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The initial decay rate of the dynamical scattering function for semidilute polymer solutions is cal-
culated as a function of solvent quality with the aid of the e-expansion method, which has been

semiquantitatively reIiable for various properties of polymer systems. In the present calculation, the

hydrodynamic screening effect, which presumably is relevant for larger vrave numbers, is not taken
into account. Comparison of the results given here and experimental results should reveal the signi-

ficance of t'he screening effect. Calculational tools for semidilute solutions are streamlined and sys-

tematized in the appendixes, and the static scattering function is also given as a function of the sol-

vent quality.

I. INTRODUCTION

The initial decay rate of the dynamical scattering factor
for dilute polymer solutions has been calculated with the
aid of the renormalization-group (RG) theory, giving
semiquantitative agreement with experiments. The pur-
pose of this paper is to extend this calculation to the semi-
dilute regime of polymer solutions.

So far many static and dynamical quantities have been
calculated using RG theory. For dilute solutions, results
have been provided for not only static quantities, but also
transport properties. Even explicitly time-dependent
quantities such as correlation functions5 and the
frequency-dependent intrinsic viscosity have been ob-
tained recently. For semidilute solutions, RG approaches
have supplied theoretical curves for static quantities,
which agree with experiments without any adjustable pa-
rameters.

In this paper, the initial decay rate of the dynamical
scattering function for the semidilute solution is calculat-
eds without taking account of the so-called hydrodynamic
screening effect. Although this effect should not exist for
smaller wave numbers k, for larger k the effect is expect-
ed to be relevant. The comparison of the present calcula-
tion (without incorporating the hydrodynamic screening
effect) and corresponding experimental results should re-
veal how significant the effect is. We might reemphasize
that our calculation is interesting and meaningful, wheth-
er the screening is important or not. In any case, accurate
quantitative experimental results on the initial decay rate
are sorely needed.

The paper is organized as follows. Section II intro-
duces our dynamical model for the polymer semidilute
solution system. This minimal model describes the chain
connectivity, the excluded volume, and hydrodynamic in-
teractions in a simple way. The initial decay rate is com-
pleted in Sec. III. Section IV checks the consistency of
the variables employed using a renormalization-group ar-
gument, and Sec. V is a summary of the results. Those
vrho are only interested in the experimentally observable

results should go to Sec. V directly. Appendixes C and D
discuss calculational tools for evaluating density correla-
tion functions.

As we frequently reference two previous works [Lee,
Baldwin, and Oono, Ref. 1 (1984)] and [Nakanishi and
Ohta, Ref. 3 (1985)), we refer to them as LBO and NO,
respectively.

II. DYNAMICS OF SEMIDILUTE SOLUTIONS

To arrive at a formula for the initial decay rate, we
proceed in a fashion which is similar to LBO and was
first employed by Ackasu. More details may be found
there, but we sketch the entire argument here for a self-
contained reading.

We define the initial decay rate as

Q(k) = ——inS(k, t) ~, (2.1)

where S(k, t) is a density correlation function for the po-
lymer solution and is defined by

$(k, t) = (p( —k, O)p(k, t) ), (2.2)

p(k, t) =e "p(k,O),

then we can easily evaluate Eq. (2.1}as

Q(k) = L(k)/S(k) = —&(k)/N—oI(k),

~here No is the contour length of the chain,

& ( k) = (p(k)~t;p(k) ),

(2.3)

(2.4)

(2.5)

I( )k= ( ( p) k( p)k) X/. 0 (2.6)

The operator WF which we have introduced is precise-

where p(k, t) is the Fourier transform of the monomer
density at time t [see (3.1)] and ( ) is an equilibrium aver-
age over the chain conformation variables. If we formally
write
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—P[c (».),tj =WFPIc (»-), t j . (2.7)

Here c (» }denotes the position of the rth monomer of the
ath chain.

The operator WF can be determined by writing down
the differential equations for the system of chain and sol-
vent. We start with Shiwa's' I.angevin equations for po-
lymer solution, which describe the time evolution of both
solvent and chain

—c (~,t) =u(c (~,t), t }+ +e.(r, t),1

go Sc (w, t}

a ~0 Sa
p u—(r, t}=—g f d» 5(r c(—», t))

5c (»', t)

+rtQu(r, t) —Vp(r, t)+ f(r, t),

ly the generator of the Markov process. ' To find WF,
we let the dynamics of the conformation of the chain be
governed by the probability distribution function PI c~, t j
and write the corresponding diffusion equation"

—po f f d»' uqexp[ —ik.c~(~)]
5c (».)

5 Sd(I ik c~(v)
~

~

d»' e
Sui 5c (~)

(2.15)

wF —y y f 'd~' f 'd~'e
a=1 P=1

Xe D ~(~', tr')
Sc (»') '

(2.16)

The problem is to integrate out the solvent velocity
field variables and thus transform (2.12) to (2.7). This
procedure may be carried out to order e and is explained
in Appendix A of I.BO. The same method was applied by
Onuki and Kawasaki to the binary critical fiuid. ' The
result is

V u=0,

where u(r, t) is the solvent velocity field, p is the solvent
density, p is the pressure, go is the bare friction coefficient
of the chain unit, »Io is the viscosity of the solvent, ktt T is
the absolute temperature in energy units, and 6,f are in-

dependent Gaussian white noises with mean zero and

(6 (», t)Ba(»",t') }=2), 5(t —t')5(r —»')l5 &, (2.9)

D (»', tr') = 5(»' o'}SN—tt 1
8 0

where

T(r) = e '"' 1—
k k

(2.17)

(2.18)

( f(r, t)f(r', t')}= —2»I+5(t —t')5(r —r')1 , (2.10)

1 being the d Xd unit tensor. These noises satisfy the
fiuctuation-dissipation theorem. We have chosen the en-

ergy unit so that kit T=1. Also, in (2.8) SP /Sc (»;t) is a
force term derived from the Edwards Hamiltonian"

0
V'C

—P(u, c,t}=WP(u,c,t), (2.12)

where

W=WO+W;„, ,

%Vlth

5 1 5 SA

5c (») go Sc~(r) Sc (~)

(2.13)

k
+ f (Ik —kk) +ui

Sui( 5u
(2.14}

e n No

y —" g g f dr I dv (c ((~() c~'(a((—.
0

cx= I P=1 )~-n( &u
0

(2.11)

We can derive from this a Fokker-Planck-type full-
diffusion equation"

The derivation of Eq. (2.16) makes use of one important
approximation. We assume that the relaxation time of the
solvent field is much smaller than that of the conforma-
tion, so that the solvent instantaneously follows the chain.
This physical consideration enters in two places in the
derivation. If we denote p a projection opera-
tion which integrates out the solvent velocity field vari-
ables and denote q by q =1—p, then we claim (8/Bt)»
XP(Iuj, Ic j,t)=0. [Essentially that P( Iu j, Ic j,t)
=P( I u j, I c~(t) j ).] The same reasoning implies

t(W, +W„) ~ . rW„ate ' " —= dte
0 0

where W, governs Icj and W„governs Iuj in the case
where we do not consider the interactions between the two
fields.

Equivalent to this projection-operator method, we could
have merely written Bu/Bt =0 in (2.8), solved for u(r)„
and finally solved for WF directly from the resulting
equation for u(r) in (2.8). Thus our procedure is precisely
the Kirkvvood approximation, although the projection-
operator argument is more formal and shows more expli-
citly the physical assumptions being made and their re-
gimes of validity [for example, (2.16) is correct only to or-
der e]. Fortunately the Kirkwood approximation has al-
ready been shown to give semiquantitative results for
transport properties in OBO (Ref. 4). There it was argued
that the Kirkwood approximation was correct for long
wavelengths although not necessarily for shorter ones in
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III. CALCULATION OF INITIAL DECAY RATE

A. Equation for L(k)

We may now return to the calculation of (2A). We may
write the polymer density in the continuum scheme as

p(k)= g I dec
a=1

(3.1)

the semidilute regime. This approximation, however, may
not be reliable for shorter wavelengths due to the possible
effects of hydrodynamic screening.

We can exponentiate the divergent term to get for L (k}
(write K =8p for clarity)

ckg T p2 (3/16g )(go/go)
L(k)= Npk

Xexp
3 0o —lnF

16 ilo 3Fi—1

We know from LBO that L(k}/N ois observable, and
ne(xh no renormalization factor. We use the renormaliza-
tion scheme discussed there' and find

Then (2.4) becomes

&ok 1 e k q —(kq)L (k) =cka T + I 4 S()(k+q)
0o re q'

(3.2)

and

'90 1 ~
Co Co

Np go I)Ig ~ I)Ig 16+ a

(3.10}

to 0(e}. Here Sp is the e=O result for the scattering
function2

S.(1)=—(p(-1}p(1}),j

V

Here L is the phenomenological length scale which ap-
pears later in the RG equation (see Sec. IV). We use the
definition of variables described in Ref. 16 to find

=2 I)I
1+2Xpg()(l)

' (3.3} rIpLii(k)

cNpk "(k3T)
(2~) (3e/s)—(fig )+e/2

,=p
where gp(1} is the Debye scattering function and
Xp =cuI)I, u is the excluded-volume parameter defined in
Eq. (2.11).

Power counting shows quickly that the integral in (3.2)
is divergent. However we can implement a cutoff renor-
malization, q,„=1/v a. Reparametrizing the integral
by q =v'2/I)I Q and letting

+ (28)—(+e/2 —(3e/8)(g/g )

&& exp —lnF 2

1 3F 1—
(3.11)

k =&2/J)I K„1/v =a&2/I)I A, (3.4) where we have written

we find

cook gpL(k)= kaT 1+4 Ii(k)
go Qo

where

Ii (k) = 1 ~ Q'I(.'—(K Q)' J2«K+Q}')
2I('. 2 & Q 1+XoJp((K+@) )

(3.5)

(E/8)(Q/Q +
)

8=8p ——

—(E/4)(Q /Q )

X=XO "
I.

B. Scattering function

(3.12)

J,(x}= (e "—1+x) .2

X

The exact value of the integral is given in Appendh».
A very good approximate form is

From NO it is easy to find the form of I(k) away from
the fixed points

3 AI, (k) = ln
64m K

where

I( +2(1+X)
E

—1nF +
3I' —1

(3.&)

(3.8)

I(k) = S'"'
cX

ZW ~8,X)
exp1+XJ2(8) a' [1+XJ2(8)]J2(8)

(3.13)
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N(()X)= f P'dP J ddsin y
—F' )(Q,P) g2J, (g2) 2cos y
1+XJ,(P') P'+1

+9X [F(3)(g P) ]2 J ( Q 2)/9

[1+XJ2(P )][1+XJ2((P+Q)2)] P~+1
(3.14)

The functions F ' ' and F' ' are given in Appendix C.

C. Initial decay rate

i)oQ(k)

k33 Tk"

Dividing (3.11)by (3.13) gives us a formula for the initial decay rate

I+XJ (8) u N(v 8,X)
J2(8) u' J2(8)[1+XJ2(8)]

X (2~)d/2-(3dis)(f/I' )(28)—i+d/2 —(3d/SNg'/g )ex 0 1~2+g (3.15)

(3.16)

In the calculation pre(united h, is zero. However, a slightly more difficult dimensional regularization approach gives
d~3

BSg (}
'

w/2 d=4 '

b =2.802=2 ln(2m') — — ln J d8cos~8

where Sd-i is the mm of a d-d mmsiond ~it baal. I our graphs we include this constmt M agrmmmt with experi
ment is more accurate (see Appendix A).

It is not very easy to garner the concentration dependence from Eq. (3.15). If we proceed in our calculation slightly
differently by writing from Eq. (3.6)

Ii(k,X) Ii(k, O)+lU(k, X),
we easily find

Q(k, X) u N(k, X) N(k, O)

Q(k, o} ' u' J2(8)[1+XJ2(8)] J2(8)

(3.17)

—(3e/8)(g'/g' )

X 1+ exp2+8
3e f 38X 1

8 g' 2 (3+8)[8+3(1+X)] (3.18)

If we recaH that J2(8)-+2/8 and that N(k, X)~N(k, O} for large k we see that the asymptotic value is unchanged by
the concentration dependence. This is verified in the graphs, and is consistent with the concept that at large frequencies
or over small distances we should be unaware of the total concentration dependence.

We also find

Q( k,X)
k Do(X)

1+XJ2(8) 2( I+X)
(1+X)J,(8) 8+2( 1+X)

(3d/s)(g/g )

exp
3F 1—

u 2N(k, X)
u' J2(8)[1+XJ2(8)]

2N(O, X)
1+X (3.19)

Equation (3.18}also gives a relation for the instantane-
ous diffusion coefficients

This is essentially the result of OBO, the discrepancy be-
ing of order e .

0Do= 11m
k~o k

(3.20) IV. RENORMALIZATION-GROUP EQUATION
FOR Q(k, e)

From (3.18}then we derive

Do(» . Q(k,X)= lim
Do(X =0) k o Q(k, O)

(1+X)i—(3~/s)(Pg') „P

(3.21)

%e have worked with hindsight in Sec. III, where we
chose to rewrite the equations in terms of variables which
made the formulas convenient and which also canceled
unwanted cutoff-dependent terms arising in the scattering
function $(k). In this section we write down a
renormalization-group equation for Q and use dimension-
al analysis to justify that the variables we have employed
are exactly the scaling variables.
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We proceed as in Ref. 16. The function

qoQ
d

H——(L,N, u, g, c,k)
k~Tk"

(4.1)
yN(u)=L Q

bare

satisfies the RG equation
T

L +P„+Pg +yN H =0 .a a a a
(4.2)

P„(u)=L = [(u*-u)/u'],
BL bs„2

Pg(g, u) =L'

bare

[ —,'(P —g)/g'+ —,'(u' —u)/u'], (4.3)

Equation (4.2) means that our function H is indepen-
dent of the phenomenological length scale L. Our P func-
tions are as usual'

where u'=ir e/2 and P =2&@. The derivatives in Eq.
(4.3) are taken when the quantities u, g, and Zz are writ-
ten in terms of the bare (unrenormalized) parameters uo
and go, which in turn are dependent on the length scale L.
Using the same scaling variables as in Ref. 16 we find

Referring to LBO, the following dimensional analysis
shows that if

[r]=C,
then

(4.5)

H =G(Lw i',N(1+w) 'i, (1+w}3i (1 z)/z, c—,k) .

(4 4)

[N]=[L]=[p]=C, [S/cN ]=1, [c]=C, [X]=C'i

[k]=C '/, [L/cN ]=[M ]=C ~ 2 [0/k~]=1

Thus H ~ 0/kd is unchanged by a reparametrization of the model. So

H=H'o'(CLw ',CN(1+w) ', (1+w) (1 z)/z, cC " ~, k—C ' 2) .

If we choose

CN(1+ w)-'"=1,
a little bit of algebra (see Ref. 16}shows we can write

no& =H'"(g 5 X (2rrN/L) " """"e (2rrN/L)" '"" " ') .
ks Tk~ 0

(4.6)

(4.7)

(4.8)

(4.9)
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0,9--
t
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k&R')I"

6

FIG. 1. Plots of ri~(k, X,Z}lksTk3 vs kRo for various
values of X in the Gaussian limit (Z =0.I small corresponding
to poor solvents).

0.2 ~-

0
0

l I I I

I 2 3 4 5 6
k&R6

FIG. 2. Curves similar to Fig. 1 except here the Z parameter
is large, corresponding to the self-avoiding limit. This good sol-
vent limit shoes much more pronounced concentration depen-
dence.
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IO.Q

5.0- 0.9-.

O.S-1
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O. I—

0,2-

0.6--
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04..
0

0.3-

Q. l—

0.05-

0.0 I

0.05 O. I 0.2 0.5 I.0 2.0
1

k&R~) 2

5.0 IQ.O
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G

FIG. 4. This graph shows the solvent effects on
gpQ(k X Z)/kg Tk vs kEg. The monotonicity of 0 in Z is
made clear. Here X=1.

FIG. 3. Same as Fig. 2 with log-log axes.

Comparing then (4.9) and (3.12) we have shown that we
have exactly cho(ten the variables required by the scaling
hypothesis.

V. COMPARISON WITH EXPERIMEhlTS
AND SUMMARY

From s. (3.13) ant( (3.(8) we csn make graphs of
r)cftiksrk sng f)/ktftc ss a function of 8. However, 8

e

ktZ =eep — ", f"dy y5V(y)
4 tr

' ' 1+X',(y')

3
4 g/4
3

is closely related to kRG which has already been calculat-
ed in the semidilute regime. 3' ' The formula relating kRG
and 8 is

iI
I

l
I0.20—

X =0.5

O. I5—

0.05-
"'Is(f .

'hsn(
kg

I-0 y ~
g~Rl~= 0 0 0

I I ~~I 4

4
k(R )

FKg. 5. Plots of 3I(po(k)/ksrk3 vs kRG in the poor solvent limit (small Z) for small values of X. An X value of X =0.5 gives
nearly perfect agreement with the experimental results taken from Han and Ackasu (Ref. 17}.
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I.O (u/u ), 0——Z/(1+Z),

(g/g'), 0——(u/u'), 0/[1 —(1+Z) ' ] .
(5.3)

0.2

Q. I

0.05

0.02-

0.0 I

O. l 0.5
l I

I.G 2.0
1

k&R2& 2

5.0 IO.O

FIG. 6. Same as Fig. 5 vrith log-log axes.

where

&(y) =——„Jg(y')+ $ &5(y') —4&4(y')+ s &z(y') .
(5.2)

Equation (3.15) is plotted against kRG from Eq. (S.l) in
Figs. 1—8, and Eq. (3.19) against Eq. (5.1) in Figs. 9—11.
We may also plot (3.19) against I(k,X)=S(k,X)/cN as
shown in Fig. 12. This is a truly universal curve —note
that kRG depends on the specific polymer.

The graphs are labeled by two parameters X and Z.
The parameter Z is related to the variables already dis-
cussed by the relations (see Ref. 16)

The following features of the graphs are readily noted.
(i) Q(k,X,Z) is a monotone increasing function in both

Land Z.
(ii) Q(k, X,Z)/k" approaches Q(k, O, Z)/k" asymptoti-

cally in the k~ oo hmit. That is, the X dependence of Q
becomes irrelevant in the large-k limit. Recall the discus-
sion following Eq. (3.18).

(iii) In the large-k limit, the ratio between the slopes of
Q(k)/k Do at Xand X=Oisjust D(X=O)/D(X), which
can be found from Eq. (3.22).

Agreement with available experimental evidence is very
good. %'e must add, however, that the Z dependence
demonstrated in the graphs should not be taken very seri-
ously, since there is no rehable semidilute solution theory
which can describe the crossover from the high-
temperature regime to the theta regime.

Again we emphasize that our model does not incorpo-
rate the hydrodynamic screening effects, nor the effect of
entanglements between polymer chains. Although this
latter effect may be negligible for not too large values of
concentration, we cannot reasonably put any constraints
on the effect of hydrodynamic screening. We know that
the long-wavelength regime and the low-concentration re-
gime are adequately described by our model, but we must
await further experimental results to ascertain the reliabil-
ity of our model for moderate values of concentration in
the short-wavelength regime. This in turn will reflect the
importance of the hydrodynamic screening effect.

G.I6-
Z = 50.0

O. l 2-

00 00
0 0

0

r g ee ~

8

k&RG)

I

l2

FIG. 7. Plots of qoQ(k)/kgTk vs kE.~ in the self-avoiding limit for a fear values of X. Experimental points are 0, Han and
Ackasu (Ref. 17); 0, Kurata et al. (Ref. 18).
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I.O-

6--
O. I

0.2—

O. l—

5--

Cl

3

2

0.02-

0.0 I

O. I

I

0.2
I I

0.5 l.O 2.0
1

k&RG2& 2

5.0 IO.O
I I ~ I ~ I
I I

0 I 2 3 4

k(R &6

FIG. 8. Same as Fig. 7 with log-log axes. FIG. 10. Solvent quality effects are demonstrated in the
curve of Q(k)/k2DO in the dilute limit.
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APPENDIX A: A TECHNICAL COMMENT
ON THE SOLUTION TO UNNORMALIZED

FUNCTIONS IN e EXPANSION CALCULATIONS

Consider the function

X
F(x)=x exp —e

0
dt (A 1)

r

—e
lim F(x)= lim yK'exp

X~ cO p -+ oo 0
dt . (A2)

We know that lim, „F(x)=F„is finite at a= 1. Sup-

pose now we write x =yK'. Then to 0 (e),

6--
0

5.0-

5--

0
M

~ ~

2--

I.O

.0

o Xo
C3

OJ

2.0—

I.5-

I.O

~)serfs

j

0 I I I I
I I I I

0 I 2

k&R@)

FIG. 9. Plots of Q(k)/k2ao for various values of X. We
have chosen an intermediate solvent quality variable Z =1.

1

O. I 0.2 O.5 I.O 2.0

k&R 6

5.0

FIG. 11. Comparison of theoretical plots for Q(k)/k Do vs

kRG for several values of Iwith experimental results from Han
and Ackasu (Ref. 17). The curve for X=0 (the dilute hmit) is
in good agreement with experimental data when the latter is
normalized properly.
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Now F E[1,ce } so 1/F C [0,lj. In this regime we can
closely approximate S(x) by 3/(3 —x). Equation (3.7)
then follows.

APPENDIX C: CALCULATION OF DENSITY
CORRELATION FUNCTIONS
FOR POLYMER SOLUTIONS

0.2 0.6 I.O

In this appendix we present techniques for calculating
semidilute solution static correlation functions. In the
course of the discussion we explicate the loop expansion,
which involves a diagrammatic technique where there ex-
ist vertex functions to all orders. Our formulation follows
in a general way that given in Ref. 3(c).

The semidilute Edwards Hamiltonian [Eq. (2.11)] may
be written

FIG. 12. Plot of Q(k)/k Do vs I(k), the normalized scatter-

ing function, in the good solvent and dilute limit. This is a truly
universal curve and does not depend on any innate property of
the polymer.

where

(Cl)

Unfortunately, this type of situation occurs in our
renormalization-group calculations. Typically JC might be
a constant such as 2qr which is absorbed into a redefini-
tion of one of the variables. This suggests that generally

only results that have been somehow normahzed will give
quantitative agreement with reality. However, the
renormalization-group calculation will, more importantly,
preserve the functional form. For this reason we justify
our steps taken in Sec. III C. We must add, however, that
this seemingly arbitrary analytical procedure will never

affect properly normalized functions such as Q(k)/k Do.

APPENDIX 8: EXACT VALUE OF INTEGRAL IN (3.7)

We can evaluate the integral in Eq. (3.6}by replacing Jz
by Jz, since there are no large cancellations as we have ex-

plained in Appendix D. Using this approximation we

find

I&(k)= In, —lnF'+( —,
' F'}S

E F~

Iq CI(%)

0 i=1
' 1/2x expi ~;¹2 N, C2

C 0 i=1

Z= f &Icje (C4)

We would like to introduce a transform variable to
decouple the chains. This is done by writing

exp —
2 pq p

exp ——, ~
—Ip —~'p

d"q
f; f (,.). ~

(As in the main text, a capitalized momentum vector is re-
lated to an uncapitalized momentum vector by the rela-
tion q=v'2/iVQ. ) The partition function is given by

S(x)= ——— ln(1 —x)6 3x x (1—x)
4 2 2

T

&exp ——, pzp

(82)
This transforms Eq. (4) to

(C5)

Z= f &Igjexp ——,
' f fqg q f &Icje o exp i f gqP

=V exp —
~ q q 6

If we write

(C7)
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4s =tfs+PPq, o

(2~}454(q}
=Vs+Co

V

(where pro ——0), we can integrate out the if/o field to find

Z yn —(1/2}VcXZ8

(C8)

Z1 = +CXP —
2 gqgq (Cl 1)

G(pl= —f dd(c(exp ——,
' f dr +i f prP:"r' (C12)

X= expi
1f f drexp[iQ c( Nl )2)//]Np)r. (C13)

Here the average ( }o is performed with respect to the td =0 Edwards Hamiltonian, A o, where we consider the system
to be large enough so that we may ignore boundary conditions. To evaluate (C13), we expand the exponential, perform
the average ( )o and then carry out the t integration. We start by writing

' m/2
m & 1

G(p)= g, (i) — g f (p„ f, d), e*p gQ) c(N)))/2/N (C14)
C J'=1 J

' m/2
1 . m X 1

,
(il — ti f p . d) exp —QQ; Q,X;,

m=0 C ) & 0& P J; J J (C15)

with

([c (Nt;) —c (¹f)])oj.
(C16)

(C17)

dti dt~ g exp —,
' g I

t; tj IQ —.Q

We may pick a particular ordering for the magnitude of the t's as long as we shuffle the indices of Q s. Thus
' m/2

G(q&)= g (i) x
m=p ~' (C18)

where gz ( ) is the sum over the possible permutations of the first m integers. The sum of the q s (respectively Q s)
is required to be zero due to the translational symmetry. We may enter this condition by inserting the function
[(2ir)4/VJS( g q;). This implies

'2

(C19}

where

h, =t, td+i&0 (1&—s &m —1),
(C20)

In Eq. (18) we also note that due to the symmetry in the yz's, we may actually pick an ordering for f)~ t cr; I and gain a
factor of m. (In practice, desymmetrizing the vertex makes calculations easier. ) We find

+ e ~ e +6 &r 1
m I ttl- m

dti . . dt exp —g h, P, db,
&

dd exp —g f),P, (C21)

=(—1) +' )e) J((P2}
(C22)

where



P. R. BALD%'IN 34

oo m!J~(x)= g ( —x)"
(n +m)!

(C23)

( —x}"
nt

~n —1

e "—1+x—. —( —1)"
(n —1)!

(C24)

Using Eqs. (C18)—(C24), we find
m/2

X 1«+)=1+ X &
— —f Vq, es -s

m=2 y q , . . . , q

where

m —l J2(p2}
H(m)(P P } 1

( lyly y 2 i

i = I g' (p2 p2)

' ' '
() -q. ,

H' '(Qi Q (C25)

(C26)

»= f ~(mIexp ——, f, e,q, [1+»2(g')]
' m/2

00 X &m-&
X exp c g (i)~ — f

m=3 C
+e,+e, s,

' ' ' t -q. ,
p' -'(Q», Q i)

is the integral evaluated in (C23) with p =().
~e return to the calculation of Z&. Using Eqs. (Cl 1), (C12), (C25), and (C26) we can write

(C27)

The functions F' ' are formed from the H' ' and
products of 5 functions. To find the relationship, we
must evaluate the b s in terms of the a s in the following
expression:

A. Diagrammatics and perturbation theory

The partition function in (C27) gives rise to the follow-
ing diagrammar for calculating correlation functions:

g b x'=lil 1+ g 0 xj
i=2

The solution is

internal (external) line
(C28)

vertex with m legs (m)3)
4! qp "4!

(2/N)

I

!+X+(g2)

[r/2) ( 1}i+1 r —2J
~ 0 ~

j=1 ~ m) =0

r —2j

am, +2' ' '
am,.+2

m =0J

a symmetry factor of 1/j! for j identical vertices, and an
overall factor of V.

(C32)

XS Z, +/m, -,
s=1

(C29}

(C30)

%'e list the lower-order expressions:

b2 ——a2,

b3 ——a3,
2

64, =a4, —~ a2,

b5 a5 a3a2 ~

2 & 3t, =a, —a,a, ——,a, + —,a, .

It is easy to see that perturbative calculations of correla-
tion functions may be done by a loop expansion. Check-
ing only factors of c, u, and N we see that a general graph
has the contribution

g

~—(d/2)1 u (C33)

where I is the number of internal lines, uz the number of
vertices with j legs, E the number of external lines, I. the
number of lines, u the total number of vertices g". 3u~,
and I' is shorthand for —,

' g". 3jui. There are two con-
straint equations for graphs

It is easy now to construct the F's from the H's. For ex-
ample,

g juj ——2I+E,
J=3

(C34)

p'"(Qi, g2, Q3}

=H'"(Qi Q2 Q3}

(27r) 5(q )H' '(g, )H' '(g ) . (C31)

I =1+I—U,

or combining the last two equations

E 2+21.= g juj —2u . —
J=3

(C35)

(C36)
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If we use Eqs. (C33) and (C36} in four-dimensional space
we find the contribution for a general graph to be

' {E—2)/2

Lg !7 (C37)

The factor u appears with a power of L. Since u becomes
of order e after renormahzation, the loop expansion is a
systematic way to calculate correlation functions.

We now po!c the question: What L-loop graphs need
be included in the calculation of an E-point correlation
function? The answer to this question is not at all obvious
as E and or L become large. Rewriting Eq. (C36) pro-
vides the solution, however:

(C36)

Thus to find all the types of two loop graphs for the two
point function we find

4= g (i)~+2)(j) .
j=l

(C38)

The problem thus reduces to finding integral partitions of
4. For example,

4=1+1+1+1=2+1+1=2+2=3+1=4. (C39)

Thus we can construct two-point graphs with two
loops, from four three-point functions; or two three-point
and one four-point function; or two four-point functions;
or a five-point and a three-point function; or a six-point
function. Next we must connect the vertices up in all pos-
sible ways to give the proper contributions to the two-
point function.

B. S{k)to 0(e)

The scattering function is given by

S(q)=—&p~, & =—1-—&g,{),&,I 1 1

To order e, we must then find the one-loop contributions
to the two-point function. Now E —2+2L =2=1+1.
Thus we get contributions from two three-point functions
and a four-point function. The topological diagrams are

(C41)

but recall that the vertex functions are not symmetric so
that we must carefully consider the different ways to con-
nect vertices.

Using our diagrammatic rules (C32) and carefully con-
sidering symmetry factors, we find to order e

where as usual

V 72uX2 [P(3)(Q P}]2
1+XJ2(Q ) 1+XJ2(Q ) [1+XJ2(P )][1+XJ2[(P+Q)]I

Sax ~ P'"(Q,p)
1+XJ2(Q') [1+XJ2(P')]

(C42)

(C43)

Also F ' ' is given by

P(')(Q, P}=2m("(Q, O, P)+2F"'(Q,Q+P, p)+F"'(Q,p+Q, Q)+P"'(P, p+Q, p) .

Here E"'=8"'except

P")(Q,o,p) =a("(Q,o,p) ——,'a")(Q)a")(P),

as seen from Eq. (C31}. Most explicitly the expressions for F' '(Q, P) and E' '(Q, P) become

(C44}

(C45)

P(3)( P)
J2(S')—J2(Q') J2(Q') —J2(P') J2(P') —J2(S')'

Q = —6, , +, , + (C46)

(4) 1 J3(p ) J3(Q } 1

3 P2 Q2 Q2 S2
J2(S )—J2(P ) J2(Q )—J2(P )

S P2 Q2 P2

+ [J2(S )—J2(Q2) —(S2—Q2)J2{Q2)]
2(S2 Q2)2

+ [J2(S )—J2(P )—(S —P )J2(p )]——,'J2(Q )J2(P ) .
2(S2 P2)2 (C47)
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We note that Eq. {C42) must still be renormalized as is
shown in the text and done explicitly in NO.

APPENDIX D: PROPERTIES OF THE FUNCTIONS
J,- AND THEIR APPROXIMANTS

We now discuss the functions J~ and introduce con-
venient forms for approximating them. From Eq. {C24)
we can write out explicitly some J for small values of m
(m &1)

Jp(x) =e

Ji(x)=(1—e ")/x,
Ji(x)={e "—1+x)/(1/2x') .

(Dl)

We immediately note three properties of the J ( m & 0):

(a) J~(x)~1 as x~0,
(b) J~(x)-+m/x as x~00,
(c) J~'s monotone decreasing analytic functions in x

with range (0,1}for positive x, and
(d) J~+,/m+1(J~/rrt &J +, /m.

which is an easy formula to remember.
Integrah. The J 's have the integrals

~ J +i(y)dZ m 1 J(x)
m+1 a=i

(D7)

Formulas (D3)—(D7) are very useful in calculating the
mean square radius of gyration.

Approximate formulas for the J's. Properties (a)—(c)
suggest the following formula for the J 's (m & 0):

(DS)

J4-J4
(6% .

4

If we use this approximation procedure we find that

(D9)

This formula is found to be quite accurate at all values of
x and j.ncreasingly so as we proceed to larger m. For
m=4,

Indeed, if we write

J (x)=(E/x )[e "—q(x}], (D2) (D10)

where E is a constant and q(x) a polynomial then condi-
tions (a) and (b) uniquely determine X,q(x). The J 's

have also the following properties.
Recursion relations. The J~'s have the recursion rela-

tions

This formula is not accurate when the values of Q's are
close together and small, since we know, for example, that

(Dl 1 }

xJ~+i(x)=(rri +1)[1—J~(x)] .

Deriuatiues. The J 's have the derivatives

ill+i Nl

or writing S =J /nt we find

dx

(D3)

(D4)

However, we argue that this error most likely is not criti-
cal in the calculation of the scattering function, where the
high-Q regime is the crucial one, where, for example, the
divergences take place.

In Appendixes C. and D we have presented analytical
techniques for calculating the static scattering function.
The scattering function to one-loop order has been
evaluated, and using the approximation procedure in Ap-
pendix D [explicitly Eq. (D10)] and the diagrammatic
technique discussed in Appendix C, it becomes straight-
forward to calculate the scattering function to two-loop
order as well.
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