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%'ith basis in number theory, scaling relations for the sine map have been investigated, generaliz-

ing the work of Shenker which concentrated on "golden" rotation numbers {equivalents of the gol-

den mean}. Scaling functions are found, and exponents associated with the convergence rate, de-

fined for periodic irrationals. In the light of the fact that the step structure obtained by iterations of
the sine map exhibits a kind of self-similarity, correspondences to scahng laws for Cantor's discon-

tinuum have been studied. We define a "similarity dimension" which is found to scale with

Shenker s exponents, as the sine map attains a zero-slope third-order inflection point. Moreover, we

examine the subset of steps having associated a denominator, which is a power of 2, and find a
correlated fractal dimension which is half the fractal dimension of the original Cantor set. Inspired

by these results, we have considered the driven damped pendulum equation and tried to recover cor-

responding scaling laws. Surprisingly, another scaling exponent z~1.5 is found where Shenker s

exponent z~1.05 was to be expected. Finally, the period-doubling route to chaos inside the hys-

teretic region for the pendulum equation is discussed, and qualitative agreement with the behavior

of the one-dimensional sine map obtained.

INTRODUCTION the representation of real numbers in continued fractions:

In the last years scaling properties have been investigat-
ed extensively, both for structures obtained by iterating
real maps' and for structures found at certain critical
lines in the parameter space for differential equations in-
volving two competing frequencies. ' ". It has been
confirmed' that the fractal found along such critical
lines, recognized as sets of points where hysteresis sets
in, ' has associated the same fractal dimension and de-
cay exponents as those found for the complete devil' s
staircase achieved by iterating a circle map with a zero-
slope third-order infiection point. ' However, not only
the scaling properties associated with such maps but also
the features when such a map is approached have been in-
vestigated and univer. uil scaling parameters found. '

In this paper, this investigation is continued. The scal-
ing parameters found are put into a number-theoretical
description and correlations discussed. We also consider
relations to the self-similar fractal called Cantor's discon-
tinuum' 'i with the purpose of studying the properties in-
herited from the self-similar step structure.

%'e close the paper by examining the transition to chaos
through period doubling, and present analog computa-
tions of the cascades in the driven damped pendulum
equation. We discuss similarities with the structure pro-
vided by the sine map, although the Poincare map for the
pendulum equation in known not to be one-dimensional in
this regime.

APPROACHING THE CRITICAL LINE

and every irrational can be written uniquely as an infinite
continued fraction, e.g., Rs ——[1,1,1, . . . ). For every ir-
rational R = [a i, . . . , a„, . . . ], the sequence of rationals

P„R„= =[ui,ai, . . . , a„], n =1,2, 3, . . .~ ~ ~ ~ ~ (3)

converges towards R.
If g(x) is some smooth orientation-preserving circle

map [g (x +1)=g (x)+ 1], the "translated" map

f„(x)=p, +g(x)

is too. If, moreover, p is such that a sequence of Q„num-
bers xo,xi, . . . ,x~ &

exists with

and

x;=f&(x; ~) fori =1,2, . . . , Q„—1, (5a)

a~+
Q2+ Q3+'''

with a„positive integers.
It is well-known that every rational P/Q (between 0

and 1) can be written as a finite continued fraction in a
unique way as

P [ul»un]~ ul~u2»un —i= l~ un=2 ~

In his investigation of scaling relations at the irrational
number R~=(i/5 —1)/2, Shenker considered the
behavior of three quantities. To introduce these, one uses

xo ——f„(xg i) —P„,
the rotation number

(5b)
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fq(xp) —xp
Rs(p}= lim

A~co
(6)

equals R„. In this case Ixp, . . . ,xti, I is called an R„-
cycle, which furthermore is said to be stable if

df~s Q„—i

D„= " (x;)= g (x;) (7)

is less than 1. Generally, ' for every p with Rs(p) =R„
there is a unique stable R„-cycle, and among such }u's, one
can be found (call it p,„)where D„ is minimal. This }Li„ is
denoted as the superstable point on the R„step, which is
an interval bp, „ofp's where Rs(}u)=R„. For simplicity,
we set D„=D& .

If xp is chosen as the point in the stable R„-cycle hav-
ing the smallest derivative dgidx, a distance d„can be
defmed as

ga . dgs= min (x) '~ min (x)
x dx dx

(9)

we get sequences p, „+i(s)—p,„(s), d„(s), and D„(e) con-
verging towards }u„+i—p,„, d„, and D„. If s~O, i.e., g
has a vanishing derivative in some point xp and thus a
zero-slope inflection point, this point will appear in some
R„-cycle at every superstable point p„, and D„(0)=0.
The line a=O in (p„e,) space is called the critical line.

Regarding the case where g has a third-order inflection
point xp, Shenker finds for the Fibonacci sequence
R„—+Rs universal exponents y~ and xs, such that

p„+i(s)—p, „(s)-Q„ (10a)

where

d. =f~„" '(xp) —(xp+~. i)

As n tends to infinity, d„will approach zero.
The three quantities investigated by Shenker are

p„+i—p,„, d„, and D„. For every set of circle maps
g, —+g, where the subscript e indicates the minimal
derivative, i.e.

ad bc =—+1,ay+a
cg+d (13)

e.g., the irrationals [a„.. . ,a„,1,1, 1, . . . ] are equivalent
to RI . Further, every periodic irrational

R =[a i,a2,ai, . . . ], a„+k =a„ for n & np (14)

(k is called the period) is a root of an irreducible quadratic
equation with integral coefficients, and using the fact
that"

Qn-i
[uesun —ir ~ uz)u1] ~ (15}

periodic irrationals with period k can be ascribed to a
convergence rate

QnI= lim
Qn+k

' 1/k

(16)

In particular, for 1-periodic irrationals R =[n,n, n, . . . ]
like Rs, I =R. Moreover, I is evidently the same for
equivalent periodic irrationals.

It therefore appears natural to study the scaling param-
eters as a function of the convergence rate, and hence we
start seeking whether scaling laws

u. +i+ k(s) —
} .+ k(s)-Q. + k (17)

d„+ k(e)-Q„~~k (18)

if g has order n.
Finally, Shenker concludes that y and x (or z) are un-

changed for every irrational of the form
[ai, . . . , a„,l, l, l, . . . ], while the irrationals [n, n, n, . . . ]
with n & 1 have different values of y and x (the values y
and x are found to be well-defined in the same way as ys
and xs ). To this end, we mention that every two irra-
tionals g and rl having the same form from a given step,
i.e., g=[a, , . . . ,a„,c, ,c,, . . .] and r)=[b, , . . . , b„,
ci,c2, . . . ], are equivalent, i.e., some integers a,b,c,d exist
such that'"

2 for s&0
3'gm ——

2.1644. . . for s=O,

(s) Q
gill

(10b)

(1 la}

exist, and if so, whether y and x are invariant under the
equivalence (13). Again, the case s&0 can be solved
analytically using Denjoy's theorem, ' which leads to the
earlier given values y =2 and x =1. For m=0, things are
quite different. Indeed, universal scaling relations (17)
and (18) are found. For the sine map

1f (x)=p+x — sin(2mx),
2m

(19)

1 for s&0
0.5268. . . for a=0 . (1 lb)

z~(n) =(n —1)xs (n) (12)

The case c~O can be solved analytically. Shenker also
considers the behavior as s-+0 and finds that all of the

z
above three quantities depend only on the product sQ„™,
with universal scaling parameter zs =1.0537. . . . As in-
dicated by Feigenbaum et aI., it is possible to show that
zz ——2xz, and generally

some results are listed in Table I.
For the sake of clarity, equivalent numbers are

represented in the table by one number only, but the
invariance of x and y has been checked, e.g., for
the 2-periodic numbers [a,b, a, b, . . . ], the number
[b,a,b, o, . . . ] is found to have associated exactly the same
values of x and y. Note that although the numbers
[1,2, 3, 1,2, 3, . . . ] and [3,2, 1,3,2, 1, . . . ] have the same
convergence rate, they are not equivalent. Nonetheless,
their associated values of x and y are still equal. This cir-
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TABLE I. Convergence rate and the decay exponents x and

y for some periodic irrationals.
with z =2x. Additionally, mrs, is found to be an exponen-
tial function, i.e.,

op(t) =a (25)

[1,1,1, . . .]
[2,2,2, . . .]
[3,3,3, . . .]
[4,4,4, . . .]
[5,5,5, . . .]
[1,2, 1,2, . . .]
[1,3,1,3, . . .]
[1,4, 1,4, . . .]
[3,5,3,5, . . . )
[1,2,3,1,2,3, . . . ]
[3,2, 1,3,2, 1, . . .]
[2,2,3,2,2,3, . . .]
[3,4,3,4, . . . )
[2,6,2,6, . . .]
[1,12,1,12, . . .]

0.618
0.414
0.303
0.236
0.193
0.518
0.457
0.414
0.243
0.436
0.436
0.374
0,268
0.268
0.268

0.527
0.524
0.517
0.511
0.496
0.516
0.498
0.483
0.502
0.516
0.516
0.523
0.514
0.486
0.392

2.164
2.175
2.195
2.220
2.244
2.180
2.204
2.227
2.225
2.192
2.192
2.188
2.208
2.240
2.356

(a & 1 nonuniversal, with lna of order 1), when t & 1. Fig-
ure 2(a) shows hpj(e) for the Fibonacci sequence in a
semilogarithmic plot. By plotting the slopes obtained in a
double-logarithmic plot, Fig. 2(b), Shenker's scaling pa-
rameter zz is recovered.

Concerning the distance dJ, we fmd as expected that
o~(t) at t =0 is Hnear in the argument,

(in contrast to lna, b «1). Figure 3(a) shows the Fi-
bonacci sequence case, and the slopes determined as a~0
again give the value of z to be zs . Moreover, knowing
that dt(e)-QJ ' for fixed and sufficiently large Q~, we
conclude that

d (e) g
—is —(1—x)/z (27)

cumstance is, however, not general. As examples, the ir-
rationals [2,2,2, . . .] and [1,4, 1,4, . . .], as well as

[2,4,2,4, . . .] and [1,8, 1,8, . . .], have the same convergence
rate, but not the same scaling exponents. An interesting
observation here is that the values of x and y follow more
closely the values of the highest number in the periodic se-

quences as exemplified in the irrationals [3,4,3,4. . .],
[2,6,2,6, . . .], and [1,12,1,12, . . .]. Anyhow, periodic irra-
tionals with equal convergence rates can be characterized
by a common scaling txiuation; for proof see the Appen-
d1X.

Morcever, we find the often tacitly assumed propor-
tionalities

(&p, }(g)= & bp(&/g) &p, (28)

in this limit. Figure 3(b) shows lndj(e) versus inc, and
indeed we find this "limit" slope in accordance with the
one calculated from Shenker's value of x, i.e.,
(1—x)/2x =0.4490. . . .

In the same fashion, several other periodic sequences
have been investigated. In all cases we find the relation
2x =z fulfilled. Also, for an n-periodic sequence, we find
n parallel lines in the plots analogous to Figs. 2(b) and
3(b).

In a recent work by Jensen et al. , the averaged values
of hp and d,

kp J' p) +1—p)

dj —— min [x; —xc —[x;—xc+0.5 J J -dj
i =1,2, . . . , Q —1

(20)

(21)

respectively, were also considered, and they find that

(29)

(I J denotes the integer part) to be valid, dj is simply the
shortest distance mod 1 from any x;, i+0, to xo [for the
sine map (19), xc——0]. As an example, in Fig. 1 we show

lndJ versus lnQJ for the 2- eriodic sequence converging
towards [3,1,3,1, . . .]=( 21 —3)/6. It can be seen that
the points fall on two parallel lines. In general, the points
fall on n parallel lines for an n-periodic sequence.

Inspired by the work of Shenker, we have also con-
sidered the behavior as s tends to zero, examining the se-
quence of sine maps f„,given by

0.05—

0.02—

f„,(x)=f„(x)+ sin(2mx) .
2m'

We generally find scaling relations of the form

&p, (e)=~,(0)~a(sgf )

(22)

)0
I

1000 0)

d, (e)=dj(0)og(sgj'), (24)

FIG. 1. Distances d, vs Q, in a double-logarithmic plot for
the [3,1,3,1, . . .] sequence. Note the two parallel lines. The
slope gives the value of the scaling exponent x.
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We remark that our value of z is different from the unit
value proposed by Jensen et al. However, if we calculate
the measure M of quasiperiodic orbits, we find, introduc-
ing the Euler function (()(Q) as the number of irreducible
fractions P/Q with denominator Q (0 &P & Q), that

in excellent agreement with the value of P obtained in a
more rigoristic way from the equality

(39)

where v is the exponent belonging to the "correlation
length" g,

whexe

P=(y —2)/z —=0.33,

g ~~—1/F

(38)

indicating the scale ro —I/g, where a crossover from the
fractal to the continuous nature appears.

Examining the behavior of the number N(r, e} of steps
h)tt(e} larger than the scale r, Jensen et al. obtain v—=2.63.
A proper correlation length g is here determined by the
condition that

eQ'-~(g& &(Q)) (41)

2~10

103—

5u10 '—

for some scaling function cr. Using the behavior (30), we
find

s, v=}i/z,

with v-=v, and by (32} and (38) we end up with the rela-
tion

10
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FIG. 4. (a} Mean step size (dye }(Q)vs e in a semilogarithmic
plot for some values of Q. (b) The slopes are plotted vs Q on
double-logarithmic paper in order to find the scaling exponent z.
The unit on the ordinate axis is chosen such that the intersection
point at Q = 1 is Iua, cf. Eq. (35).

FIG. 5. (a} Mean distance (d }(Q) vs s in a semilogarithmic
plot for some values of Q. (b) The slopes obtained as a~0 are
plotted vs Q on double-logarithmic paper in order to find the
scaling exponent z. The unit on the ordinate axis is chosen such
that the intersection point at Q = I is h, cf. Eq. (36).
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(43)

for the scaling exponents belonging to the mean values,
which is completely analogous to (39).

SIMILARITIES VfITH CANTOR'S DISCONTINUUM

Due to the nice kind of self-similarity observed in the
step structure of Rs(p) [g given by (19)], see Fig. 6, we
have been encouraged to investigate the connections be-
tween the Cantor set Ip ~ Rs (p ) is irrational j and
Cantor's discontinuum C obtained by successively remov-
ing the middle thirds of remaining intervals starting with
the unit interval (Fig. 7). One simple relation valid for
strictly self-similar Cantor sets like C is that

D
¹~ri = 1 (44)

where N~=NJ) (rj=r~)) is the number (length) of the
remaining intervals at level j in the creation of the Cantor
set. D, is called the similarity dimension' and is in-
dependent of the level j. Moreover, Hausdorff has shown
that D, =D.

For Cantor's discontinuum and similar sets, the "holes"
correspond to the steps h!L for the circle map. At any
level j, the distances sj, m =1,2, . . . ,¹J,between the
holes is s, =rj, and the condition (44) ensures that

known that bp(PJ+&IQJ+&) is the largest step between

p(&~ (/QJ 1) and bp(PJ/QJ), and a kind of "similarity
dimension" D, J can thus be found from an equation
equivalent to (47},

s,j+1 s,j+1 s,j+1
Sj, 1 Sj+1,1 +Sj+1,2 (48)

where sj, m =1,2, denotes the p distance between

hp(PJ/QJ) and ~(PJ /QJ ~). A calculation of D, J
from (48} gives, almost independently of j, D, 1=D, =0.858, which is almost equal, but definitely smaller
than D.

Nevertheless, the behavior of 1 —D, J is found to be
characterized by the same scaling parameters as the quan-
tities treated in the last section when the critical line is ap-
proached. This is illustrated by Figs. 8(a) and 8(c), show-

FIG. 7. Cantor's discontinuum can be created by successively
removing N„~——2" ' intervals of length hp(P/22) =3

D
Sj,m

mN,
D

Siks J=& (45) (b)

k =(m —1)N; j+1

particularly for i =j+ 1,

mN)
D ~ D

Si,m = Si+1,k s

k ={m—1)N) +1
(46) 0,0¹,is the number of distances between holes in the in-

terval s, . For the Cantor set C, N) ——2, and (46) simply
reads

D D D
Sj,m =Sj+1,2m —1+Sj+1,2m

Recently, (45)—(47) have been utihzed to estimate the
fractal dimension locally for the step structure obtained
from the sine map (19).'s For the case R =Rs it is

0.0

0.00

0.01

b0(Q, )

0.05 0.001 0,005 0.010

I.O

20

0.8—

50

0.0 '

0.0

!

2K

I

0.2 0.4 0.6

025 026 0.27
I l

0.8

20

20 50 100 200 Qj

FIG. 6. Rotation number R=R(p) for the sine map at
c=O. Note the self-similar nature of the staircase under magni-
fication.

FIG. 8. Codimension 1 —D, ~ vs c in a semilogarithmic plot.
(a) For the Fibonacci sequence. (b) For [5,5,5] and [5,5,5,5]. (c)
Plotting the slopes vs Q~ on double-logarithmic paper, the scal-
ing exponent z is recovered for the Fibonacci sequence.
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ing that

1 —D, J(e)=(1—D, )exp[ —ebD(QJ)], (49a)

of steps larger than a given scale r =b p(Po /Qo),

Qo N——„,we get

&D(QI ) -Q~' ~ (49b)

N(r)= g I=No —1
—1-Qo

1

P/X„
(53a)

in sharp contrast to the behavior obtained from the sine
map staircase Rs(Is) [cf. (30) and (32)].

The difference is due to the fact that while steps occur
at every rational value of Rs()u}, steps only occur for
values of P(p} of the form P/N„, P,n any integers, e.g.,
for Cantor's discontinuum, all steps are of the form P/2",
P odd, and

g+(P/2s) 3
—n (2n) —I ID (52}

(see Fig. 9). Therefore, when counting the number N(r)

and z is found to be the same as that obtained in the last
section. To this end, we stress that the "small" value of
D D, by—no means is responsible for the linear behavior
of in[1 —D, J( s)], e.g., for the sequence of rationals con-
verjng towards [5,5,5, . . .] where D,'J' is found to be
D,'J =D, =0.978, mce straight lines are still found, cf.
Fig. 8(b}, and the slopes change exactly according to the
value of z obtained as 2x =0.992 from Table I.

To achieve a complete devil's staircase for Cantor sets
like C (Fig. 7), one imagines a homogeneous distribution
of mass m (x) on the Cantor set which adds up to a total
mass 1. Then the increasing map

P(p, ) = f m (x)dx (50)

is a complete devil's staircase having all values between 0
and 1, and all p on a step hp associated with a hole in the
Cantor set wiH have a rational value of ())(p, ). If
p(p, )=P/Q (irreducible), we write bp as AIL(P/Q). It is
readily shown that for Q =N„

while the counting if steps for all rationals are represent-

ed, and we assume r to be independent of Po (and decreas-

111g with Qo), glvcs

N(r)= g 1= g 4(Q)
a/g g &Qo

Q &Qo

Qo+0(Qo»Qo)-Qo . (53b)

Since

N(r)-r (54)

L= g b,p, (P/N„) .
P/N„

(55)

In Fig. 10, the most simple case N~ ——2 is considered and
N (r) shown versus r in a double-logarithmic plot.
Indeed, a slope Dz- D/2 is foun—d, emphasizing the close
connection to the scaling in Cantor's discontinuum.

in both cases, a factor of 2 will occur in the step size de-
cay exponent for the latter case (proposing D =D) but not
for the former.

Noticing this fact, it is a natural question to raise
whether a fractal dimension D2 equal to half the value of
D will be found for the Cantor set obtained by successive-
ly removing intervals hp(P/N„), calculated from iterating
the sine map, from a total interval of length

1

2

20—

I l I

0
'l 2 1

9 9 3

I I I

2 7 8
13 9 9

I

1O-' 2-10'
I

5„10-6 10-5 2„)O-5 5x10 I

FIG. 9. Colnplctc dcvll s stslrcasc f(p, ) obtained for Cantor s
discontinuum.

FIC». 10. Number of steps X(r) larger than the scale r on
double-logarithmic paper for the subset of step sizes in the sine
map staircase R~(p) consisting of the step sizes of the form
dp(P/2"). The slope gives the related frsctal dimension.
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In earlier works, ' we have considered the scaling prop-
erties (especially the fractal dimension) of the fractal ob-
tained along the critical line for the driven damped pendu-
lum system described by the normalized equation

$+6$+ U (P }=I+A sin(cot ), (56)

where P is the phase, 6 is the damping constant, U(P} is
a periodic function, and the right-hand side of the equa-
tion is the external oscillating force. The rotation number
R is the ratio between the two frequencies ro and

(P) = lim [P(T)/'I],

A= -',(i)
(57)

and on an I-R curve, the critical point is (if present)
found where the hysteresis sets in. At every rational
& =PIQ, a step is supposed to occur, and its size
M(P/Q) at the critical hne has been used to estimate the
fractal dimension by the counting method, cf. (54), as well

as decay exponents for different converging sequences of
rationals.

Here, the scaling properties when the critical line is ap-
proached have been considered. Typically, I-R curves ob-
tained on an analog computer (EAI 680) look like those
shown in Fig. 11,where U(P) is chosen to be sing. Every
curve is seen to be 'single-valued' for I & Io and hysteretic
for I&Io for some critical value Io of I. For 8 P/Q,
the step size dd(P/Q) falls off when 6 is increased, and
the step moves up in parameter I. It is therefore reason-
able to believe that I Io or 6——Go can be used as the
parameter s, (Io,Go) being the critical point.

To this end, we are aware of the fact that s can be more
properly defined as the smallest value of the derivative of
the Poincare map which certainly is a circle map in the
nonhysteretic regime, but crinkles up at the onset of hys-
teresis. This definition of e is, of course, only well-

defined for irrational rotation numbers; for rational R, a
width b,s(R) will exist but tend to zero as the denomina-
tor Q of R tends to infinite. However, the definition is

EI (I I—o) =M&(0)exp[ (I——Io)br(QJ )] (58a)

bl(QJ )-Qf, (58b)

Figs. 12(a) and 12(c) show that z is found to be z=-1.5,
substantially different from z. Here we have adopted
U($)=sing+(sin P)/6 and (A,co)=(1,1.76). Using
6 —Go instead, and claiining that

h, IJ(6 —Go) =LLI (0}exp[—(G Go)b—z(Q/)] (59a)

bg(QJ )-Qg,
cf. Figs. 12(b) and 12(d), we r~~h the same result.

(59b)

O.oi-

a02 O.OI. O.O6 O.Oe r-i. 0.02 0.04 0.06 6-(j)

not practical because of the large amount of computations
needed. Furthermore, to achieve a sufficiently low scatter
in the value of s, a large amount of computer time will be
required. Finally, generically it is to be expected that e is
proportional to I Io—and 6 —Go near the critical line.

Nonetheless, the results obtained are surprising. Con-
sidering the Fibonacci fractions P~/QJ, and assuming a
behavior

20—

10

FIG. 11. I It curves obtained-for U(P}=sing, A =1, and
~= 1.76 by analog-computer calculations. The damping factor
6 is lowered successively by 5,6=0.08, starting wreath 6=1.6.
Critical points are indicated by arrows.

FIG. 12. Step size MJ' (a) vs I—Io, (b) vs 6 —Go, in a semi-
logarithmic plot for the Fibonacci sequence. For the purpose
here, the values of (Io,Go) have not been estimated in detail. By
plotting the slopes of the least-squares lines (c) in (a) and (d) in
(b) vs Q& on double-logarithmic paper, a slope z=1.5 substan-
tially larger than z is found.
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Similar figures have been made for the [2,1,1,1, . . .] se-

quence, also giving z at about 1.5. However, while the
proportionality constant in (59b) is almost the same as
that for the Fibonacci sequence, the proportionality con-
stant in (58b} is found to be larger, emphasizing that
I—Io only locally is proportional to e, i.e.,

(I—Io)(R)=c(R)e,

with c(R) continuous in the rotation nuinber R. That
c (R) decreases when R decreases is expected, since the I-
R curves (cf. Fig. 11) lie closer as R tends to zero.

We stress that the exponent z, within the uncertainty
(-10%), is found to be unchanged if U(P) is chosen to be
sing, suggesting that z is independent of the choice of
U(P). Moreover, from (58) and (59) it is seen that a
change in the values of (Io, Go} only results in a parallel
displacement of the lines in Figs. 12(a) and 12(b), and
therefore leaves z unchanged. A detailed knowledge of
the critical line is therefore not necessary. However, since
e and I Io are —related through (60), and step sizes are
measured in terms of b,I, one might think that the result
z=1.5 is an artifact of the procedure. To this end, we
note that the value of Io is found almost constant at
R =[1,1,1, . . .] [in both of the choices of U(P) above].
Therefore, if 6-R curves are used instead of I-R curves,
step sizes b,GJ(I —Io) for a specific I Io are ob—tained
for every curve. Nevertheless, claiming that a scaling
behavior (58) exists with ddj interchanged by b,GJ, we still
get z to be about 1.5. For the sake of completeness, we
mention that also by considering b,GJ(6 —Go } we are led
to a value z = 1.5.

Using the 6 —R curves related to values of I near the
almost-constant Io value for the Fibonacci fractions
[1,1,1]= —,, . . . , [1,1,1, 1, 1, 1]= —,', , even the previously
defined similarity dimension D, ~

seems to give occasion
for a behavior like that above. In Fig. 13, ln(1 —D, ~) is
plotted versus I Ip for U(P}—=sing and (A, co) =(1,1.76).
The change in the least-squares slopes is a factor of 2 and,
in accordance with a value of z about 1.5, indeed larger
than z.

%e suggest that this "discrepancy" with theory has its
origin in the presence of noise, which smears out the step

edges. This smearing is, in our analog computations,
about 5I-0.001, or in other words about the same order
as M( —,', ,I —Io ——0.05}.

Here we should like to comment on the feasibility of
measuring the similarity dimension for the Josephson
equation. Since D„(for fixed 6) is determined along a
single curve, one would guess that large values of Q would
yield the best result as the change in c could then be mini-
mized. However, from the result on the circle map [Fig.
8(a)] and from Fig. 13 for the Josephson equation, it is
clear that large steps should be chosen to minimize the ef-
fect of the uncertainty in the precise position of the criti-
cal point. These two conflicting considerations raise
severe doubt as to the value of this method.

THROUGH PERIOD DOUBLING TO CHAOS

Speculating on the similarities at the transition to hys-
teresis between the behavior on the steps for the driven
damped pendulum and for circle maps, we have studied
the features in the hysteretic region. When the steps move
deeper inside the hysteretic region, bifurcations begin to
affect the steps from the inside, and a period-doubling
route to chaos is observed. In Fig. 14, such a situation is
shown along the —,

'
step; inside the hysteretic region, the

Poincare map is traced. However, the phase 1ock is sti11
preserved, and is first lost well inside the chaotic regime.

The period-doubling route has here been examined by
use of a low-frequency spectrum analyzer (HP3561A) to
obtain spectra at different (negative) values of I Io. In-
Fig. 15, an example of how the spectra develop as the hys-
teretic region is entered is shown for P/Q= ». Figure
16 shows the associated I-R curves. It is noticed that
even when the critical line is crossed, the noise back-

0.20—

CURRENT (ARB. UNfTS)

0.05—

I

0.0']
I

0,02 0.04 I-Io

FIG. 13. Codimension 1 —D, J vs I—Io in a semilogarithmic
plot for the Fibonacci sequence.

FIG. 14. Behavior on the 2 step far below the critical line.

6=0.80, Uig)=sing, A =1, and co=1.76. The IRcurve-
with the 2 step is shown together with the Poincare map of P as

a function of the current. The ordinate to the left refers to the
Poincare map (arbitrary units), while the ordinate to the right
refers to the I-E. curve and displays the rotation number. A
Feigenbaum bifurcation sequence into chaos and out again is
clearly visible.
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TABLE II. Distances
~
s

~

(for the sine map) and M (for the
driven damped pendulum) for which the first bifurcation just
occurs, and for which the chaotic regime is entered.

1

2
1

3
1

4
1

Y

Bifurcation

VZ —1

0.19

0.15

Chaos

0.89

0.48

0.30

Io—I
Bifurcation

0.17

0.05

0.03

Chaos

0.27

0.11

0.06

0.05

1.05-

FIG. 16. Portions of I-R curves traversed by the critical line

marked by horizontal arrows. U($)=sing, A =1, co=1.76,
and the G values are, from left to right, 1.51, 1.43, 1.39, 1.35,
and 1.31. Associated frequency spectra taken at the rotation
number R= —,7, marked by a vertical arrow, are shown in Fig.
15.

ground starts to increase. From the eneral behavior
known for maps of the torus onto itself, ' it seems to be a
fair guess that this increase that is observed even before
the bifurcation sequence sets in signals the onset of chaot-
ic noise in the transient behavior, a phenomenon that
might be connected with the observed excess noise in at
least some of the parametric-amplifier configurations
based on Josephson junctions.

1.12-

12
1 CHAOS

I

2/9

FIG. 17. Portion of an I-R curve lying slightly below the
critical point. Intervals of bifurcations and chaos are indicated
on the steps. 6=136, U(P) =sing, A =1, and co=1.76.

For the large I/Q step, we have in Table 11 listed the
values of

~
s

~
[from (22)] and Ic —I, where the first bifur-

cation occurs, and where chaos is encountered. Typically,
the values are smaller for smaller steps, see, e.g., the I-R
curve in Fig. 17, which lies completely below the critical
line. R is about 0.25 and all small steps are smeared out
or have vanished into a seemingly disordered motion.
While the —', as well as the —,', step have bifurcated and

chaos exists on the —,
'

step, no bifurcations at all have yet
occurred on the —,

'
step. Additionally, we notice from the

values in Table II that Ic—I decreases faster than
~
z

~
as

Q is increased, in accordance with Eq. (60).

CONCLUSIONS

The universal scahng laws obtained by iterating circle
maps of third order ' have previously been shown to give
a good description of the phase-locking structure along
the critical line in systems with two competing frequen-
cies such as the driven damped pendulum. 'c Above the
critical line, the return map of the phase of the pendulum
is one dimensional, and therefore it is expected that the
scaling as the critical line is approached can be discussed
on the basis of the sine map. In particular, we have here
investigated the scaling of the step sizes and the minimal
distances, both regarding continued-fraction sequences
and the average behavior. The former has been studied in
the context of the convergence rate. As expected from re-
normalization analysis, it is found that equivalence is a
sufficient condition for numbers to exhibit the same scal-
ing exponents. But, as shown, it is not a necessary condi-
tion. Nonequivalent numbers may have identical conver-
gence rates, in which case a common scaling equation is
produced. However, a condition of equal convergence
rates is only a necessary condition and not sufficient for
getting identical scaling exponents. Close to the crossover
to chaos, scaling functions are found, and regarding the
average behavior, these give rise to a definition of average
measure and average correlation length exponents, which
are related analogously to the more rigoristic defined
quantities.

The self-similar step structure obtained along the criti-
cal line gives occasion for speculations on similarities with
Cantor's discontinuurn. To this end, two pseudodimen-
sions have been defined; one, D„which is locally defined
by using three steps only, corresponding to three succes-
sive rationals in a continued-fraction sequence, and anoth-
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er, D2, defined from the steps corresponding to rationals
with a denominator of a power of 2. The former, sub-
tracted from 1 is found to decay exponentially in the same
way as the step sizes as the critical line is approached; the
latter is found to lead to a decay of the step sizes in accor-
dance with the decay obtained for Cantor's discontinuum,
i.e., Dz ——D/2.

The similarity dimension D, is of special interest for
the interpretation of experimental results since it offers a
short-cut for determination of the fractal dimension in
drastically reducing the amount of data needed. However,
the observation that 1 —D, scales exponentially with the
distance from the critical line raises severe doubt as to the
reliability of the method.

In connection with this the rather surprising result of
an analog-computer-based measurement of the decay ex-
ponent z for the driven damped pendulum is of particular
interest. In contrast to other quantities, which agree
closely anth their sine-map counterparts, a large
discrepancy (50% increase) is found for z. The most
probable cause for this discrepancy is noise and an investi-
gation of the influence of noise on the scaling behavior
close to the critical line would therefore be of interest.

Below the critical line, the return map of the phase of
the pendulum loses its one-dimensionality. ' However,
the one-dimensional sine map can still, at least qualita-
tively, be used to explain the behavior on the phase-locked
steps as they pass the critical line into the chaotic regime.
The larger steps (low Q values) keep growing until deep
inside before bifurcation cascades into chaos develop. The
smaller steps succumb to this close to the critical line.
The utter chaos that develops is therefore partly caused by
the overlapping of steps, partly due to the phase-locked
steps breaking down from the inside through bifurcation
sequences into chaos.

Qj+mk ~ Qj y(m —1}k

Qj+mk —1 Qj+(m —1}k—1
I

where
r

k 1 ck ) 1 c) 1

1 0 1 0 1 0

(A3a)

(A3b)

Dividing by Qj+ k,
r

Q&+mk i/Qj—+mk

=C
Qj+(m —1}k—1/Qj+(m —1)k

we get from (16) in the limit m ~ 0(),

1 1
Ik

l l

where [cf. (15)]

l =[Ck, . . . , C1,Ck, . . . , C1, . . .],

Qj +(m —1 )k

Qj+ k

(A5a)

(A5b)

and l is the convergence rate. Thus l is a root in the poly-
nomial

P(r) =det(Cr —E) . (A6)

Here det denotes the determinant, and E is the unit ma-
trix. (A6) can also be written

P(r) =Dr2~ —Tr"+1, (A7)

where D=det(C)=( —1), and T is the trace of C. The
second root of P(r) is seen to be P= —1/l ~ —l.

Now let f be some smooth (orientation-preserving) cir-
cle map, like the sine map defined by (19) and (22), with
rotation number R. As usual, 4 f'"' and f(„}are defined
from f,

We are indebted to T. Bohr, P. Grassberger, and M. H.
Jensen for valuable and informative discussions. This
work has been supported by the Danish Natural Science
Research Council.

f(II)( ) f~( ) P (As)

f(„)(r)=a"f'"'(a "r), (A9a)

thus

Qj+mk
Qj+mk-}

T

ck 1
Qj+mk i

Qj+k Z
J

In continuation of our numerical results we here show
that renormalization-group analysis of circle homeomor-
phisms leads to the fact that periodic irrationals with con-
vergence rates, which are identical, can be characterized
by a common scaling equation.

Let R =[a„.. . ,a, ,c„.. . , ck,c},. . . , ck, . . .l be
continued fraction with period k, and R„=P„/Q„be the
rationals defined as in (3). Then for m & 1.

Qj+mk CkQj+mk —1+Qj+mk —2 I

and the same equality is valid for the P 's. In matrix no-
tation (A 1) yields

where

a= —1

Below, we will omit the variable r, e.g., we just write f(„}
as a"f'"'a ". Let further (Mm, e) denote the group, gen-
erated by the elements (sf), where f and g are of the form
a 'f(j+mk+;}a', and the addition

fi f2 fiof2
S (A10)

where fo g denotes the composed function
fog(r)=f(g(r)). Note from the definition (A9) that
(M,S) is commutative. In addition,

f a —Ikfa Ik

(Al )
g a 'ga'
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maps (fs) in M +; into an element in M . Since the set
A=GL(25 «2X2 integral matrices is an associative
ring, we make (Mm, {)j) to a left A-module by defining a
multiplication : A XM ~M,

Ck'
C3

a b f
C d g

fO gb

fC d 7 (A12) ( C~)k

where, e.g., f' means f composed a times. Analogous to
(A3), we see that

T

f(j+(m+1)k) k ~ fj(+mk)
+f(j+( +1)k —1)(x rtf(j+ k —1)

(A13)

If R is another periodic irrational with period k', and
convergence rate I'=/, we have some matrix g' such that

+I(,)
k' J (j'+(m+1)k')

( i)k'
&'f'{J+(m+i)k' —»((x')

gl
=C'e ' J+, (A14)

{xf'( J +mk—j)((x')

C1 —C4 C2

0

We notice that since ci &c4, and c'1 &c4, then ci —c4
= C 1

—C4 = i (Ci +C4) + T(C)+C4)—(C4+C4) ~ 0.
Finally, we get

f(j+(m +k')k)
{xf{J+(m+k')k —1){x

f(j+mk), (A19)
+f(j+mk —{)+

where a', f{„j,j', and Mm are defined analogous to a,
f{„),j, and M . Furthermore, l is a root in the polynomi-
al (~~)—kk'

+IJ (j'+(m+k)k') r „kk
{rf(j'+(m+k)k' —l)((x )

P'(r) =det(C'r —E) . (A15)

If we for a moment regard A as embedded in the ring
GL(2, R) of all 2 X2 real matrices, matrices $ and S' exist
in GL(2, R) such that by (A17) gives

gtf(J'+ k')m

+fj('+ k' 1 ) (+ )—(A20a)

0
0 2

S',
2.

where

A ( ——( —l)k, j(,i——I

A( ——( —I), Ai ——I

0
C'= (S')

I

(A16a)

(A16b)

(A16c)

c~

(~~)—kk'
S41,

J (j'+1m+k)k')
(

~)kk'
C f(j'+{m+k)k 1)({r )' —

rr
g@ J (j'+mk')

&'fIJ+ k -()(o") (A20b)

~—ik ~ik ~-sk~ ~

Above, it is used that generally for A in A and (sf) in
M +;, onehasin M

Hence,

( c )'=(s )-'s c's-'s
=(s-'s )-'c'(s-'s )=s -'c's (A17a)

s=s-'s'.
Noting that C"' and (C')" therefore have the same deter-
minant and trace, S can be cholui in A, e.g., if

Equation (A19) and (A20) show that renormalization-
group analysis leads to the same equation in the limit
m ~ ao. Since only a finite number of periodic irrationals
with convergence rate equal to I exist, the procedure
above can be used successively taking one more number
into account each time. Hence, we end up with a com-
mon scaling equation, and the proof is done. Conversely,
it is seen that periodic irrationals with different conver-
gence rates cannot be associated with a common scaling
equation.
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