0.0113
0.0106
0.0090
0.0076
0.0071
0.0067
0.0065
0.0064

0.56
0.292
0.190
0.158
0.133
0.114
0.106
0.099
0.093
0.088
0.079
0.067
0.058
0.052
0.047
0.043

1.0
2.0
44
7.4

13.8
29.6
44.0
62.9
84.2

103.8
152.1
248.4
342.6
435.8
526.6
616.7

Returning to our analysis of (8.4},we easily see that this

equation, with (8.6) and y =0, leads to a sharp glass tran-
sition. This follows after making the assumption that

f(t}can be written in the form
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(8.9b)

Inserting this ansatz into (8.5) and (8.6) and expand»g in

powers of g„, one is easily led to a determination o
and the value of the coupling (A,

' =4) where the solution
(8.9) is first valid. It is even more convincing i one
rewrites (8.4) and (8.6) in the time domain where they can
be expressed in terms of the single equation

0(&)+)"40(&) +))(&)q ++2 J p~(t)g(t r)dr=—O.

(8.10)

One can solve this equation numerically and veri y that
one does reach the instability postulated in the frequency
domain. We show g(t), resulting from (8.10), in Fig. 3 (in
dotted llncs) fol various cholccs of A, flcal' tllc trallsltloil.
For A, =4 the viscosity diverges. For A, ~4 the system is
nonerg 'c anodi and g(t) does not decay to zero for long times.

fs. 6—9These results lead to the picture developed in Re s.
for the glass transition. Let us now return to (8.4) where
we retain the nonhydrodynamic quantity y and again loo

at the situation where I becomes large. In this case, on
letting I become arbitrarily large, we find that

16 -(~)=
QP+ if/

One might conclude at this point that all of the discus-
sion of a dynamical glass transition is incorrect and one
should move on to look for other mechanisms to associate
with glass formation. We believe that this is too pessimis-
tic a point of view. It is true that there is no sharp transi-
tion, but, as we now indicate, there is evidence that the
basic mechanism does lead to a slowing down similar to
that seen in the fragile glass systems. The basic idea,
which we test numerically below, is that as one increases
A, there will be a range where I (0) will increase sharply
and one will see a decrease in I(0)-I'(0) '. As one in-
creases A, further, however, one finds a crossover, y is no
longer inversely proportional to I', and the transition is
cut off.

We can analyze these statements quantitatively by ook-
ing at the set of equations (8.4), (8.5), and (8.7) in the time
domain where they can be written in the form

IQ

t
2Q 20

I

l5 20
l

10
I

l5 20

t with, = .0, 3.0, 40 d 5.0. The solid lines indicate the results of nu-FKJ. 3. The decay of the structure factor P{t) witht with time t, for k=1. . . an
~ lmerical integration of 4,

'8.11). The dotted line corresponds to the case where the y correction is ignor . e va u
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(8.11)

where

A IO
1

C

(8.12)

I {0)= —308.69+92.76K, {8.14)

and the fit is excellent for A, & 3.75. Notice that if we ex-

trapolate this result to small A, one finds that I vanishes

at A, =3.33. For small A„motivated by the previous
theoretical work and the experiments of Toborak et al. ,

'

we have plotted I' '~2(0} versus A, and find a reiumnable

fit for 1 & A, &4:

r-'"(0)=0.8V4-0. 195' .

Notice that this result predicts a transition for A, =4.48.
Thus there is a remnant of the Leutheusser transition for
this choice of parameters. Analysis of the I(0) shows that
it behaves like 0.364K, for 2&3, &10. Since y is A,

times I(0},we see that y increases slowly as A, increases.
The conclusion we draw is that density fluctuations are

effective in increasing the viscosity, but they do not, by
themselves, appear sufficient to give the strong tempera-
ture dependences seen in the more strongly coupled glassy
systems [or very near TG in fragile systems (see Ref. 2}].
These conclusions must be subjected to the following re-
strictions. (i) We have treated the wave-number depim-
dences of this system in a very crude and quantitatively
unsatisfactory way. As emphasized by Kirkpatrick, the
slowing down for dense fluids should be correlated with
the peak in the structure factor which should play an im-
portant role in the analysis. (ii) Our identification of the
parameter A, with increasing density and lower tempera-
tures is not credible unless we appeal to the correlations
mentioned in (i). Therefore our numerical analysis above
can only be thought of as suggestive and comparison with
experiments must await calculations which treat finite
wave-number effects more carefuHy.

We have solved (8.11) numerically using the same choice
for A, , (=1) used by Leutheusser, and for which we know
there is a transition for A, =4. In Fig. 3 we show f(t)
versus t for several choices of A, . This should be com-
pared with the case where the y correction is ignored
(shown in dottal hnes). In the figure one sees that the
system continues to decay even for A, ~4. A detailed
analysis of the data shows that there is exponential decay
at sufficiently long time and the decay rate, cr, defined by

(8.13}

is given in Table V as a function of A, . We also give there
1(0) and y(0) as functions of A,. One finds the type of
behavior described above. Looking in particular at the
behavior of I', we see that there are two types of behavior.
For larger A, one finds that I is essentially linear with A,:

IX. CONCLUSIONS

We have looked at the effects of nonlinearities on the
fluctuating hydrodynamics of compressible fluids. One of
the main motivations was to investigate the range of va-

hdity of the density-driven dynamic instability proposed
by Leutheusser. In previous work it had been shown that
this mechanism is present in a hydrodynamic approach.
The main question was whether there exists a mechanism
which cuts off this instability. We have uncovered such a
cutoff in this paper. It arises from nonlinear density fluc-
tuations just as with the original mechanism driving the
instability. We feel that it is important to understand that
such a cutoff enters naturally into the analysis within the
perturbation theory presented here. It has been em-
phasized elsewhere 0 that it is important to deal with a
model for compressible fluids with a realistic Poisson
bracket structure. The structure and origins of the densi-

ty nonlinearities studied by Siggia" differ significantly
from those studied in Ref. 8. In particular, the cutoff
mechanism discovered here is not present in the model
studied by Siggia. Similarly, the origins of the density
fluctuations leading to a "fake" instability in Ref. 30 are
driven by nonlinearities in the effective Hamiltonian and
not by the dynamical nonlinearities as in Ref. 8.

From one point of view our findings must be viewed as
discouraging. Since this is no sharp transition, there is
nothing particularly robust about the glass transition re-
gion. This means there are no clear-cut predictions such
as exponents and transition temperatures. On the other
hand, there is some remnant of the sharp transition and
the cutoff mechanism does seem to be related to a nonhy-
drodynamic diffusion process. It may well be that a more
ambitious calculation which takes into account correla-
tions developing for wave numbers near the first structure
factor maximum will lead to a more pronounced effect.
We are planning to undertake such an analysis.
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APPENDIX A

To prove the relation (6.1), we note first, from (3.18),
since g and g are real, that AU[/, P]=AU[/, P]. —Thus
the quantity ZU, defined by {6.10), is real. Similarly, if a
is an unhatted variable, then
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6 p(1,2)=—G'p(1, 2) .

Consider then the Fourier transform

(A 1) Taking the matrix inverses from the right and left we ob-
tain

6 p(q, co)= f d xi e

X f dti e ' ' 6 p(1,2}

and its complex corrugate

6'p(q, ro)= f d'xi f dti e

ye ' ' [—6 p(1,2}],
(A3}

where we have used (A 1). Letting xi —xi~x2 —xi
t, —r2~t2 —ti, we have, using space and time transla-
tional invanance, G.p(x2-xl t2-ti)=G.p(21) How-

ever, since

&-;=-g 6-'- 6,6 --'.
aP ay r 5p

y, 5

Focus on the complex conjugate

&.'-;= —g (6-').'-,6„*,(6-'},';.
y, 5

It follows from (A6} that

(6 '): = —6

and, since 6 is real and symmetric,

C-p ——(Cp-)' .

(A7)

(A8)

(A10)

6 p(1,2}=6~(1,2)

we obtain

6'p(q, co) = —6~(q, co) .

(A4)

(A5}

APPENDIX 8

To deduce the relation (6,8) we start with the general
identity

Consider next the expressions (6.24} and (6.40} for both
the longitudinal and the transverse cases:

D Z e-"~&~ =O.
5$-(1)

(81)

G,p ———$6 -„C~sGsp .
y, 5

Using the MSR action (3.16) and choosing a=g in (Bl),
we obtain

2() L~)G p(1 2)+( Gg p( (,2)+( p( 1)));
" + Q VJ(p() )V~( ) )V)(1)) Q(((2)) +((L V (()gJ(((J2)) =0 .

at, ' ' ' Sq(1)
(82)

Changing ii and t2 to —ri, t2, resp—ectively,

2P 'L;&6- p(x, ti, xi —t2}+i— eQz p(1,2)~(

+i'ep pl 7; F„pl + 1 pl V;1Vj 1 2 +imp L,JVJ1 2 =0 83
J

where ep is the signature of pp under time reversal and p
is an unhatted variable. Multiplying (83) by ep and sub-

tracting from (82) we obtain

Fourier transforming (85) over space and time, we obtain

p(q, ro)=p '6. ;p(q, ~) (86

or

Gv p(q, co)= —2P 'ImG-p(q, co),
2iL,,G, p( 1,2) . (84—).

J

2P L; [6- (t it )2epG (x—i, —ti-x2, —ti)]
J J

(87}

Since the response function 6-p(1,2) is advanced, (84) is

equivalent to

8(t)Gy, p(1,2) =iP 'G- p(1,2) .

where the fluctuation function C p(q, co) is just the La-
place transform of the correlation function

+ 00

C p(q, co)= i dt e—+'"'G p(q, t) (88)

(co is assumed to have a small positive imaginary part),
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