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Broadening of spectral peaks at the merging of chaotic bands in period-doubling systems
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For systems that undergo period-doubling cascades there also exists an "inverse cascade" of
chaotic band mergings. The frequency spectrum associated with a chaotic orbit of 2 constituent

bands has 2 5-function spectral components superposed on a broadband continuous component. At
merging, pairs of the 2 bands join to produce 2~ ' bands. Associated with this, the number of 5-

function spectral peaks halves. This happens via the acquisition of a finite spectral broadened width

by every other 5 function (hence making them no longer 5 functions}. This paper investigates this

transition in detail with emphasis on its scaling properties.

I. INTRODUCTION

In many experiments in dissipative physical systems
such as fiuids, optical systems, plasmas, acoustics, solid
state, etc., chaotic behavior is observed, ' and changes in
this behavior occur as some parameter is varied. Prom-
inent among the characteristic changes in such systems is
the period-doubhng cascade. Here we shaH be concerned
with the effect of period-doubling cascades or power spec-
tra of chaotic orbits. The power spectrum is usually the
easiest, and often the only, quantity measured in a labora-
tory experiment. Therefore, the understanding of the
properties of the power spectra is of fundamental impor-
tance for the correct intepretation of experimental results.
Our numerical studies reported here are based on the one-
dimensional quadratic map, x„+i =p —&„=—&(&„,p ),
where ls is a parameter. Although our results are for a
particular F, universahty2'l considerations imply that they
should be general. As p, is decreased from a value at
which chaotic motion takes place, a sequence of band
splittings occur accumulating at p,„=1.4011.. .. We de-
fine is=isa as the partuneters value at which 2 ' chaotic
bands split into 2 chaotic b'mds as the parameter p is de-
creased (cf. Fig. 1 and caption).

If we take a point in one of these 2 bands and iterate
the map 2" times, the point will come back to that b md.
However, if we examine the orbit every 2 -th successive
iterate, we see a chaotic-looking trajectory within the
band. A discrete-time Fourier transform of the orbit re-
flects this situation; it consists of 5-function peaks
at freqllellcles to =ntok [with top =217(2 ) aild
n =1,2, . . . , 2 ] plus a continuum spectrum. (Recall that
for discrete-time Fourier transform, so hes between 0 and
2sr. ) The 5 functions correspond to the fact that we know
with absolute certainty that an orbit in a given band mll

return precisely to that band 2 iterates later; while the
broadband continuum component of the spectrum reflects
the chaotic motion within the bands. As p increases from
below ask to above pk the number of bands halves. Corre-
spondingly, the number of 5 functions must also halve. It
is one of onr pnrposes in this paper to investttete hose the
system accomplishes the transition from 2 5-function
Fourier components to 2" ' components. As we shall
see, it does this by broadening each of the components at
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FIG. 1. Bifurcation diagram for the map x„+I——p —x„in the
range 1.35~@~1.56. VA'thin this range of p values there is a
countable infmity of band mergings. The mergings undergo an
inverse cascade and accumulate at p„=1.4011. . .. Vfe have lane

beled the first three consecutive band mergings by, respectively,

pl, p2, and p3. The dashed-dotted line indicates an unstable
period-1 orbit, while the dashed line indicates an unstable
period-2 orbit.
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FIG. 2. (a) Smoothed Fourier transform of an orbit x„for
p=p~ ——1.430. . .. Notice the 5 function peaks at m/2m= ~, 2,
and ~ . (b) p has been increased to (p —p$)/{pi —p2)
=0.0080. . .. Two of the peaks have broadened to a finite
width, while the peak at 2 is sti11 a 5 function. (c) p has in-

creased to (p, —p&)/(p& —p2) =0.078. . .. The peaks continue to
broaden and eventua11y become f1at.

cok, 3cok, . . . ,(2"—1)cok into an approximately Lorentzian
shape. The width of these Lorentzian components in-
creases from zero as p is raised from pk. As (p —pk) in-
creases further the broadened peaks overlap and lose their
individual identity. This is illustrated in Figs. 2 for k =2.
Here we shall be mostly concerned with the scaling of the
spectral widths for (u slightly greater than pk, that is,
pk ~

—pk &~@—pk ~0. In addition, we shall also be in-
terested in the k ~ op limit for which universal results ap-
ply. Previous work on the universal aspects of the power
spectra of period-doubling cascades has investigated the
scaling of the strengths of the 5-function peaks, and the
integrated noise power in the broadband feature.

Work related to the present paper has been done by
Shenker and Kadanoff who argue that the frequency-
broadened width scales like

~
p, —pk ~

' ' for a map of
the form I'(x,p, )=p, ~x ~'. The present paper considers
only z =2 but reports more extensive analytical and com-
putational results, and additional information not in Ref.
5; e.g., fine-structure deviations from the

~ p —
(Mk

~

dependence, computation of frequency spectra, and scal-
ing as the accumulation of period doublings is ap-
proached.

In order to accomplish our goal we need to consider the
process of band merging in more detail. In particular,
consider the situation precisely at p=(L(,k. At the x values
where the 2" ' chaotic band splits to 2 bands there is an
unstable periodic orbit of period 2" ' (e.g., in Fig. 1 the
period-1 and the period-2 unstable orbits are labeled by
the dashed-dotted and dashed lines, respectively). For
p, k+, gp yak the elements of the 2" ' unstable orbit lie
outside the bands and between them; for (Mq»JM&(uk
each of the 2" ' bands contains an element of the unsta-

ble 2 ' orbit, For p~+~ ~p~IMk, a point in a given
chaotic band is mapped under F 2 ' to the adjacent band
with which it merges at p, =p,k. In doing so, it necessarily
crosses to the other side of that element of the unstable
period 2 ' orbit that lies between these two bands. For
p,k»p, )p, k, the elements of the unstable period 2"
orbit lie roughly in the centers of the 2 ' chaotic bands,
and we regard these elements as dividing each such band
into two parts, which we call the left part (1) and the right
part (r). Now consider a large number of iterates and ex-
amine a long succession of elements of the orbit that are
2" ' iterates apart. Each of these lie in the same band,
but may lie either in the left or right part of the band.
Precisely at p=pk these 2 ' separated iterates alternate
from one side of the band to the other: I,r, l, r, l, r, . . . .
Above p, k, 1's, and r's do not necessarily alternate. Let
Pk(p) denote the fraction of times that the orbit fails to
alternate from one part to the other; by "failing to alter-
nate" we mean that an l is followed by an l or an r is fol-
lowed by an r. [More precisely Pk(p) is computed for a
typical orbit in the limit that the length of the orbit goes
to infinity. ] Alternatively, we may think of Pk(p) as the
probability that an orbit does not cross from one side of
the unstable element to the other side after 2 ' iterates.
[Clearly Pk(LM)~0 as plpk. ] As we shall show, the prob-
ability of noncrossing events Pk(p) determines the
broadening of the spectral peaks at ~=cok,3cok,
Thus we are led to a study of Pk(lj, ).
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II. PROBABILITY OF NONCROSSING 0.50

To determine the behavior of Pk(p), we performed ex-
tensive numerical experiments. A result of one such ex-
periment is shown in Fig. 3 where in Fig. 3(a) the ordinate
is the probability of noncrossing Pi and the abscissa is the
difference p —pi where pi ——1.543. . .. Figure 3(b) has the
same information but is plotted in such a way as to make
the systematic regularity in the results nore apparent;
namely, we plot ()u —pi)' /Pi(p, ) versus ln(p —pi). We
observe that (disregarding the small scale structure) Pi
appears to scale as Pi -(p, —)Lii)'~ .

In order to see how this scaling comes about consider
the second iterate of the map:

x„+2 p (p——x—„)=—E(x„—,p) .22= 2

Figure 4(a) shows the graph of this function for p slightly
less than pi (pi ——1.5436. . .). We observe that for this pa-
rameter value there are two disjoint chaotic regions E.q
and Rii with the unstable fixed point xi ——0.82287. . . in
between them. Under the first iteration E(x,p, ) of the
map, a point with, say, x &xi is mapped to x'&xi, and,
one iteration later, back to x"&xi. Thus, for p &pi, the
orbit remains on the same side of xi under the second
iterate E2(x,p) of the map. Hence, the iteration of
E (x,p, ), as shown in Fig. 4(a), leaves Rz and Rz invari-
ant.

However, for p &pi the situation is different, as shown

by the graph in Fig. 4(b). Now, the regions Rz and Rq
overlap with the unstable fixed point located in the over-
lap region Rq flR& and, as a result, Rz and Rq are no
longer invariant under F . To determine the regions in
R„and Rz which do not cross xi under E(x,p) we have
to determine the regions in Rz and Rq which do cross to
the other side of x i under E (x,p, ). One of these regions
is R i CRz centered at x =0 which maps under E~(x,p, )
to Rz ARz and x &xi, and the other region is Rz CRz
centered at x p' which maps under E (x,p) also to
Rz ARii but to x &xi. The range of Ri (similar argu-
ment for the range of Rz) can be determined by noticing
that one application of Ei(x,p) sends any xERi into
some x & —xi. Another application of E (x,p) then car-
ried this point to x &xi. Therefore, we are interested in
all x such that p —(p —x2)2& —xi, or
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Since we are interested in G(p) for p near p, , we ex-
pand G(p) in Taylor series about p, , to get P ( )

(P Pi )
(2)

G(p) =G(pi)+ I,(p —p, )+ (1)

whe« I i —=~G/~p ~„&,. By definition, G(p, )=0, and

~

x
~
(I i(p —pi)' J and, by an analo-

gous calculation, R2 —Ix: ~x —p'~
i &12(p ~, )'~2],

where I q is a constant. If the distribution of points in x
generated by the orbit were smooth, then we would expect
Pi(p) to scale like the lengths of the interval R i and R z,
tllat is» Pi(p) (p —pi) . The distribution» however» is
not smooth, in general, and thus we rewrite P~ in the
form

where the function W(p —pi) accounts for the lack of
smoothness in the invariant distribution and leads to the
fine-scaled detailed structure that is seen in Fig. 3.

We have also examinant Pk(p) for k=2,3, . . . , 7. We
find that when Pk (p ) is expressed in terms of
p, ={p—pk)/(p, k i —pk), it approaches a universal struc-
ture for large k. If we ignore the fine structure and exam-
ine the scaling of the upper envelope of Pk(IJ, ) [e.g., see
Fig. 3(b)], then we obtain
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M

G(co)= g Gjexp{icoj ),
M i p

where co=2nl/M, 1=0,1,2, . . . , M, and GJ—:G{xj). The
power spectrum is

N
(

~

G(co) ( ) = g (GJGq)exp[ice(j —k)], (7)
M

where the brackets ( ) indicate an ensemble average over
initial conditions and (G;Gk )—=C(j,k) is the autocorrela-
tion function.

To determine (
~
G(cu)

~
), as given by Eq. (7), we first

calculate C(j,k) for a specific convenient G(x), as ptpi
by defining a symbolic orbit in the following way:
x= —1 for x &xi and x=+1 for x &xi. That is, we
consider the function G (x)—=sgn(x —x i ). We choose an
initial condition with xp &xi and ask what is the proba-
bility that n iterates later the orbit has x„&xi,and what
is the probability it has x„&xi.We assume that the orbit
is in the chaotic region for which Pi-(p —pi)', and
since p —pi «1 we know that Pi «1. Furthermore, if
we assume that the probability of a crossing at the nth
iteration is determined solely by the probability at the
(n —1)th iteration (i.e., there are negligible correlations ),
then the average value of sgn(x —x i ) after n itera-
tions is (—1)"(1—2Pi )"sgn(xp —xi ). Thus C(j,k)

1) li —k t(1 2P, ) 1 j kI—
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FIG. 5. Typical smoothed Fourier transform of an orbit x„
for pQp) ~

V. CONCLUSION

the one found in Fig. 3(b). We observe the same major
dips with smaller dips in between. The periodicity exhib-
ited by the major dips is —in{5) as before. We can con-
clude then that the observed power spectrum can be un-
derstciod from the probability of noncrossing.

C{jk)=( —1)' 'expI —
~ j—k I»[1/{I—2Pi)]I (8) In this paper we have discussed the scaling of the

broadening of spectral peaks near values of the parameter
at which band splittings occur We f. ind that the width 5
of peaks near )M =)tsk scales roughly as

Substituting Eq. (8) into Eq. (7) and taking Pi «1 into
account, we obtain

~=2Pk (Is )elk

where cos =2m /2k, and

M

(
/
G(ro)

f )= g exp[i(j —k)(ro —n) —2
/ j k/ Pi]. —

M . k

We now take the limit as M~ ao and perform the double
sum to obtain P -21

Ijja- &

—pI

1/2

(~ ~)'+OP',
(10)

Hence, we expect the expression for the power spectrum
for a chaotic orbit, when pl)ui to be a Lorentzian of the
form given by Eq. (10) with a full width at half maximum
given by 5=4Pi. The result we just found for the
Fourier transform of the function G(x„)=sgn(x„—x i )
(the "symbolic orbit" ) is also expected for other functions
G(x).

In our numerical experiments, done for the case
G(x) x, we choose a p, value and numerically find the
power spectrum for an orbit of 2' iterates. The spectrum
is then smoothed to remove the noise from its structure.
Figure S shows a typicai smoothed power spectrum The
basic shape is that of a Lorentzian centered about
co/2m= —,', as it should be for p&pi. A simplex algo-
rithm is used to curve fit a Lorentzian to this peak and
determine its width h. We repeat this procedure for 1800
values of p, exponentially distributed as ptp, i and plot
4/(p —pi) verslls in()tl —isi). Tile i'eslll't is showll ill
Fig. 6. We notice that the fine scale structure is similar to
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[cf. Eq. (3}]. Superposed upon this overall square-root
dependence on (y, —p, k } we also find an intricate fme scale
structure reflecting the occurrence of a dense set of
periodic attractor windows. It appears likely that the
overall square-root dependence of the broadening might
be observed in experiments without excessive effort. The
reliable experimental observation of the fine scale varia-
tions might be considerably more difficult, however.
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In this Appendix we consider a particular family of
periodic orbits. The family consists of primary orbits
with odd period„2N + 1. The family is further character-
ized by having only one noncrossing. The probability of
noncrossing, therefore, is Pi ——1/(2N+1). Metropolis
et al. have studied the periodic orbits that arise in certain
maps of the interval which have a single critical point
(F'=0 at a critical point). They consider superstable
periodic orbits (i.e., orbits for which one of the elements is
the critical point), and they characterize them by observ-
ing if the critical point was, under successive iterations of
the map, mapped to the right or the left of the critical
point. For our case, F(x)=p x, an—d x =0 is the criti-
cal point.

A point less than zero is labeled by an L, while a point
greater than zero is labeled by an R. For example, for a
superstable period-5 orbit say, the map iterates x =0 as
follows, O~R~L~R~R, then we label this period-5
orbit RLR . For each superstable orbit of period M there
is a range in p about which this orbit is stable, and we call
this a period M window. The family of windows we in-
vestigate here consists of those orbits whose superstable
symbolic labels contain a single L which appears immedi-
ately after the first R and is followed by an unbroken
string of 8's.

We will define ((i(N) as the p, value at which the 2N +1
orbit of our family is superstable. We will show that the
distance in parameter space between p, (N) and p, i de-
creases geometrically,

[p,(N) p, (] +c5— —

where the second (approximate) equality applies for large
N. Using this result and the definition of W and Eq. (2},
we find

2 in[@(N)—p i]
fV(p(N) —(ui)= expI z ln[p(N) —I((,(]I,
which is Eq. (5).

Define b,z =p(N) p, (N—+ 1). Thus (Al) gives

b,~ —[p,(N) —p, i] [p,(—N + 1)—p, i]~c(1—5)5

and 6~+i/6~~5 as N~oo. Thus if we can show that
this ratio is true we will have proved the geometrical con-
vcrgcnce.

From the definition of the mapping x„+i——F(x„,(u)
=(u —x„,6~=HO, p(N)) F(O,p—(N+ I)). After k itera-
tions, the separation between iterates of x =0 grows to

F"(0,p(N) )—F"(O,p(N+ 1))

=h~D((N) Dk i(N) =h(N k) (A2)

where

DJ(N) = p
x =PJ(o,p(N))

For the ¹h window, the s uence of R's and L's that
characterize the orbit is RLR . As such only D2(N)
will be positive, while all the other Dq(N) s will be nega-
tive. Since 1 » hN & 0, 3,(N, 2N + 1) will be negative and
very small for large N.

At p, =p(N+1), the origin will be mapped into itself
after 2N +3 iterations. We can write this as

F +3(0,p(N+1)}=F (F +( Op( N+1)),p( N+I))

=0.
If we insert Eq. (A2} into this expression we have

F2( —5(N, 2N + 1),IJ,(N + 1)) =0,
where we have made use of E +'(O,p(N))=0. We can
solve this expression for b, (N, 2N + 1) to get

6(N, 2N+ 1)—= (p(N + 1)—[p(N+ 1)]' )
'~, (A3)

and similarly for the (N + 1)th window,

b(N+ I 2N+3)= —Ip(N+2) —[(M(N+2)]'

as N ~ oo, with c,5 & 0 and 5 ~ 1. We will also show that
the width of the periodic windows also decreases geome-
trically, but at a faster rate.

For values of (u in the ¹h periodic window of this
family the probability of noncrossing is I', =1/(2N+1).
Solving Eq. (Al) for N we can rewrite the expression for
the probability of noncrossing in the 2N+1 period win-
do%' RS

b(%+1,2N+3)
Z(N, ZN+1)

& 2p(N+2) —[p(N+2)]'~
p(N + 1)—[p(N+ 1)]'~

Combining Eqs. (A3) and (A4), we obtain

(A5)

ln(5)
2 In[@(N)—p i]—2 ln( c)+ln(5)

ln(5)
2 in[@(N)—pi]

In order to calculate b,N+i/b. N we must evaluate
DJ(N+ I)/DJ(N), for j=1, . . . , 2N. As an example,
consider Di(N+1)/Di(N)=(M(N+1)/((((N), which we
rewrite as Di(N+1)/Di(N)—:1 h~/p(N). In gener—al,
D/(N+ I }/D/(N) = I+0(bz). Hence, Eq. (A5) yields
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DtN+ i (N + 1)D2~+2(N + 1)

1/2
p(N +2)—[p(N +2)]'/
p(N + 1)—[p(N+ 1)]'/ (A6)

To graphically determine the value of 5, we consider a
periodic window of period 2N+1 and an adjacent win-

dow of period 2N+3. From Eq. (Al) we have

p(N+1) —pi 5 '

The derivative D2N+i(N+1) and D2/t+z(N+1) have
to be evaluated to find a closed form expression for

hatt+ i/htt R.ecall that we defined DzN+i(N + 1) as

D2N+z(N +1)=
Fi++~(o,p(N+1))

Since I' + (O,p(N+1)) =0, we see that
F + (O,p(N+1)) is just the preimage of the oriIIin
under E. Hence, D2N+2(N+1)= 2[p—(N+1)] /z,

where we have used the positive square root because the
last 2N iterates of the (N+1)th periodic windows are all
positive. Similarly, D2tt+ ~ (N + 1)=—2 Ip(N + 1)
—[p(N+1)]'/ J'/2. Finally, if we insert the expression
for D2tt+2(N+1) and D2tt+~(N+I) into Eq. (A6) we
get

' 1/2
~a+i 1 p(N+2}

btt 4p(N+1) p(N+ I)

1

[p(N +2)]'/
j,

[p(N+1))'

( 1 p
—i/2) —i/2

p)
(A7)

where the last (approximate} equality comes about in the
limit as N~ oo. Equation (A7) can be put in the form of
Eq. (Al). Thus we have proven Eq. (Al).

or, by taking the logarithm of both sides

ln[p(N) —p, &]
—ln[p(N+1) —pi] = —ln(5) .

Figure 3(b) has as its abscissa ln(p —p, ). The periodic
windows are represented by downward pointing peaks. In
this figure the quantity —ln(5) is the distance betwe;n
adjacent windows. We observe that —ln(5) =1 or
5 '=2.7. . ., which is in agreement with the value

predicted by Eq. (A7) of 5 '=2.7277. . ..
Finally, we turn our attention to the convergence rate

for the width of a periodic window. It is known that a
periodic window in the chaotic regime of the quadratic
map comes about via a saddle node bifurcation and ends
in a crisis. Furthermore, it has been shown by Yorke
et al. '0 that the width of a period 2N+1 window scales
like p, —po-A, +, where p, and po are the parameter
values at the crisis and saddle node bifurcation, respec-
tively, and A, is the reduced I.yapunov' number of the
map. By comparing the width of the ¹h window with
the width of the (N+1)th window we can determine A, .
We have performed numerical experiments on the map-
ping x„+i——F(x„,p) and have calculated p, —po for
N = 1,2, . . . , 14. From this data we have determined that

p, (N) po(N)—
=A, =7.9384. . ..

p, (N+1)—po(N+1)

Thus we have shown that both the width of the win-
dows and the distance between them converge geometri-
cally to zero as N~ao. The width converges at a rate
A, =7.9384. . ., while the distance between them con-
verges at the slower rate of 5=2.7277. . ..
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