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For systems that undergo period-doubling cascades there also exists an “inverse cascade” of
chaotic band mergings. The frequency spectrum associated with a chaotic orbit of 2* constituent
bands has 2* 8-function spectral components superposed on a broadband continuous component. At
merging, pairs of the 2* bands join to produce 2*~! bands. Associated with this, the number of -
function spectral peaks halves. This happens via the acquisition of a finite spectral broadened width
by every other 8 function (hence making them no longer 8 functions). This paper investigates this
transition in detail with emphasis on its scaling properties.

I. INTRODUCTION

In many experiments in dissipative physical systems
such as fluids, optical systems, plasmas, acoustics, solid
state, etc., chaotic behavior is observed,' and changes in
this behavior occur as some parameter is varied. Prom-
inent among the characteristic changes in such systems is
the period-doubling cascade. Here we shall be concerned
with the effect of period-doubling cascades or power spec-
tra of chaotic orbits. The power spectrum is usually the
easiest, and often the only, quantity measured in a labora-
tory experiment. Therefore, the understanding of the
properties of the power spectra is of fundamental impor-
tance for the correct intepretation of experimental results.
Our numerical studies reported here are based on the one-
dimensional quadratic map, X, =p—x2=F(x,u),
where p is a parameter. Although our results are for a
particular F, universality>> considerations imply that they
should be general. As pu is decreased from a value at
which chaotic motion takes place, a sequence of band
splittings occur accumulating at p ,=1.4011.... We de-
fine u=p; as the parameters value at which 2¥ —! chaotic
bands split into 2* chaotic bands as the parameter y is de-
creased (cf. Fig. 1 and caption).

If we take a point in one of these 2* bands and iterate
the map 2k times, the point will come back to that band.
However, if we examine the orbit every 2*-th successive
iterate, we see a chaotic-looking trajectory within the
band. A discrete-time Fourier transform of the orbit re-
flects this situation; it consists of 8-function peaks
at frequencies w=nw; [with w;=2m(2"% and
n=12,... ,2"] plus a continuum spectrum. (Recall that
for discrete-time Fourier transform, o lies between 0 and
27.) The & functions correspond to the fact that we know
with absolute certainty that an orbit in a given band will
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return precisely to that band 2* iterates later; while the
broadband continuum component of the spectrum reflects
the chaotic motion within the bands. As u increases from
below u; to above p; the number of bands halves. Corre-
spondingly, the number of 6 functions must also halve. It
is one of our purposes in this paper to investigate how the
system accomplishes the transition from 2* §-function
Fourier components to 2¥~! components. As we shall
see, it does this by broadening each of the components at
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FIG. 1. Bifurcation diagram for the map X, ., =p —x? in the
range 1.35<pu <1.56. Within this range of u values there is a
countable infinity of band mergings. The mergings undergo an
inverse cascade and accumulate at u ,=1.4011.... We have la-
beled the first three consecutive band mergings by, respectively,
H1, p2, and p3. The dashed-dotted line indicates an unstable
period-1 orbit, while the dashed line indicates an unstable
period-2 orbit.
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FIG. 2. (a) Smoothed Fourier transform of an orbit x, for
p=p,=1430.... Notice the § function peaks at w/27r=+, ¥,
and -,‘;’—. (b) p has been increased to (u—p)/(u—ps)
=0.0080.... Two of the peaks have broadened to a finite
width, while the peak at  is still a & function. (c) p has in-

creased to (u—py)/(;—p2)=0.078. ... The peaks continue to
broaden and eventually become flat.
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@130k, « . (2¥—1)wy into an approximately Lorentzian
shape. The width of these Lorentzian components in-
creases from zero as u is raised from p;. As (u—py) in-
creases further the broadened peaks overlap and lose their
individual identity. This is illustrated in Figs. 2 for k=2.
Here we shall be mostly concerned with the scaling of the
spectral widths for p slightly greater than pg; that is,
B 11—k > —pk >0. In addition, we shall also be in-
terested in the kK — oo limit for which universal results ap-
ply. Previous work on the universal aspects of the power
spectra of period-doubling cascades* has investigated the
scaling of the strengths of the 8-function peaks, and the
integrated noise power in the broadband feature.

Work related to the present paper has been done by
Shenker and Kadanoff> who argue that the frequency-
broadened width scales like |pu—puy | ~!/* for a map of
the form F(x,u)=p— |x |2 The present paper considers
only z=2 but reports more extensive analytical and com-
putational results, and additional information not in Ref.
5; e.g., fine-structure deviations from the |p—pu,; | ~!?
dependence, computation of frequency spectra, and scal-
ing as the accumulation of period doublings is ap-
proached.

In order to accomplish our goal we need to consider the
process of band merging in more detail. In particular,
consider the situation precisely at p=p;. At the x values
where the 2 ~! chaotic band splits to 2 bands there is an
unstable periodic orbit of period 2! (e.g., in Fig. 1 the
period-1 and the period-2 unstable orbits are labeled by
the dashed-dotted and dashed lines, respectively). For
Ki 41 <M <My the elements of the 2k~ unstable orbit lie
outside the bands and between them; for py _;>p>pug
each of the 2% ~! bands contains an element of the unsta-
ble 2% ! orbit. For i, ;<p <k, a point in a given
chaotic band is mapped under F2*~' to the adjacent band
with which it merges at u=p;. In doing so, it necessarily
crosses to the other side of that element of the unstable
period 2% ! orbit that lies between these two bands. For
Pk _1>H >y, the elements of the unstable period 2% !
orbit lie roughly in the centers of the 2¥ ~! chaotic bands,
and we regard these elements as dividing each such band
into two parts, which we call the left part (/) and the right
part (r). Now consider a large number of iterates and ex-
amine a long succession of elements of the orbit that are
2k =1 iterates apart. Each of these lie in the same band,
but may lie either in the left or right part of the band.
Precisely at p=p, these 2* —! separated iterates alternate
from one side of the band to the other: Lr,Lrir,....
Above uy, I's, and r’s do not necessarily alternate. Let
Pi(p) denote the fraction of times that the orbit fails to
alternate from one part to the other; by “failing to alter-
nate” we mean that an / is followed by an [/ or an r is fol-
lowed by an r. [More precisely Pi(u) is computed for a
typical orbit in the limit that the length of the orbit goes
to infinity.] Alternatively, we may think of P.(u) as the
probability that an orbit does not cross from one side of
the unstable element to the other side after 2X ~! jterates.
[Clearly Py(p)—0 as plpg.] As we shall show, the prob-
ability of noncrossing events P.(u) determines the
broadening of the spectral peaks at w=w,3wy,

Thus we are led to a study of Py (u).
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II. PROBABILITY OF NONCROSSING

To determine the behavior of Pi(u), we performed ex-
tensive numerical experiments. A result of one such ex-
periment is shown in Fig. 3 where in Fig. 3(a) the ordinate
is the probability of noncrossing P, and the abscissa is the
difference p —p where u;=1.543. ... Figure 3(b) has the
same information but is plotted in such a way as to make
the systematic regularity in the results more apparent;
namely, we plot (u—p;)!"/2/P(u) versus In(u—pu,). We
observe that (disregarding the small scale structure) P,
appears to scale as Py ~(u—p;)'"%

In order to see how this scaling comes about consider
the second iterate of the map:

Xn42=H ““(N ——x,f)ZEFz(xn,,u) .

Figure 4(a) shows the graph of this function for p slightly
less than u; (u;=1.5436...). We observe that for this pa-
rameter value there are two disjoint chaotic regions R 4
and Rp with the unstable fixed point X, =0.82287... in
between them. Under the first iteration F(x,u) of the
map, a point with, say, x <X, is mapped to x' > X, and,
one iteration later, back to x"' <X,. Thus, for u <pu,, the
orbit remains on the same side of X; under the second
iterate F*(x,u) of the map. Hence, the iteration of
Fz(x,,u), as shown in Fig. 4(a), leaves R, and Rjp invari-
ant.

However, for u > p the situation is different, as shown
by the graph in Fig. 4(b). Now, the regions R, and Rp
overlap with the unstable fixed point located in the over-
lap region R,NRy and, as a result, R, and Ry are no
longer invariant under F2. To determine the regions in
R, and Ry which do not cross X under F(x,u) we have
to determine the regions in R4 and Rp which do cross to
the other side of X, under F%(x,u). One of these regions
is RyCR, centered at x =0 which maps under F%(x,u)
to R,NRp and x >X, and the other region is R,CRp
centered at x =p!/? which maps under F(x,u) also to
R, ,NRp but to x <X,. The range of R, (similar argu-
ment for the range of R,) can be determined by noticing
that one application of F%(x,u) sends any x €ER, into
some x < —X;. Another application of F%(x,u) then car-
ried this point to x > X;. Therefore, we are interested in
all x such that p —(u—x?)?< —%, or

| x| <[p—(p+x)'2]"2=[G(u)]'2.

Since we are interested in G(u) for u near pu;, we ex-
pand G(u) in Taylor series about u, to get

where I'?=3G /3u | y=p,- By definition, G(u{)=0, and
hence, Ry={x: |x| <T(p—p;)!”?} and, by an analo-
gous calculation, Ry={x: |x—pu'?| <Dyu—pu)""?},
where I'; is a constant. If the distribution of points in x
generated by the orbit were smooth, then we would expect
Py (u) to scale like the lengths of the interval R and R,;
that is, P(u)~(u—pu;)!/2. The distribution, however, is
?ot smooth, in general, and thus we rewrite P, in the
orm

REGGIE BROWN, CELSO GREBOGI, AND EDWARD OTT 34

0.50

040+

0.30

(a)
020 -

0.10F i wade

1 1 1

1 i’
10 0.20 0.30

1

L
040

0.040

0.030} o

HH ] (b)
0.020

T

0.010

1 1 1 1

1 1 1
10.0 80 -6.0 -40

ettt

Period: 21 19 17 15 13 11 9 7

In (p-py)

FIG. 3. (a) Py(u) vs u—pu,, where u;=1.543.... We have
indicated the periodic windows for periods 3, 5, and 7. (b)
(—p1)"2/Py(u) vs In(u—p,). We have indicated the periodic
windows for periods 7—21, inclusive.
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where the function W(u—u,) accounts for the lack of
smoothness in the invariant distribution and leads to the
fine-scaled detailed structure® that is seen in Fig. 3.

We have also examined Pi(u) for k=23,...,7. We
find that when Pi(u) is expressed in terms of
B=(pu—py)/ (g _1—muy), it approaches a universal struc-
ture for large k. If we ignore the fine structure and exam-
ine the scaling of the upper envelope of P.(u) [e.g., see
Fig. 3(b)], then we obtain
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Pr(p)~K

for (pyx _1—px)>(u—pg)>0. Here the constant K is
universal and numerically measured to be K~21.

III. FINE SCALE STRUCTURE OF P, (p)

To understand the behavior of W(u—pu,) we should
realize that while the set of u values yielding chaotic
motion has positive measure, it is also believed that the in-
tervals of u yielding attracting periodic motion are dense.’
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FIG. 4. (a) Graph of the function x,,;=Fx,,u) for

@1>p=1.5. There are two invariant regions labeled R, and
Rp. A point that is mapped into one of these regions will
remain in that region for all successive iterations. The unstable
period-1 orbit lies between these two regions and is labeled X,.
(b) Now p has been changed p; < =1.587.... The regions R,
and Rp now overlap each other and are no longer invariant.
The regions R; and R, are loss regions. A point that is mapped
into R, CR, will be mapped into Ry after two iterations of F2.
A similar statement applies to R,.

The peaks with flat tops at u —p~0.23, 0.08, and 0.03 in
Fig. 3(a) occur in the periodic windows of period 3, 5, and
7, respectively. They yield probabilities P equal to %, %,
and +, respectively. Since we have a dense set of u inter-
vals yielding attracting periodic orbits of different
periods, we can expect P, to have a corresponding struc-
ture.

As an example, the Appendix presents an analysis for a
particular family of windows. This particular family has
odd period, 2N +1, and it accumulates geometrically on
w1 in the following way:

W(N)—p,=c8V, 4

where ¢ and § are constants given in the Appendix, and
p(N) denotes a characteristic value of p in the stable
range of the 2N + 1 period orbit [e.g., we can take u(N) to
correspond to the superstable condition for the 2N +1
period orbit]. For p in one of these period 2N + 1 win-
dows, P;=1/(2N +1) and we obtain for W the result (cf.
Appendix)

2In[u(N)—p4]

W(u(N)—py )~ )

X exp{ sIn[u(N)—p1l} . (5)

Figure 3(b) shows results of a numerical experiment in-
volving 2!? orbits. We plot (u—p )%/ Plu—p,)=
Wi —p,) versus In(u—p;). If we disregard the sharp
dips due to the presence of periodic orbits, the graph is
essentially constant, i.e., it indicates a constant value for
W(u—p,)~0.037 for chaotic orbits. The sharp down-
ward dips correspond to orbits with u values in the
periodic windows. We indicate in Fig. 3(b) the periods of
the major dips which correspond to the family of periodic
orbits that led to Egs. (4) and (5). From Eq. (4) we find
that these dips are equally spaced in the logarithmic scale
with a period given by —In(8). We also note that the
depth of these dips decreases exponentially as u(N)iu,, as
predicted by Eq. (5). For N > 3 the tips of these dips can-
not be discerned in Fig. 3(b) because their width decreases
geometrically as u(N)lu, by the factor 7.9384. .. (cf. Ap-
pendix). Our numerical computations confirmed this
geometrical factor to 5 digits. In Fig. 3(b), we also ob-
serve that between the major dips there are smaller dips
corresponding to other families of periodic orbits. In fact,
as we have mentioned earlier, the u values that yield
periodic motion are thought to be dense. We can general-
ize our results, given in Eqgs. (2) and (5), for u=p, to
U=pr, k>1, where we have to consider instead the map
Xn +2=F2k(xm#)'

We have also performed numerical experiments near
HaM3, - - -, and have found that the corresponding
probabilities of noncrossing looks like that shown in Fig.
3(a) for p, and appears to approach a universal structure
for large k.

IV. POWER SPECTRA

Let {xj}j:ZM be the trajectory of an initial point under
the action of F. Then we define the Fourier transform of
a function G(x) for the sequence {x; f:f,” as
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A 1 M 5.0
G(w)=7_M—j§0 Gjexp(la)]) ’ (6) a5k -
40t W
where w=2wl/M, [=0,1,2,...,M, and G;=G(x;). The x .
power spectrum is 351 ! !
~ ) 1 M 30t ' 1
(|Gw)] )=Ejk2=0(Gij)exp[zw(]—k)] , (D Bl 25k l‘ '.
where the brackets ( ) indicate an ensemble average over 2or N i
initial conditions and (G;Gy ) =C(j,k) is the autocorrela- 1.5 ..f'l ""-‘_v-
tion function. R 1.0 Moy g
To determine | G(w) |2), as given by Eq. (7), we first osl
calculate C(j,k) for a specific convenient G(x), as pip, ) 1
by defining a symbolic orbit in the following way: o : .

x=—1 for x <X; and x=+1 for x >X,. That is, we
consider the function G(x)=sgn(x —X;). We choose an
initial condition with x, <X; and ask what is the proba-
bility that n iterates later the orbit has x, <X, and what
is the probability it has x, >X;. We assume that the orbit
is in the chaotic region for which P;~(u—p,)!/? and
since p—p <<1 we know that P, <<1. Furthermore, if
we assume that the probability of a crossing at the nth
iteration is determined solely by the probability at the
(n —1)th iteration (i.e., there are negligible correlations®),
then the average value of sgn(x —X;) after n itera-
tions is (—1)(1—2P,)'sgn{xo—X;). Thus C(j,k)
=(—1l=kI(1 —2P))lV=kI or

C(j,k)=(—1Y ~*exp{ — | j—k |In[1/(1=2P))]} . (8

Substituting Eq. (8) into Eq. (7) and taking P; <<1 into
account, we obtain

N M
(| Glw)| 2)=L >, expli(j —kNo—m)—2|j—k|P].
Mj,k=0

9)

We now take the limit as M — « and perform the double
sum to obtain

4P,

Gy —P
HG@ 1% (w—1m)*+4P}

(10)

Hence, we expect the expression for the power spectrum
for a chaotic orbit, when p{u; to be a Lorentzian of the
form given by Eq. (10) with a full width at half maximum
given by A=4P,. The result we just found for the
Fourier transform of the function G(x,)=sgn(x,—X)
(the “symbolic orbit”) is also expected for other functions
G(x).

In our numerical experiments, done for the case
G(x)=x, we choose a u value and numerically find the
power spectrum for an orbit of 2'® iterates. The spectrum
is then smoothed to remove the noise from its structure.
Figure 5 shows a typical smoothed power spectrum. The
basic shape is that of a Lorentzian centered about
w/2m=+, as it should be for u>p. A simplex algo-
rithm is used to curve fit a Lorentzian to this peak and
determine its width A. We repeat this procedure for 1800
values of u, exponentially distributed as pip, and plot
A/(p—p)'? versus In(u—p,). The result is shown in
Fig. 6. We notice that the fine scale structure is similar to

1 1 1
035 040 045 050 055 060 065
w/2m

FIG. 5. Typical smoothed Fourier transform of an orbit x,
for u> .

the one found in Fig. 3(b). We observe the same major
dips with smaller dips in between. The periodicity exhib-
ited by the major dips is —In(8) as before. We can con-
clude then that the observed power spectrum can be un-
derstood from the probability of noncrossing.

V. CONCLUSION

In this paper we have discussed the scaling of the
broadening of spectral peaks near values of the parameter
at which band splittings occur. We find that the width A
of peaks near u=p; scales roughly as

A= 2Pk (,u )Cl)k s
where wy =27 /2k, and
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In(u—p,). Notice the similarity in structure to Fig. 3(b).
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[cf. Eq. (3)]. Superposed upon this overall square-root
dependence on (i —p; ) we also find an intricate fine scale
structure reflecting the occurrence of a dense set of
periodic attractor windows. It appears likely that the
overall square-root dependence of the broadening might
be observed in experiments without excessive effort. The
reliable experimental observation of the fine scale varia-
tions might be considerably more difficult, however.
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APPENDIX

In this Appendix we consider a particular family of
periodic orbits. The family consists of primary orbits
with odd period, 2N + 1. The family is further character-
ized by having only one noncrossing. The probability of
noncrossing, therefore, is P;=1/(2N +1). Metropolis
et al.’ have studied the periodic orbits that arise in certain
maps of the interval which have a single critical point
(F'=0 at a critical point). They consider superstable
periodic orbits (i.e., orbits for which one of the elements is
the critical point), and they characterize them by observ-
ing if the critical point was, under successive iterations of
the map, mapped to the right or the left of the critical
point. For our case, F(x)=p—x2 and x =0 is the criti-
cal point.

A point less than zero is labeled by an L, while a point
greater than zero is labeled by an R. For example, for a
superstable period-5 orbit say, the map iterates x =0 as
follows, 0—R —L—R —R, then we label this period-5
orbit RLR?. For each superstable orbit of period M there
is a range in p about which this orbit is stable, and we call
this a period M window. The family of windows we in-
vestigate here consists of those orbits whose superstable
symbolic labels contain a single L which appears immedi-
ately after the first R and is followed by an unbroken
string of R’s.

We will define ;1(N) as the p value at which the 2N +1
orbit of our family is superstable. We will show that the
distance in parameter space between p(N) and u; de-
creases geometrically,

[(N)—p ] —cd",

as N— «, with ¢,6>0 and 6 <1. We will also show that
the width of the periodic windows also decreases geome-
trically, but at a faster rate.

For values of pu in the Nth periodic window of this
family the probability of noncrossing is P;=1/(2N +1).
Solving Eq. (A1) for N we can rewrite the expression for
the probability of noncrossing in the 2N +1 period win-
dow as

(A1)

P In(8)
' 2In[p(N) —py]—2In(c) +In(3)

- In(8)
T 2In[u(N)—p,1
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where the second (approximate) equality applies for large
N. Using this result and the definition of W and Eq. (2),
we find

2In[u(N)—pu,]

W) —p )=

exp{ 7In[u(N)—p,]} ,
which is Eq. (5).
Define Ay =p(N)—pu(N +1). Thus (A1) gives

Ay =[w(N)—p ] — [N + 1) —p ] —c(1-8)8" ,

and Ay, ;/Ay—8 as N— . Thus if we can show that
this ratio is true we will have proved the geometrical con-
vergence.

From the definition of the mapping x,,,=F(x,,u)
=p—x2, Ay=F(O,u(N))—F(0,u(N +1)). After k itera-
tions, the separation between iterates of x =0 grows to

FXO0,u(N))— F¥O,u(N +1))

~AyD{(N)- -+ Dy _|(N)=A(N,k), (A2)
where
pm=3E .
0X |, _pio,u(N)

For the Nth window, the se%uence of R’s and L’s that
characterize the orbit is RLR?Y =2, As such only D,(N)
will be positive, while all the other D;(N)’s will be nega-
tive. Since 1>>Ay >0, A(N,2N +1) will be negative and
very small for large N.

At u=pu(N +1), the origin will be mapped into itself
after 2N + 3 iterations. We can write this as

FWN+30,u(N + 1)) =FXF* *Y(0,(N +1)),(N +1))
=0.
If we insert Eq. (A2) into this expression we have
FY—A(N,2N +1),u(N +1))=0,

where we have made use of F*¥*!(0,u(N))=0. We can
solve this expression for A(N,2N +1) to get

—A(N2N 4+ 1)={pu(N +1)—[u(N +1)]'2}172 |
and similarly for the (N + 1)th window,
—A(N +1,2N +3)={u(N +2)— [u(N +2)]'2} 12
(A4)

(A3)

Combining Egs. (A3) and (A4), we obtain

AN +12N+3) _ [pN+2)—[uN +2)]'72 |

A(N,2N +1) w(N +1)—[u(N+1)]?

(AS)

In order to calculate Ay, ;/Ay we must evaluate
Dy(N +1)/Dj(N), for j=1,...,2N. As an example,
consider Dy(N +1)/D(N)=p(N +1)/u(N), which we
rewrite as D{(N +1)/D{(N)=1—Ay/u(N). In general,
D;(N +1)/Dj(N)=1+0(Ay). Hence, Eq. (A5) yields
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Ay 41
Ay

D2N+1(N+1)D2N+2(N+1)

~

(A6)
W(N +1)—[u(N+1)]'7?

The derivative D,y (N +1) and D,y (N +1) have
to be evaluated to find a closed form expression for
AN+1/AN~ Recall that we defined D2N+2(N +1) as

W(N +2)— [u(NV +2)]2 ]"2

D2N+2(N+l)=-g°F‘ .
X | F2N 4200, u(N +1))
Since =~ F*+30,u(N+1))=0, we see that

FN+20,u(N+1)) is just the preimage of the origin
under F. Hence, D,y (N+1)=—-2[u(N+1]"?
where we have used the positive square root because the
last 2N iterates of the (N + 1)th periodic windows are all
positive. Similarly, Doy (N +1)==2{u(N +1)
—[u(N +1)1'72}1/2, Finally, if we insert the expression
fOI' D2N+2(N+l) and D2N+|(N+1) into Eq (AG) we
get
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Ay 1

Ay 4u(N+1D)

w(N +2)
w(N +1)

12
[w(N +2)]'
Lt

[[.L(N+1)]1/2

~—1‘(1—#1—1/2)-1/21—'—5 ,

~ (A7)
1

where the last (approximate) equality comes about in the

limit as N— . Equation (A7) can be put in the form of

Eq. (A1). Thus we have proven Eq. (A1).
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To graphically determine the value of 8, we consider a
periodic window of period 2N +1 and an adjacent win-
dow of period 2N +3. From Eq. (A1) we have

pN)—p 1
p(N+D)—p; 8’

or, by taking the logarithm of both sides
In[p(N)—p]—In[@(N +1)—p]=—In(3) .

Figure 3(b) has as its abscissa In(u—pu;). The periodic
windows are represented by downward pointing peaks. In
this figure the quantity —In(8) is the distance between
adjacent windows. We observe that —In(8)=~1 or
8- 1~2.7..., which is in agreement with the value
predicted by Eq. (A7) of §71=2.7277.. ..

Finally, we turn our attention to the convergence rate
for the width of a periodic window. It is known that a
periodic window in the chaotic regime of the quadratic
map comes about via a saddle node bifurcation and ends
in a crisis. Furthermore, it has been shown by Yorke
et al.'® that the width of a period 2N + 1 window scales
like p, —po~A~*N, where p. and pg are the parameter
values at the crisis and saddle node bifurcation, respec-
tively, and A is the reduced Lyapunov'® number of the
map. By comparing the width of the Nth window with
the width of the (N + 1)th window we can determine A.
We have performed numerical experiments on the map-
ping x,.,=F(x,,) and have calculated pu.—p, for
N=1,2,...,14. From this data we have determined that

Lo(N)—po(N)
=A*=7.9384 .. ..
(N +1)—puo(N +1) 938

Thus we have shown that both the width of the win-
dows and the distance between them converge geometri-
cally to zero as N— . The width converges at a rate
A*=7.9384..., while the distance between them con-
verges at the slower rate of §=2.7277.. ..
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FIG. 1. Bifurcation diagram for the map x, , ;=g —x. in the
range 1.35 <p < 1.56. Within this range of p values there is a
countable infinity of band mergings. The mergings undergo an
inverse cascade and accumulate at 1, =1.4011.... We have la-
beled the first three consecutive band mergings by, respectively,
i1, W2, and ps. The dashed-dotted line indicates an unstable
period-1 orbit, while the dashed line indicates an unstable
period-2 orbit.



