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Velocity distribution function and transport coefficients of electron swaiiiis in gases.
II. Moment equations and applications
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A representation of the hierarchy of kinetic equations formulated earlier [Phys. Rev. A 33, 2068
(1986)] for reacting charged-particle swarms in gases is obtained in the Sonine polynomial basis. We
specialize to electron swarms and compute transport and rate coefficients, distribution functions,
and other quantities of physical interest for both model and realistic electron-molecule scattering
cross sections, in a wide variety of cases.

I. INTRODUCTiON f(lm ~sA}=to,(a,c}g F(vlm
~

sA, )R„~(ac),
v=0

(2)

In the preceding paper' (referred to hereafter as I) we
considered the more formal aspects of the kinetic theory
of the reacting charged-particle swarms in gaseous media
and derived a hierarchy of kinetic equations which must
in general be solved numerically, e.g., by representing the
functions as a series of orthogonal polynoniials or by fi-
nite element techniques. We give a discussion of the
former approach in the present paper and, as in Lin, Rob-
son, and Mason, 2 specify the basis in terms of Sonine
(generalized Laguerre) polynomials, well known in the ki-
netic theory of gases. The problem then reduces to find-
ing first the representation of Eqs. (I.28}—(I.31} in this
basis and second the solution of these "moment" equa-
tions. Both processes are rather long and involved there-
fore we outline only the most important features in Sec.
II. For a comprehensive discussion, the reader is referred
to the thesis of Ness. ~ In Sec. III, we report on the results
of computation of electron swarm transport coefficients,
distribution functions, and other quantities of physical in-
terest, for a wide variety of gases. We use model cross
sections to elucidate physical phenomena where appropri-
ate, but where realistic cross sections are known, these are
incorporated in the calculations. Our results are in good
agreement with both experiment and other theoretical pre-
dictions, where these are available.

11. MOMENT EQUATIONS

A. Hierarchy of equations and tr~sport coefficients

The density gradient decomposition of the spherical
harmonics coefficients is, to second order [cf. (L13)],

where f ( lm
~
sA, ) depends upon speed c, but not position

or time. The meaning of the tensor operator G""' is dis-
cussed in I Sec. II 2. %'e expand these quantities about a
Maxwellian velocity distribution function at some arbi-
trary temperature Ts in terms of Sonine polynomials

where

R„t(c)=N„t(c/V 2)'St'+iqz(c /2),

w(a, c}=(a /2n) ~ exp( ac —/2),

N„,=[2''"v!IPv+l+ , )]'", -
a=(m/kTs)'

Representation (2) is to be compared with (I.4), with

g„t(c)=nto(a, c)R„t(ac) .

(3a}

(3b)

(3c)

(3d)

m(a, c)R„t(ac)Rgt(ac}c dc =5p„,
0

and hence from (2),

F(vlm ~sA, )= I f(lm ~sA. )R t(ac)c dc . (4)

It then follows from (I.14a), (I.14b), (I.37a), md (I.37b)
that

F(vl —m ~sA, )=F(vlm ~sA, },
F(vlm

I
»)=»f

/
m

) & minI l, l I,
F(000

i
sA, ) =5,c5io, (5c)

the last equation representing the normalization condition.

The parameter T& (and therefore a) is essentially uncon-
strained and is chosen ultimately in numerical calcula-
tions in such a way as to optimize convergence of our ex-
pansions. This single free-parameter basis set suffices for
present purposes, i.e., for computation of electron swarm
properties, but more elaborate representation are possible
(and desirable) for other cases. s'6

The combined spherical-harmonic —Sonine-polynomial
expansions amount to representation of the distribution
function in terms of the well-known Burnett functions.
Equations (6)—(9) following are the corresponding repre-
sentation of Boltzmann's equation (I.3}, or simply "mo-
ment equations. " Orthogonality of the Sonine polynomi-
alss leads to the result
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If we multiply each of equations (I.28), (I.29), (I.30), and (I.31) by R„i(ac)c and integrate over all speeds c, we obtain
the following hierarchy of matrix equations for the quantities F{vlm

~
sA, ): For s =X=0,

$ [M„,«(0)+~(00)5,gi, ]F(v'1'0 (00)=0, v, l =0, 1,2, . . . , ~;

for s =A, = 1

g [M„,«(m)+a)(00)5~Pr, ]F(v'1'm ~11)

= —ai(11)F(vlO
/
00)5 0——g (vl )

]ac{'}f)v'1'){Iml'0
/
lm)F(v'1'0

) 00), v, l =0, 1,2, . . . , oo, m =0,+1;
CX

for s =2, A, =O,

g [M„,~r (0)+ei(00)5~P, ,]F(v'1'0
~
20)

= —oi(20)F(vlO
i
00)+ co(11)F(vlO

i
11)1

3

( 1 [
(«"}

[ (
'1'}F( '1'm '

[ 11)(1—m '1'm '
[ 10)

~ v, I,m
3

for s=2, A. =2,

g [Mvl, v'I'(m)+(00)5~An]F(v'1'm
I
22)

v 1 =0, 1,2, . . . , oo ',

co(22)F—(vlO
i
00)5 o—(101m

i
2m)co( 1 l)F(vlm

i
11)

(vl
( )ac '

)
(v'1')F(v'1'rn'

)
ll)( 1m rn'1'm—'

(
lm)( lm —rn'1m'

~
2m),

+ v', I', m'

v, 1=0,1,2, . . . , oo, m =0, +1,+2. (9)

The matrix M is defined by

M„i «(m)=n+~5i i+iaa(vl ()E{'j~(v'1')(101'm
[ lm),

(10)

where, for a gas of neutral molecules of number density

no,

t

the longitudinal diffusion coefficient, and

Dz —— er(20)+ r0(22)=1 1

3 2
(13d}

8'=iso(11)

the drift velocity,

(13b}

1
[co(20}—V 2'(22)] (13c}

J~ 8 I cc J to QcRyIGKc c c
no

is the collision matrix [in Ref. 2, a related matrix,
a~(l) =(N«/N„I jJ~ was used] and

(vlf /ac{'}J/v'1'}

—= f R„,(c}&1[[c('}[[1)m(l, c}R«(c)czdc, (12a)

(vlfiJ ('j//v'1'):—f R„( ){1[/a{'}//1'}m(1, )R, ( ) d . (12b)

It is useful at this stage to recall the quantities of physical
interest. These are given by (I.27):

(13a)

is the attachment loss rate,

the transverse diffusion coefficient. It is obvious then
why we focus our attention on the co(sA, ) in the subse-

quent discussion.
Properties of the Wigner (Clebsch-Gordan) coefficients

were given in I in Sec. II A 1. The operators J',
{1

f
(c(' 1)

]
1'), and (1/ )8('}

f
)1') were defined in (I.18), (I.20),

and (I.21), respectively. Equations (11}and (12}are effec-
tively the representations of these operators in the Sonine
polynomial basis. Explicit expressions can be found in the
Appendix of Ref. 5 [(A43) and (A44)]. Summations in v'

and 1' run over all allowed values, i.e., from 0 to oo in
Eqs. (6)—(9).

Solution of (6) amounts to finding the eigenvalues and
eigenfunctions of M. As explained in I in Sec. II 8 3, the
physics of the problem dictates which eigenvalue is to be
selected from the spectrum. The matrix M is not Herrni-
tian and, at the time of writing, very little is known about
the general properties of this spectrum=one simply has to
rely upon numerical estimations. The corresponding
eigenfunctions are specified using the normalization con-
dition (5c), viz. , H000~00)=1. The co{00) and F(v10

~
00)

found from (6) are required to effect solution of higher-
order members of the chain.

If we set v=0=1 in (6) and note that
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(OOI IIC(')
I Iv I }

=v 4m. I (OIIB('}III')w(l,c)R&p(c)c dc

by virtue of (1.38},then it follows that

co(00)= —no g J~F(v'00
I 00),

v'=0
(14)

corresponding to (I.39). Only the reactive part of the col-
lision matrix contributes, as explained in Sec. II8 foBow-
ing. This is not always a particularly useful relationship,
for one needs to have the solution to (6) in order to evalu-
ate the right-hand side (rhs) and in that case, one would
already know co(00). However, if all terms in the summa-
tion for which v' & 1 are neglected it follows with the nor-
malization condition that

ro(00) = —noJOO .0

This approximation amounts to assuming that the distri-
bution function is Maxwelhan. Such a low order of trun-
cation (effectively v =0) is rarely adequate, however,
and systematic solution of the doubly infinite matrix
equation (6) by successive incrementation of v,„,I un-
til convergence is achieved is generally required.

On the other hand, setting v=1 =m =0 in (7) leads to
quite useful information:

ro(11)=—F(010IOO) —no y J~F(v'OOI 11) . (15)a v'=1

In deriving this we have used the fact that
(OOIIE('}IIv'I')=0, (OOIIac('}IIv'I')=~35~05( i, and
(1010IOO)=—1/v 3. This corresponds to (I.40). Substitu-
tion of (15) into (7) yields

y' [M/, yi (m)+~(00)5/Pr /
—nQJ~F(vl0

I 00)5pc5 0]F(v'I'm
I
11)

= ——F(010
I
00)E(vlO

I
00)5 0——g (vl IIac('}IIv'I')( lml'0

I
Im)E(v'I'0

I
00),

tX

v, I =0, 1,2, . . . , oo, m =0,+1 but (v, l, rn}+(0,0,0) . (16}

The prime on the summation in the left-hand side (lhs) indicates that there is no term for which (v, l )=(0,0). Likewise,
the (v, I)=(0,0) member of (16) is identically zero on both sides, and need not be taken into consideration. Equations (16)
constitute an infinite set of equations for F(vlm

I 11)[(v,l, m)+(0, 0,0)] which, when solved, yield co(11) through Eq.
(15). Notice that the m =+1 equations are essentially the same. Symmetry with respect to the sign of m has already
been observed [see (5a)] and is a reflection of geometrical symmetry (specifically, invariance under rotations about the z
axis) in configuration space.

Other members of the hierarchy are treated similarly. Thus we find

co(20)=— [E(o1o111)+2F(o11111}]—no g JL F(v'00
I
2o»a 3 v'=1

y' [My/ qp(0)+ap(00)5/Pi i noJ~F(vl0—
I
00)5po]E(v'I'0

I
20)

1
E(vlO

I
00)[E(010 I 11}+2F(011

I
11)]+ co(11)E(vlO

I
11)

(vl
I
Iac('}IIv'I'}(1—m'I'm'

I
10)(—1)' F(v'I'm'

I
1 1),

v', J', m'

v, I =0, 1,2, . . . , 00, but (v, l)+(0,0), (I&)

co(22) =—&2/3[E(010
I
11)—F(011

I
11)]—no g J~E(v'00

I
22),

v'=1

g' [M„(gr (rn)+co(00)5ggi I noJ~E(vIO
I
0—0}5 05po]F(v'I'm

I
22)

=—&2/35 OE(vIOIOO)[E(011 I
11)—F(010I 11)]—(101m

I
2m)co(11)F(vlm

I
11)

1

——X' (vl
I
lac"'I lv'I'}(lm —m'I'm'

I
lm }(lm —m'lm'

I
2m }E(v'I'm'

I
11)

v, 1=0,1,2, . . . , ~, m =0,+1,+2, but (v, l,m)~(0, 0,0).
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Equations (17) and (19) correspond to Eqs. (I.41) and

(I.42), respectively. Note that only the m=O member of
the set {20}is required to fmd co(22) and that symmetry
exists with respect to the sign of m otherwise.

The procedure is then as follows.
(i) Solve the eigenvalue problem (6) to obtain ro(00) and

F(v10
i
00).

(ii) Solve the inhomogeneous equations (16}for m =0,1,
using the result of step (i), to obtain F(vlm

~
11). Obtain

co(11) from (15).
(iii) With these results, solve (18) for F(vlO

~
20) and

(20) for F(vlO~ 22) and find co{20) and ai(22) from (17)
and (19), respectively.

(iv) Obtain transport and rate coefficients from Eqs.
(13).

It can be seen that there are fiue sets of equations to be
solved for the four quantities of physical interest.

8. Interactions and co11ision matrix

The foregoing equations are all quite general. The only
assumption we have made is that the interactions between
swarm particles and neutral molecules operate through
central forces, with the result that the collision matrix J~
is diagonal in 1 and m indices and independent of the
latter. [See (1.18).] Our analysis is therefore, in principle
at least, applicable to ions as well as electrons; specializa-
tion to the latter case only comes about when certain ap-
proximations are made regarding the smallness of the
swarm particle —neutral molecule mass ratio rn/mo, for
computational purposes. The following discussion on col-
lisional processes could just as easily have been framed in
terms of ion-molecule interactions and reactions as for
electron-molecule scattering phenomena, but we choose to
refer to "electrons" from this point on, for the sake of de-
finiteness and with future applications in mind.

Y~Pg +&g= 2~0(g } +~k ~ (21)

where P —=mmo/(m +mp) is the reduced mass and eJ is
the internal energy of a molecule in state j. It is assumed
that the neutral gas is in equilibrium at temperature To,
so that the number density of molecules in state j is given
by

1. E1astic and ineiastic (particle conseroing) -processes

We denote by nj(k;gQ} the differential cross section
for scattering of an electron of mass m, velocity c from a
neutral molecule of mass mo, velocity co, which is initial-
ly in an internal state characterized by quantum number
(or set of quantum numbers) j. The corresponding post
collision velocities are c' and co, respectively, and the new
internal state of the molecule is designated by k. Relative
velocities before and after a collision, g and g', respective-
ly, are related through the energy conservation require-
ment

where the neutral molecule distribution function is

(23)

fpJ(cp}=npJN(cp, cp) (24)

ao= (m p jkTp) [i .

As explained el sewhere, '~s the matrix elements corre-
sponding to {23)can be written as

I)J„'„,= g {l[v[v2~ 1vv) U'„„,
v, l, v

(25)

where (liv[v2
~

Ivv) are coefficients which involve mass
and temperature ratios and

cU/ y oJ col (Jk)
jk no

(26)

The summation in (26} is over all possible quantum num-
bers j,k consistent with whatever selection rules are appli-
cable for the transition j~k. The interaction integrals

V„' {J'k)= I i-o(F g)~ i(Pg)[~o(-J'k g)~ i(Xg)'

(27)

are by now well established in kinetic theory. ' In (27),
we have

y =(p /k'�)'i
and the partial cross sections

oi(jk;g) = f Pl(cosX)o(jk;gQ)dQ . (28)

The coefficient {00v2~1vv) vanishes unless 1=v=0.
Equation (27) shows that V~{jk)=0 and hence by (25)
and (26) we have

(29)

An elastic collision occurs ifj = k. Superelastic processes
are those for which eq ~ej, i.e., the molecule makes a
transition to a lower energy state upon electron impact.
These are absent for a "cold gas" ( To 0),——an assumption
made either explicitly or implicitly in some works.

As in Ref. 2, we assume that the Wang-Chang et al.
generalization of the Boltzmann collision operator de-
scribes these processes, and write for the particle-
conserving collision operator

1(f(=g f 1 [f(c)fo,(co)
j,k

—f(c )fok(co)]go'(jk;gQ)dQdco

n pj npcoJ. Zo 'exp——( —ej./kTp),

where coj is the degeneracy of energy level sj and

(22)
i.e., the first row of the particle-conserving coBision ma-
trix vanishes.
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2. Attachment

A review of analyses of attachment processes has been
given by Tagashira. ' (See also the treatise of Huxley and
Crompton. ") The attachment rate' a is given by (13a) or
equivalently by (I.53a). Phenomena such as attachment
"cooling" and "heating" are by now well understood. '

%e assume an attachment collision operator

"J(f)= g I fp;(cp)ga~(j;g)dcp f(c), (M) 8 ( c„c')=8 (c,c',c c '), (36)

c+dc, given that the incident electron has velocity c'.
The factor of 2 in front of the second term on the rhs of
(35) arises because after each ionization collision there are
two indistinguishable electrons. If there is more than one
ionization process, then the rhs of (35}will involve a sum-
mation over all ionization channels. The quantity
28(c,c'}ol(c') may be thought of as a "differential" ioni-
zation cross section. For central force scattering,

where oz(j;g} is the total cross section for attachment of
an electron to a neutral molecule in state j. We do not
find it necessary to assume that the gas is cold for pur-
poses of analyzing this process.

Using the same Talmi-transformation methodss' as
employed in deriving (25}, we find that the collision ma-
trix corresponding to (30) is

A
I

"J„',„,= g &i,v, v, ~i, vV& "U'„„, (31)

AgP ~0

in contrast to (29).

(34)

where

"U'„„=—g npj/np "&'„-„(j), (32)
)

"V'„-„(j)—= J ip(y, g)~ „i(yg)&-~(J';g)~.i(rg)g'dg

Unlike the conservative interaction integrals (27), the cor-
responding attachment integrals (33) have no term arising
from restitutional collisions. It is therefore clem th«
"V~(j) is nonzero and hence

c'c =cosX, (37)

X being the angle between c and c'.
The ionization collision matrix in the Burnett function

basis corresponding to (35) can be written in the form

(38)

where

)r I)
~vv =

2

V„„=
2

1 a«I cR„,I, acc c, 39a

Sa,c „,I, acorc Bl, c,c

XR„,i, (ac')(c') c dc'de, (39b)
1

BI{c,c')=2m J B(c,c')P (ic osX)d(cosX) . (40)

The quantity 28'(c, c'krl {c')may be viewed as a partial
ionization cross section. For isotropic scattering
Bi(c,c'}=0 for l ) 1. Again as in (34) we have

'Jt;&0. (41)

The complete collision matrix is then

3. Ionization by electron impact

A detailed discussion of the ionization process, together
with a review of previous analyses, can be found in Ref. 4.
The theory of Sec. IIA precohng applies also to ioniza-
tion phenomena, with a replaced by —a in Eq. (13a).'

The dynamics of an ionizing collision are complicated,
there being both a scattered and an ejected electron emerg-
ing after a collision, which, together with the gas mole-
cule, comprises a three-body problem. As a first approxi-
mation, we can assume the molecule to be infinitely heavy
and partition energy and momentum entirely between the
electrons. (This is equivalent to taking only terms to zero
order in m /mp in the expansion of the collision operator. )

With the above assumption, and considering only the
one ionization process for simplicity, the appropriate ioni-
zation collision operator is

J(f)=n pearl(e) f(c)
—2np f e'ol(e )8(c,c')f(c')dc',

where ol is the total ionization cross section and 8(c,c )

is a probability density that divides the available momen-
tum after ionization between the two electrons. That is to
say, 8(c,c')dc is the probability of one of the two elec-
trons after ionization having a velocity between c and

= g (livlv2i lvv)( U'„„+"U'„„)
I, v, v

as follows from (25), (31),and (38).

C. Distribution function and mean energy

By Eq. (2) and (I.46a), (I.46b), and (I.46c) we have

' 1/2

FI(c)=i 2I +1
4n

$(a,c}

X g F(vl0~00}R„i(ac), l)0

' 1/2

F(L)( )
~ I 21+ 1

( )
4m

X g F(vl0
i 11)R„(ae), l )0

(43a)
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F(T&( )
I+1

I
21+1

2ml (I + 1)
w(a, c)

and

—,
'

kTii =—,
' m((c, —(c, ) )'), (49a)

)& g F(vl 1
i

11)R„i(ac), I & 1 (43c) ,' kT—i= —,
'

m (c„'}= —,'m (c'}, (49b)

and by (I.54), to first order in Vn, the velocity distribution
function is

f(r,c,t) =n (r, t}f'+(c,8)—f' '(c,8)B,n,
—f' '(c,8)(co+8„n+sin4 Bsn),

where

f' '(c,8)= g Fi(c)Pi(cos8),
1=0

f'~'(c, 8)= g F~ '(c)PI(cos8),
1=0

f' '(,8)= g F' '( )P'(8), (45c)
1=1

and 8 is the angle between c and the z axis.
Clearly then, knowledge of the "moments, " as obtained

from solution of the hierarchy of equations in Sec. IIA
preceding, furnishes the distribution of velocities. [Equa-
tions (43), (44), and (45) can be extended in an obvious

way to include quantities of second order in density gra-
dient. ] Summations over v and I are to be understood as
being truncated at upper limits of v,„and I „, respec-
tively, when it comes to practical computation.

Another quantity of physical interest, though not usual-

ly directly measured in experiment, is the mean energy per
particle, defined by

r c —,mc2 r,c,t
e= & —,'mc'& =

r c r, c,t
(46)

sm

3

then it can be shown that (47) yields

e= —,'kTb[1 ——,'F(100
' 00)] . (48)

One can similarly define random energies —,'kT
associated with motion parallel and perpendicular to the
applied field E (i.e., the z axis) by

where the integral over r runs over all space. Inserting
the hydrodynamic expansion (44) for f then yields

c gNfc c~
E= (47)

c '",
where it has been assumed that density vanishes at the
boundaries. Equation (47) indicates that s can also be re-
garded as the mean energy of a spatially homogeneous
swarm characterized by the velocity distribution function
f' '. One next substitutes (45a} for f' ' and carries out the
integration over angles. If one then makes use of the nor-
malization condition together with Eq. (4) with v=1,
I =m =s =A, =o, and the fact that

1/2
2 P7lC

R io(ac) =
2 kTQ

respectively. Like E, these can be expressed entirely in
terms of a spatially homogeneous distribution function,
and further algebra leads to the results

T = —,
' (T)(+2Ti) . (51)

It is clear the transport coefficients, distribution func-
tions, and in fact, any quantity of physical interest can be
determined from the "moments, " F(vlm ~sA, ), which are
in turn determined completely by the hierarchy of equa-
tions in Sec. II A preceding.

D. Numerical calculations

In Sec. III following we present results of the calcula-
tion of properties of electron swarms based upon the fore-
going equations. Although details of the numerical work
are obviously important, we have opted in this paper to
make only a few general observations. Separate publica-
tion of details of the numerical method is planned, based
upon the thesis of Ness. Our observations are as follows.

(i) Each of the five equations in our hierarchy is doubly
infinite, with truncation in both spherical-harmonic and
Sonine-polynomial indices required for practical purposes.
That is, we set l(l,„and v&v, „and increment I
and v~ independently until some convergence criterion
is met. Generally speaking, large deviations from spheri-
cal symmetry in velocity space lead to large I, while
large v,„results from significant departures of speed dis-
tributions from a Maxwellian at temperature Tb.

(ii) The matrix M„i &p defined by (10) has a tridiagonal
block structure (I'=l, l+1) and computing time can be
significantly reduced as compared with the original pro-
gram of Lin et al. , if one takes advantage of this. The
efficiency may be increased in this way by one to two or-
ders of magnitude for larger values of I

(iii) Accurate computation of interaction integrals V

from which the collision matrix is formed through (42), is
essential, otherwise errors can propagate and influence
convergence of results. It has been found that the Gauss-
Laguerre quadrature originally used by Lin et a/. is ade-
quate for most purposes, but fails for computation of V

when cross sections vary rapidly with energy at higher en-
ergies. Then one is better off using standard Newton-
Cotes routines. A detailed discussion of these aspects can
be found in Refs. 4 and 8.

(iv) Our expressions can be cast into a form more suit-

T~( =Tb[1 —&2/3F(100
~

OO)

—2v 3F(020
~
00)+F(O1O

~

OO)'], (50,)

Ti Th[1 +2/3F(100
(
00) (1/v 3)F(020

( 00)] .

(50b)

The deviation of the ratio T~~/Ti from unity is a useful
measure of the degree of anisotropy in velocity space.
The electron "temperature" is given by
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able for numerical work by transformations of the type
indicated in I in Sec. III, and appropriate dimensionless
groups identified. These details can be found in Ref. 4.

threshold energy for the process, unless otherwise indicat-
ed. Finally, in Sec. 111C, a summary of the work covered
is given.

III. RESULTS AND DISCUSSION
FOR ELECTRON SVfARMS

To begin anth, in Sec. III A only conservative collisions
are treated, both model and real gases being considered.
In Sec. III 8 the theory is applied to electron attachment
and ionization. Through the use of models the effect of
three-body electron attachment on the transport charac-
teristics is considered in some detail. In both Secs. III A
and III 8 all scattering is assumed isotropic unless other-
wise stated and for the model inelastic collisions con-
sidered, the energy lost by the electron is equal to the

I

o,i ——6.0 A (elastic cross section),

A. Conservative interactions

l. Acid's ramp model

In order to test the present theory to see how it com-
pares with the work of others, we first consider Reid's in-
elastic ramp model. Reid's used a number of constant
and ramp model inelastic cross sections in his Monte Car-
lo investigation of the validity of the two-term approxi-
mation for electrons swarms. The details of the model
used here are as follows:

10(e,—0.2) A, s &0.2 eV (inelastic cross section}

0 a~02 eV

o=4 amu, To ——0

(52}

This particular model has been investigated by many
workers. ' ' Using the present moment method the
transport coefficients for model (52} have been calculated
at Elno 1, 12, an——d 24 Td. The results are set out in
Table I where they are compared with the cubic spline

iilethod of Pitcllford et al. ' (PQR), the ielaxatjon
method of MacMahon' ' (McM), the finite element
method (1'hM), and path differential method (PDM) of
Segur ««. ,' and the Monte Carlo results of Reid, '5 Bra-
glia et al. ' (Brag), Skullerud (Skul), and Penetrante

TABLE I. Comparison of transport coefficients for ramp inelastic model (52) calculated using mo-
ment {M) vrith those of Pitchford et al. (Refs. 16 and 17) (POR) MacMachon {Ref. 18) {McM), Segur
et al. (Ref. 20) (FEM) and (PDM), Reid (Ref. .15), Braglia et cl. (Ref. 21) (Brag), SkuHerud (Ref. 20)
(Skul), and Penetrante et al. {Ref. 17) (Penet). The numbers in parentheses give the error in the last sig-
nificant figure.

E/Np
(Td)

M (6 term)
POR (6 term)
McM (6 term)
FEM
PDM
Reid (MC)
Brag (MC)
M (6 term)
POR (6 term)
McM {6 term)
FEM
PDM
Reid (MC)
Brag (MC)
Penet (MC)
M {6 term)
POR (6 term)
McM (6 term)
FEM
PDM
Reid (MC)
Brag (MC)
Skul (MC)
Penet (MC)

(10' ms-')

1.272
1.272
1.272
1.271
1.270
1.255(13)
1.272(6)
6.839
6.838
6.84
6.832
6.832
6.87(7)
6.84(3)
6.86{23
8.886
8.885
8.89
8.881
8.874
8.89(9)
8.88{4)
8.869
8.89(2)

npDT
(}O"m-'s-'}

0.9751
0.9749

0.9749
0.9735

0.975(10)
1.135
1.134

1.135
1.131

1.136(10)
1.16(4)
1.134
1.132
1.133
1.134
1.131
1.145(23)
1.134{10)
1.130
1.16(4)

n pDI.
(10'4 m-'s-'}

0.7591

0.7594
0.7623

0.5688
0.57

0.569
0.569

0.58(33
0.4609
0.46
0.460
0.463
0.4613

0.473(5)
0.465
0.48(2)

{eV)

0.101S

0.1015
0.101S
0.1018
0.1013{10)
0.1014(5)
0.2689
0.269
0.269
0.2689
0.269

0.269(1)
0.270(1)
0.4079
0.408
0.408
0.4074
0.4083
0.408{2)
0.408(2)
0.4074
0.409(1)
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TABLE II. Convergence of the transport coefficients in the I index for ramp inelastic model at
E/no ——12 Td. The number in square brackets is the corresponding result of Pitchford et al. (Ref. 16)
taken from Table I of Ref. 16.

(10' ms ')

7.029[7.029]
6.821
6.841[6.841]
6.837
6.839[6.838]
6.838
6;838[6.839]

no&T.

(10 m 's

1.369[1.369]
1.111
1.137[1.110]
1.136
1.135[1.134]
1.135
1.135[1.134]

noDg
(10'4 m-'s-')

0.5066
0.5739
0.5684
0.5690
0.5688
0.5689
0.5688

(eV)

0.2736
0.2689
0.2689
0.2690
0.2689
0.2689
0.2689

quate. Included in Table II are the W and Dr values of
Pitchford et al. ' (the numbers in square brackets). We
see that, apart from the Dz value for 1=3, the conver-
gence in the / index is almost identical. Comparing the
moment method 1=2 result for Dr with the POR result
for 1=3 we suspect that Pitchford et a/. mistakenly gave
their /=2 result instead of the one for l =3.

To complete the present investigation of Reid's ramp
model, equations (43a), (43b), and (43c) have been used to
calculate velocity distribution functions at E/np =12 Td.
The functions Fp and npFp

' are %ilotted in Fig. 1, while
the functions Fi, npF'i ', and npFi are shown in Fig. 2.
These plots are in excellent agreement with those of
Penetrante et al. ' They, however, do not calculate the
function F'i . A polar plot of the function f'p'(e, 8),
showing contours of constant f(+, is given in Fig. 3,
where it is compared with the corresponding function ob-
tained for the hard-sphere model

~ Q
fly 1

I

„C

0

l

LL

I i

0.8
e (eV)

0-4

FIG. 1. Distribution functions Eo(c) and noEO '(c) for Reid's
ramp model (52) at Ejnq ——12 Td. For normalization purposes,
these quantities differ from the functions defined in (43) by the
factor 2@2e/m)'~.

et al. ' (Penet). The Monte Carlo calculations of Skul-
lerud and the corrected result of Reid are from Table I of
Ref. 20, while the Dt, and s calculation of Pitchford's cu-
bic spline method are from Table I of Ref. 17.

In the present work, the error in numbers quoted for
the moment method is not greater than +1 in the last sig-
nificant figure shown, unless otherwise indicated. For a
given l truncation this error is estimated from the conver-
gence of the transport coefficients in the v index and also
from the variation in the converged values of the trans-
port coefficients for different choices of Tb. Apart from
the Monte Carlo results of Reid, '5 Brag1ia et a/. 2' and
Penetrante et al. ' and the W and npDz values of Piteh-
ford et al. 's the accuracy of the results of the other work-
ers shown in Table I is not known. For the Monte Carlo
work the number in parentheses in Table I gives the error
in the last significant figure, and follows from the percen-
tage error quoted in the appropriate reference. For POR'
W has converged to 0.1% and Dr to 1%.

From a comparison of the moment method results with
the others in Table I, it is evident that the agreement is
consistent for all values of E/np and for all transport
coefficients. For W and Dz the results of POR are in
good agreement with the present results and their Dt,
values for 12 and 24 Td agree to the two significant fig-
ures they give. The W and K values of McM agree with
our calculation to the number of significant figures shown
by him. In the case of DT and Dt for E/n p 24 Td his-—
results compare well with the present ones. For 1 and 12
Td no Dz or DL, values were given by MacMahon and it
is not clear if difficulties were experienced in determining
these numbers or whether no attempt was made to calcu-
late them. Of the two methods considered by Segur
et al. 2p their HEM results compare more favorably with
ours. In concluding their work, Segur et al. state that of
the two methods they consider "HEM is the mixit accurate
and the most powerful. " The present work appears to
confirm this. Apart from Reid's W result for 1 Td the
Monte Carlo results agree mth the moment results to
within the specified error. {We assume that the accuracy
of Skullerud's work is of the same order as the other
Monte Carlo results. )

In Table H the variation of the transport coefficients
with the truncation in the l index is shown for E/n p 12——
Td. Clearly the /=1 (two-term) approximation is inade-
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FIG. 2. Distribution functions F&(a), noF'& '(a), and

noF; '(c) for Reid's ramp model (S2) for E/no ——12 Td. Nor-
malization as in Fig. 1.

0=@'

f = 0.16V——

'2
o,)

——6 A

mo ——4 amu, To ——0,
(53)

[i.e., the elastic cross section only of model (52)] at
E/no 0——.44 Td. This value of E/no was chosen because
at this value the mean energy is 0.267 eV, which is very
near the mean energy for model (52) at E/no 1——2 Td.
For the hard-sphere model the 1=1 approximation is suf-
ficient, and this fact is reflected by the almost spherical
symmetry (T~~/Tj ——1.0003) in Fig. 3. On the other hand,
for the ramp inelastic model Table II shows that the I= 1

approximation is inadequate and this is reflected in Fig. 3
by the asymmetry ( T~~ /Ti ——1.084) in velocity space.

The plot of f' )(s,8) may be thought of as a slice
through the x-z or y-z plane in velocity space. For the
f'o)=0.1, 1, and 4 (ev) s~2 contours of Reid's model we
see that the anisotropy is such that for a given value of
f' ' the most energetic electrons move in the 8=0 direc-
tion. Intuitively we expect this, since this is the direction
of the applied force acting on the electrons. For the 7 and
7.7 contours however, we observe a flattening out and the
formation of a depression in the 8=0 direction, with the
most energetic electrons now tending to move in the
8-30 direction. For f' '-7 the energy of the electrons
is of the order of 0.2 eV. This is the threshold energy for
the single inelastic process, and so electrons with a~0.2
eV undergo only elastic collisions, losing very little of
their energy, while electrons with energy a little greater
than 0.2 eV may also undergo inelastic collisions, losing
almost all their energy. Thus for the electrons of energy
-0.2 eV the more energetic ones tend to move in the 8-0
direction and may undergo inelastic collisions and be scat-
tered well out of the energy range, while the less energetic
electrons moving in other directions undergo elastic col-
lision only and do not scatter far in energy space. Hence
the formation of the depression in the 8-0 direction in
the contours of f(a) where e-0.2 eV. Also note that for
these values of f'o) no electrons move in the direction op-
posite to the force, i.e., 8= 180'.

90 2. Metlftune

eV

f0.1 )

180

FIG. 3. Contours of constant f+'(e, g) ln units of {eV)
for Reid's ramp model (52) (solid lines) at E/no ——12 Td and the
hard sphere model {53)(thick dashed lines, values of f'0' shown
in curly brackets) at E/no ——0.44 Td. The angle 8 is marked in
increments of 30 from 0' to 180' and three energy contours, 0.3,
0.6, and 0.9 eV are shown (thin dashed lines). This quantity
differs from the distribution function (45a) through the factor
2~(2e pm)'".

Using the recently derived cross sections of Haddad,
an investigation of electron transport in methane for
E/no in the range 0.01 to 15 Td has been carried out.
The cross sections, assumed isotropic, are read in from a
data file and linear interpolation is used to find the value
at the quadrature points in the calculation of the interac-
tions integrals. In Figs. 4 and 5 the coefficients IV, s,
DT /p, and DL /p have ben plotted as functions of E/no.
In the case of IV and DT/p, the experimental points of
Haddad2z are also shown. Over the range of E/ne con-
sidered we see that there is excellent agreement between
experiment and theory. This agreement is not surprising
however, since the present theory was used in the data
analysis to obtain the cross sections. From the plot of
W it is seen that electrons in CH4 exhibit negative dif-
ferential conductivity, i.e., over a range of E/no values
the drift velocity decreases as the field is increased. Con-
ditions leading to this phenomena have been discussed by
Robson and Petrovic et al.
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FIG. 6. Percentage difference between the two-term and
multiterrn solution of Boltzmann equation in the transport coef-
ficients for electrons in CH4.

FIG. 4. Drift velocity and mean energy as a function of
E/no for electrons in CH4 (solid lines). The dots are the experi-
rnental values of Haddad (Ref. 22).

In Fig. 6 the percentage difference in the transport
coefficients for CH4 calculated using two-term and con-
verged multiterm solutions of the Boltzmann equation are
shown. We see that the maximum error in the two-term
approximation, for all three coefficients occurs at about
2.5—3 Td, for which s-0.3 eV, and from the plot of the
cross section shown in Fig. 7 it is evident that at this ener-

gy the momentum-transfer cross section is at a minimum
and the inelastic processes became significant. The com-
bined effect of this produces a large asymmetry in veloci-
ty space which makes the two-term approximation inade-
quate for the analysis of transport data. As the
momentum-transfer cross section increases rapidly with
energy beyond the minimum a decrease in the error of the
two-term approximation is observed in Fig. 6 as E/no in-
creases beyond 2.5 Td. In Table III the convergence of

10 .

the transport coefficients in the l index is shown for
E/no=3 Td.

For E/nc 5Td ——the distribution functions Fc, noEIi ',

Fi, noE'i ', n&F'i ', and f' '(e, 8) are shown in Figs. 8, 9,
and 10. The plot of f' ' in Fig. 10 clearly shows a large
asymmetry in velocity space with 8=0 being the preferred
direction. This asymmetry in f' ' increases as e decreases,
i.e., the slower electrons have a stronger preference for
8=0 motion, a refiection of the deep minimum in the
elastic cross section occurring at e-0.2 e&.

3. Carbon dioxide

Electron transport in CO2 is examined for E/nc in the
range 0.5—50 Td. The momentum transfer and 12 inelas-
tic cross sections of Bulos and Phelpsis are used. Both
isotropic and anisotropic scattering are considered. The
results of the calculation of the transport coefficients are
shown in Figs. 11 and 12; also plotted in these figures are
the Bulos and Phelps experimental results for W and
Dz /p. As in the case of methane it appears no measure-
ments of Dl. were made. In deriving their set of cross
sections, Bulos and Phelps assumed isotropic scattering
and used the two-term approximation in their Boltzmann

10 W W f g F 7 ~1 ~ ~

10

10

FIG. 5. The ratio of diffusion coefficients to mobility for
electrons in CH4. The dots are the experimental values of Had-
dad (Ref. 22).

s s a sl a t a el s s a

10 10

FIG. 7. Cross sections for CH4, from Haddad (Ref. 22).
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TABLE III. Convergence of the transport coefficients in the I index for electrons in CH4, at
E/no=3 Td~ TO=293 K

Imax

8
(105 ms ')

1.16
1.05
1.07
1.07
1.07
1.07
1.07
1.07

noDr
(lo" m-'s-')

11.00+0.02
5.96%0.02
7.22+0.02
7.01+0.02
7.00+0.02
7.02+0.02
7.01+0.02
7.01%0.02

noDI
(lo'" m-'s-')

2.38
3.81
3.26
3.37
3.36
3.36
3.36
3.36

DT/p
(V)

0.284
0.170
0.203
0.197
0.197
0.198
0.197
0.197

DI /p
(V)

0.0617
0.0917
0.0917
0.0945
0.0944
0.0943
0.0944
0.0943

(eV)

0.3&3

0.364
0.368
0.367
0.367
0.367
0.367
0.367

analysis. Comparing theory with experiment, it is evident
that the coefficients obtained using isotropic scattering
give the better agreement. For the low values of Eln p the
agrimnent between theory and experiment is good. For
the high values of Elnp, however, disagreetnents up to
3% in W and 4%%uo in DT/p, exist. This suggests that some
readjustment of the cross sections may be required, using
a multiterm solution of Boltzmann's equation rather than
the two-term approximation. In Fig. 13 the percentage
differences between the two-term and multiterm solution
for both isotropic and anisotropic scattering have been
plotted. From the figure it is evident that the error in the
1= 1 approximation is significantly less for isotropic
scattering when compared with that for the anisotropic
scattering.

For Elnp ——30 Td the convergence of the transport
coefficients in the l index is shown in Tables IV and V for
isotropic and anisotropic scattering, respectively. Up to
22 Sonine polynomials were considered, although general-

ly convergence was achieved by vm =15. For EInp=12
Td and using the anisotropic scattering the functions Fp,
npFp ', F„npF'i ', npF'i, and f' '(s, 8) were calculated,
these are shown in Figs. 14, 15, and 16. Concerning the
distribution functions Fp ' and F'i ', it is interesting to
note that in all three cases plotted (Reid's model, CH4 and
COz) these functions change sign at e,-s. (This point is
indicated on the energy axis by the arrow in Figs. 1, 2, 8,
9, 14, and 15.)

Using Monte Carlo techniques Braglia et al. s have ob-
tained transport coefficients for electrons in COz at
Ejnp ——20 Td, using the Bulos and Phelps cross sections,
assuming isotropic scattering and setting Tp —0. Their—
results are compared in Table VI with the results of the
moment solution under the same conditions. The results
are in good agreement. The numbers in brackets indicate
the error in the last significant figure shown and follow
from the 0.5% accuracy for W and Z and 1% accuracy
for Dr and DL, quoted by Braglia et al.

i
~g
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C
sII0
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lao

0
CV
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l

e {eV)

FIG. 8. Distribution functions Fo(s) and noFO '(s) for elec-
trons in CH4 at E/no ——5 Td. Normalization as in Fig. 1.

FIG. 9. Distribution functions EI(e), noF'~ '(c) and noE'I (c)
for electrons in CH4 at Einp 5Td. Normaliza——tion as in Fig.
1.
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FIG. 12. Ratio of diffusion coefficients to mobility at a func-
tion of E/no for electrons in CO2, symbols, as in Fig. 11.

180

FIG. 10. Contours of constant f' '(e, 8i for electrons in CH4
at E/no ——5 Td, K=0.600 eV. Normalization as in Fig. 3.

B. Nonconservative processes

1. Simple mode1 calcu1ation

To test the moment method outlined in Sec. IIA for
solving the Boltzmann equation when "reactions" are
present, both electron attachment and ionization by elec-
tron impact are considered. To begin with, we consider
the following simple model of electron attachment:

10-

10.
0/

0

0.8

0
10 1S 28 Ein (Td)

0.0
2 10 18 28 E/ 0

FIG. 11. Drift velocity and mean energy as functions of
E/no for electrons in COq.. Amsotropic scattering (solid line),
isotropic scattering (dashed line), experimental points of Bulos
and Phelps (Ref. 26) (dots).

FIG. 13. Percentage difference between the two-term and
multiterm solutions for transport coefficients in CO2. Solid
lines are for anisotropic scattering while the dashed lines are for
isotropic scattering.
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TABLE IV. Convergence of transport coefficients in the I index for electrons in CO2.. isotropic
scattering, E/no ——30 Td, To ——293 K.

Imax

W
(10 Is ')

8.97
8.85
8.8S
8.86

noDT
(102 I ' s ')

3.11
2.84
2.84
2.8S

noDI.
(10'4 I-'s-')

1.16
1.22
1.21
1.22

DT/p
(V)

1.04
0.964
0.961
0.964

DL /p
(V)

0.389
0.414
0.412
0.412

1.22
1.21
1.21
1.21

1=108 1/2A2 eA afpA2 (54) tend to be at the front of the traveling swarm (as clearly
indicated by the polar plots in Figs. 3, 10, and 16) are be-

ing preferentially attached, it follows that the reactions
will tend to move the center of mass of the swarm in the
direction opposite to the drift. Thus the centroid velocity
decreases with the increasing a. The behavior of diffusion
coefficients as a increase is somewhat harder to interpret.
We observe that the diffusion coefficients tend to decrease
as a increases, i.e., attachment cooling decreases diffusion,
as it does drift. Also note that the ratio Dz /DL, , which is
unity for a=O, increases with a, indicating that the dif-
fusion transverse to the field increases relative to longitu-
dinal diffusion with the increase in attachment cooling.

For p =——,
' the attachment frequency is independent

of energy, and confirming our physical expectations, we
see that, apart from a/no, all coefficients are independent
of a. There is no preferential attachment and so the reac-
tions have no effect on the drift velocity, the diffusion
coefficients, or the velocity distribution functions. Thus
W = W' = W ( a =0), etc.

For p = —1, v„-e '~2 and it follows that the slower
electrons are being preferentially attached, i.e., attachment
heating occurs. Thus in Table VII K increases with a.
The centroid velocity also increases with a since now the
slower electrons at the back of the swarm are being re-
moved at the faster rate, and so the reactions tend to
move the center of mass in the drift direction. The coeffi-
cient DT also increases with a, while Dz initially in-
creases with a but then decreases for a ~5X10 . The
ratio DT/DL, on the other hand, initially decreases from
unity with a, but then increases for a & 10 s.

Concerning the quantities containing the implicit effect
of the reactions only, it is observed from Table VII that
W' shows little variation with a. Only when the attach-
ment cross section is comparable to the elastic cross sec-
tion do ~e observe variation in 8". This indicates that
for model (54) the attachment has little effect upon the

mo ——16 amu, To ——293 K,
~p + 1/2 (55)

For E/no 04 T——d and p= —,, ——,', —1 the transport
coefficients have been calculated for various values of the
attachment amplitude. The results are set out in Table
VII. Also shown are the quantities

8'*= e3I'1 C e, (56a)

noDz no—— c Fi (c)dc,Om 3 (T)
3 0

tioDL, = tio c Fi (c)dc .
O'F 3 (L, )

0

That is, the quantities W', DT', and Dz' are W, Dr, and
DL of (I.53), respectively, excluding the explicit depen-
dence upon the reactions. Note, however, that they still
contain the imp/icit dependence upon reactions carried by
the velocity distribution functions Fo, FI ', and F'i ' In.
the absence of reactions W' =—W, Dz =Dr, and DI' =—DL .

For all three values of p considered we see from Table
VII that the attachment rate increases with a, as expected.
For p = —,

' it follows from (55) that the attachment fre-
quency increases with energy, and so the more energetic
electrons are preferentially attached. This is reflected in
Table VII by the decrease of e with increasing a, i.e., at-
tachment cooling occurs. Also note that $V decreases
with increasing a. A.s is by now well known, in the pres-
ence of the reactions the centroid velocity W has two as-
pects: one associated with the net transport of particles
by the field and other due to a net transport brought
about by the nonuniform creation or destruction of parti-
cles through the energy dependence of the reactive col-
lision operator. Now, since the faster electrons, which

TABLE V. Convergence of transport coefficients in the 3 index for electrons in CO&.. anisotropic
scattering, E/no ——30 Td, To ——293 K.

(10 ms ')

8.97
8.78
8.78
8.78

n&&Dz

(10 m 's ')

3.10
2.67
2.66
2.68

noDL
(10 m 's ')

1.16
1.26
1.24
1.25

DT /p
(V)

1.04
0.913
0.909
0.915

Dl /p
(V)

0.388
0.430
0.425
0.426

(eV}

1.22
1.20
1.20
1.20



K. F. NESS AND R. E. ROBSON

« I W

t4
«g
O4

I
LL

g 00
t

-, 40
90

I j i «

0.6 1,2

FIG. 14. Distribution functions Eo(e) and noEO '(s) for elec-
trons in CO2 at E/n p

——12 Td. Noxmahzation as in Fig. 1.
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function Ei. On the other hand Dr' and Dr', vary
markedly with a for p = —,

' and —1, indicating that at-
tachment has a significant effect upon the functions EI '

and I'I ' The rat.io Dr /Dr'. , however, remains unity.
For attachment cooling the electrons tend to "bunch"

in the low-energy part of the distribution, and even for
very large degrees of attachment' (a=10 and beyond) the
Sonine polynomial expansion converged well in calculat-

180

FIG. 16. Contours of constant f'0'(e, 8) for electrons in COq
at E/5p = 12 Td, 7=0.129 eV. Normalization as for Fig. 3.

iirg the transport coefficients. Foi' attachment heatiiig
however, the electrons "bunch" in the high-energy tail of
the distribution and for a &10 we found a sudden
deterioration in the convergence of the transport coeffi-
cients which was most pronounced for Dr, Up «24
Sontne polynomials were considered and the indications
were that many more would be required in order to obtain
reliable values for all transport coefficients for a & 10
This implies that if the high-energy region of the actual
distribution function deviates significantly from the
Maxwellian, then Sonine polynomials give only a poor
representation of the distribution, confirming the fact that
basis sets with Maxwellian weight functions tend to place
relatively little weight on the high-speed part of the func-
tion being determined. In obtaining the data in Table
VII, up to four terms in the / index were considered in or-
der to check the convergence in this index, although for
three-figure accuracy the I= 1 approximation is sufficient.

0.6

2. Three-body attachment models

The three-body attachment of electrons to neutral mole-
cules is examined by considering model interactions. The
attachment process considered is as follows:

FKy. 15. Distributions functions Ei (c.), npE'I '(c.), and
npF'l (c) for electrons in CO2 at E/np ——12 Td. Normahzation
as in Fig. 1.

M(n)+e~M (e )

(the attachment collision), then

M (s )+M(n")«M +M(n'") (58)
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TABLE VI. Transport coefficients for electrons in CO~ at Ejn& ——20 Td. Isotropic scattering,

Tp ——0, np ——3.535X10 m

MC (Ref. 28)
Moment

(10 ms ')

6.34(3)
6.32

Dz-

(10 'ms ')

3.80(4)
3.79

DL
(10 'ms ')

3.89(4)
3.89

(eV)

0.527(3)
0.523

Dp jp
(V)

0.424(6)
0.424

(the stabilizing colhsion), or

M (» )-+e+M(n') (59)

(the detachment), where n is a quantum number or set of
quantum numbers that denotes the internal state of the
molecule M and M (») is an excited (unstable) state of
the stable ion M . Once the attachment collision (57)
occurs, the ion M (» ) can either undergo the stabilizing
collision (58) with a third body, in this case a molecule of
species M, or it can autodetach (59). In the case of (57)
followed by (58) we have the attachment process

rrq(c)-vm, (c} . (62}

Since v is proportional to the number density n p of mole-
cules M, (62) can be expressed as

Process (57) is assumed to be a resonant collision that is
specified by the resonant cross section o, (c). For low

concentrations of M the rate of attachment is controlled

by the stabilizing collision (58). The attachment proba-
bility is then proportional to the product of the frequency
v of the stabilizing collisions and the lifetime ~ of the ion
state M (» } and so we write

M(n)+e+M(n")~M +M(n'") . (60)
o„(c)=unco, „(c), (63)

M(n)+e~e+M(n') . (61)

In the case of (57) followed by (59) the overall process
may be viewed as a conservative collision

where IC is a constant, independent of n p, that has dimen-

sions of (length}3. E incorporates the lifetime r, and an
efficiency factor for the stabilizing collisions (since not all

stabilizing collisions may result in attachment) and is
dependent upon the temperature Tp of the molecules.

TABLE VII. Transport coefficients for model (54) at Ejn~ ——0.4 Td for p = —,, ——,, and —1.

[A (eV) g
a/nq

(rn s ')
8 n()DL

(1O' ms-') (1O" m-'s-') (1O" m-'s-')
W n()Dp noD

(10' ms ') (10' m 's ') (10' m 's ')

0
10-'

10
10
10-'

1

10

0
10-'
10

1

0
9.153x 10-"
9.033x10-"
8 093x 10-"
5.026x 10-is
2.079x 10-"
7.179x 10-"
2.334x 10-"

0
5.931x10-"
S.931x10-"
5.931x10-"

1.186
1.183
1.152
0.937 5

0.448 0
0.1517
0.048 31
0.01525

1.186
1.186
1.186
1.186

3.055
3.044
2.947
2.321
1.114
0.3984
0.1303
0.041 52

3.055
3.055
3.055
3.055

p=+ p

3.055
3.037
2.882
1.917
0.4869
0.08507
0.01853
0.00501

1

3.055
3.055
3.055
3.055

0.1545
0.154 3
0.152 3
0.1364
0.0847
0.03506
0.012 10
0.003 93

0.1545
0.1545
0.1545
0.1S4S

1.186
1.186
1.186
1.186
1.186
1.186
1.185
1.183

1.186
1.186
1.186
1.186

3.055
3.051
3.011
2.698
1.675
0.6927
0.2389
0.0774

3.055
3.055
3.055
3.055

3.055
3.051
3.011
2.697
1.675
0.6928
0.2390
0.0775

3.055
3.055
3.055
3.055

0
10-'
10
10
3X10
5X10
7x 10-4
9x 10

10
2x10-'
5x10-'

0
2.083x 10-"
2.060X 10-"
1.869x 10-"
4.783x 10-"
7.159x 10-"
9.245 x 10-"
1.114x10-"
1.204x 10-"
1.982 X 10
3.76x 10-"

1.186
1.190
1.227
1.586
2.294
2.898
3.433
3.923
4.155
6.168

10.8

3.055
3.066
3.167
4.216
6.627
9.054

11.495
13.973
15.222
28.27
73.0

p = —1

3.0S5
3.069
3.185
4.195
5.419
5.656
5.279
4.434
3.879

0.154 5
0.1S4 3
0.1572
0.1797
0.221 9
0.257 2
L2884
0.3169
0.3304
0.447 3
0.71

1.186
1.186
1.186
1.186
1.186
1.186
1.186
1.186
1.186
1.186
1.186

3.055
3.061
3.107
3.552
4.386
5.086
5.702
6.266
6.532
8.843

14.1

3.055
3.060
3.107
3.552
4.386
5.086
5.702
6.266
6.532
8.843

14.1
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TABLE VIII. Convergence of the transport coefficients in the I index for model (75) at E/no ——7.5
Td; Tb ——10000K, v =23, po ——3 kPa, T=9844K.

Imax

k„,
(10-4' m's-')

1.709
1.832
1.802
1.808
1.807

(10 m s ')

5.696
5.674
5.674
5.674
5.674

noDT
(10 m ' s ')

6.508
6.292
6.308
6.305
6.306

n pDg
(10 m ' s ')

3.094
3.161
3.160
3.160
3.160

(64)

In terms of the space-averaged distribution function,
the attachment rate is given by (I.53a), i.e.,

a=4 f J,(Fo)c'dc.

trapolating experimental values of k,«back to zero densi-
ty.

To investigate three-body attachment the following
model is used:

Ja = J=n pc cTg (c ) .

Substituting (65) into (64) gives

A=vg =7lo4% Eo c ccTgc c

(65)

To demonstrate the pressure dependence of a, we use the
Lorentz approximation for Ja, and so from (30) it follows
that

0

a,)
——3 A

0.012 A, c &0.0083 eV

0, c g0.0083 eV,

r

0.08 A, 0.04&@.&0.107 eV
&res= '

0, otherwise,

(72)

j..e.,

a/no 4m f——Fp(c)crrgcidc .
O'a =EnO&reS

with
However, in view of (63) we see that in the case of three-
body attachment it is the quantity

cc/cc =k,z Kkr f Fc(c)c——a„,c dc, (68)

rather than a/no that is density independent. The quanti-
ty k,« is known as the three-body-attachment rate coeffi-
cient. ' ' Although the explicit density dependence has
been removed from the rhs of (67), we will see later that
the function Fp(c} may be pressure dependent implying
that k«, can be also pressure dependent.

From (68) it follows that

E =k,«/(ca„, (c)),

K =6&10 m, mo ——32 amu, To ——296 K .

This is a crude model of Oi in which the inelastic cross
section represents a combined average of the fi.rst 20 Ger-
juoy and Stein ' rotational levels and 0.,~ has been ap-
proximated from the total resonant cross section of Skul-
lerud. The value of E was chosen such that, for zero
field, k,« for the model is of the same order as the experi-
mental values for Oi. '

For model (72) the transport coefficients have been cal-
culated for Ein p in the range 0—5 Td and for various gas
pressures po. The ideal gas law

where po =nokl o (73)

(ca, (c)) =4m f Fo(c)ccr, c dc . (70)

E =(k «)„o/(ca' (c))„o,
where ( k«, )„p is the three-body-attachment rate coeffi-
cient for vanishing gas density (at a given Tp) and
(ca, )„p is obtained by averaging ca, over the

Maxwellian at the gas temperature To. Hence given
(k,«}„p,E and therefore cr„can be calculated from

cr, . The coefficient (k,«)„, p can be determined by ex-

For E=O the electron distribution function Fp is Maxwel-
lian at the gas temperature if there is no preferential loss
of electrons due to attachment, i.e., if v„=const. This
will otherwise only be true in the limit as no~0, and
since E is independent of no we write

is assumed. For po ——1,2 and 3 kPa the coefficients a/np
and k,«are plotted in Fig. 17 as functions of Einp.
From Fig. 17 we see that the rate coefficient a/no in-
creases with density over the entire range of Einp, as ex-
pected. On the other hand, the coefficient k,«, which is
pressure dependent for low values of Ein p, becomes pres-
sure independent for Eino ~0.7 Td. The other transport
coefficients all show pressure dependence for E/np ~0.5
Td. This pressure dependence of the transport coeffi-
cients arises through the pressure dependence of the at-
tachment cross section. In the case of k,« the pressure
dependent is due to the effect of attachment on the func-
tion Fp{c). As the gas pressure increases, the attachment
cross section becomes larger and the effect of electron loss
in the energy region (attachment region), 0.04& a &0.107
eV, on the distribution function increases. As Eino in-
creases, however, the mean energy also increases (see Fig.
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s'f I s s T f s s s s fh
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-2
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-2
a a as $0

El"0(Td )

FIG. 17. Three-body attachment rate coefficient k,«and re-
action rate coefficient a/no, for model {72), as functions of
E«o for po ——1 kPa { ), po ——2 kPa ( —~ —~ —~ ), and po=3
kPa {———).

18) and as it increases above 0.107 eV (the upper threshold
of attachment) there are fewer and fewer electrons avail-
able for attachment. Hence the effect of attachment on
the electron distribution decreases, and for high enough
E/no this effect is insignificant and so k,«becomes pres-
sure independent.

In the case of the other transport coefficients, W, Dr,
and DL shown in Figs. 18 and 19, the pressure depen-
dence of the attachment cross section may affect both the
implicit and the explicit dependence of these coefficients
upon the reactions. However, as the attachment rate de-
creases with E/no above 0.02 Td, the effect of attach-
ment on both the implicit and explicit dependence de-
creases and, as in the case of k,«, for high enough E/no
the transport coefficients exhibit their normal hydro-
dynamic behavior, i.e., pressure independence.

From Figs. 18 and 19 we note that the rate of change of
the transport coefficients with E/no in the region
0.015—0.025 Td is rather large, and is more so for the

higher pressure. This is the E/no region of maximum at-
tachment (see Fig. 17} and is also the region of change
from attachment cooling to attachment heating. Consider
the mean energy s plotted in Fig. 18. For low values of
E/no where Z-0.02 eV only the high-energy electrons in
the swarm can undergo attachment. Thus attachment
coohng occurs, and since the higher the pressure, the
greater the attachment, we observe s to be less for the
higher pressure. However, since the swarm energy in-
creases with E/no, there comes a point where the lower-
energy electrons of the swarm fall in the region
0.04—0.107 eV and are preferentially lost. Attachment
heating then occurs and e increases with pressure. The
change over from attachment cooling to attachment heat-
ing can be pictured as occurring when the 3 kPa s line
crosses the 1 kPa s line in Fig. 18. (The process is pres-
sure dependent, however, and not all the different pressure
lines will cross at the one E/no value. )

As noted for model (54), W and Dz follow the behavior
of e. Increasing po for model (72) is very similar to in-
creasing a for model (54}. For attachment cooling both
W and DT decrease as the pressure (amount of attach-
ment) increases, while for attachment heating they both
increase with the pressure. [In the case of W the reason
for this was explained in the preceding discussion of
model (54) above. ] Thus we observe in Figs. 18 and 19,
respectively, the 3 and 1 kPa W and DT lines cross once
in the region of change from attachment cooling to heat-
ing. Also, as found for model (54} the behavior of DL in
the case attachment heating is more complicated. In Fig.
18, the 3 and 1 kPa Dz lines cross once in the region of
change from attachment cooling to heating and then cross
again in the region of attachment heating, indicating that
for attachment heating DL initially increases with the
pressure, but then later decreases. This is similar to the
behavior of DL for increasing a in Table VII for p = —1.

As a check on our reactive moment solution, the
particle-conserving moment code was applied to model
(72) without the resonant cross section, and the coeffi-
cients W, e, Dr, and Dq were calculated for the higher

s s s s
1

s

P

s T T I s s s T

10 —.10

10 -. 10

a s asl s

10 2

E / n (Td )
I a a a s I L s s s I

10
E/nod)

FIG. 18. Drift velocity and mean energy for model (72) as
functions of E/no, for po ——I kPa ( ) and po ——3 kPa
( ———). The dots give the coefficients calculated by applying
the particle conserving moment code to model (72) without the
resonant cross section.

FIG. 19. Diffusion coefficients noDz- and noDI of model (72)
as functions of Ejno for po ——1 kPa ( ) and po ——3 kPa
( ———). The dots have the same meaning as in Fig. 18.
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values of E/no where we expect the effect of the resonant
attachment to be insignificant. The results are shown as
dots in Figs. 18 and 19 and, as can be seen, as the attach-
ment rate becomes insignificant the transport coefficients
in the absence of reactions become identical to those in
the presence of reactions.

To investigate the effect of improving the thermal con-
tact between the electrons and neutrals on the pressure
dependence of the transport coefficients, a second model
is considered that is the same as model (72) except now

E

CI
0c

O. I2 A, e. &0.0083 eV
1IlC1 0 0 0083 y (74)

i.e., the inelastic cross section has been increased by a fac-
tor of 10. The results of transport coefficient calculations
are plotted in Figs. 20 and 21. Comparing these plots
with those of model (72} we observe (1) a reduction in the
pressure dependence of the transport coefficients, especial-
ly for k,«, (2) the maximum in k,«and the change over
from attachment heating to attachment cooling occurs at
a higher value of E//io (-0.05 Td compared to -0.02
Td); and (3) the behavior of the coefficients in the region
of change from attachment cooling to attachment heating
is less dramatic. Because of (1), gases such as Nq and
CO2 which have good thermal contact with electrons have
been added to 02 in order to minimize the error in the
measurement of the rate coefficient k,« in pure 02 due to
attachment cooling. ' By increasing the thermal contact
with the neutrals the electrons being lost in the attach-
ment region (in this case 0.04—0.107 V) are more rapidly
replenished and therefore the effect of attachment on the
distribution function is reduced. Hence, a reduction in
the pressure dependence of the transport coefficients fol-
lows. To show the effect of the improved thermal contact
on the energy distribution we have plotted in Fig. 22 the
energy distribution function s'/zEO(e) at E/no ——0 for
models (72) and (74) and compared them with the thermal
Maxwellian at 296 K.

For both models (72} and (74} considered above, accu-

$0 a a a al

10
E/n (Td)

FIG. 21. Diffusion coefficients and mean energy for model
(74) as functions of E/no for po ——1 kPa ( ) and po ——3 kPa
( ———)

rate transport coefficients can be obtained by retaining
only terms up to order I= 1 in our polynomials expansion.
To test the present theory for reactions in a situation
where the two-term approximation breaks down and also
to examine the pressure dependence of the transport coef-
ficients in the presence of higher-energy inelastic process-
es, a third model was considered which is essentially the
same as model (72) with the addition of

r

0.1 A, s)0.1 eV

0, a&0. 1 eV,

0. 1 A, s)0.5 eV

0, a&0.5 V, (75}

0. 1 A, s) 1.0 eV

0, a&1.0eV.
The higher-energy inelastic processes may be thought of
as representative of vibrational or electronic excitation

~0 k4

~ 'f ~ ~

N

E
Pl

I
O

24

16

I I I

$0 2

E/n (Td)

$0 2

10
600 2eV)

PIG. 20, Three-body attachment coefficient and drift veloci-

ty for model (74) as a function of E/no for po ——1 kPa ( )

and po ——3 kPa( ———)~

FIG. 22. Zero field energy distributions c' Fo(c.) for models
{72) (curve A) and (74) (curve 8) compared with the thermal
Maxwellian at 296 K (curve C).



VELOCITY DISTRIBVrxON FUNCTION. . . . II. . . . 2203

W % W T V T

10

iIO

lg

o)
)O24

P
r~

I k I a a a

E/n (Td }
'l0

I a a a l

E in (Tl)

FIG. 23. Three-body attachment coefficient and mean energy
for model (75} as functions of E/no for po ——1 kPa ( ),
p0=3 kPa ( ———).

FIG. 24. Drift velocity and diffusion coefficients for model
(75) as functions of E//no for po ——1 kPa ( ) and po ——3 kPa
( ———)

cross sections. Their effect is to dump the higher-energy
electrons back into the low-energy region and thus we ex-
pect the resonant three-body attachment of electrons to be
significant over a wider range of E/no when compared to
model (72). This is found to be the case, as can be seen
from Fig. 23 where k,«and s are plotted as functions of
E/no in the range 0.01—10 Td, for po ——1 and 3 kPa.
Comparing k,« in Fig. 23 with the corresponding curve in
Fig. 17 for model (72) we see that for model (75) k,« is
larger over the entire range of E/no, peaks at a higher
value of E/no (0.25 Td compared to 0.02 Td), and then
decreased at a considerably slower rate with increasing
E/no.

The other transport coefficients W, noDz, and noDI.
are shown in Fig. 24, where we see that in spite of the
enhanced attachment, the transport coefficients for model
(75) settle down to their usual hydrodynamic behavior at a
considerably lower value of E/n thOan the coefficients for
model (72) (-0.1 Td compared to -0.7 Td). This is at-
tributed to the large increase in thermal contact brought
about by the addition of the three inelastic processes in
(75). Note also from the plot of K shown in Fig. 23 that
only attachment coohng occurs, and as a consequence, the
sudden changes in the transport coefficients that occurred
for madel (72) in the region of change from attachment
cooling to heating, are no longer observed. Although for
the higher values of E/no there is still preferential attach-
ment of the lower-energy electrons, these are rapidly re-
plenished by the collisions and so no attachment heating
is observed. On the other hand, for lower values of E/no,
where the higher-energy electrons are attached, the three
additional inelastic processes in (75) will not contribute
significantly to the energy transfer between the electrons
and neutrals, since very few electrons have sufficient ener-

gy to undergo these collisions, and so attachment coohng
is still observed.

In Tables VIII and IX, the convergence of the transport
coefficients in the 1 and v indices are shown for model
(75) at E/no 7.5 Td and——in Fig. 25 the percentage differ-
ence between the two-term approximation and the con-
verged multiterm results for the transport coefficients is
plotted as a function of E/no. In the case of W the per-
centage error in the /= 1 approximation is less than 0.5%,
indicating that the two-term approximation is quite accu-
rate for this coefficient. The accuracy in the I= 1 approx-
imation is not as good however, for DL, Dr, and k,«.

E/n (Td)
1Q

FIG. 25. Percentage difference between the two-term approx-
imation and converged multiterm approximation in the trans-
port coefficients for model (75}.
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TABLE IX. Convergence of the transport coefficients in the v index for model I,'75) at E!no——7.5
Td: Tg ——10000 K, I =5, po ——3 kpa.

13
14

16
17
18
19
20
21
22
23

katt

(10 ms ')

1.799
1.802
1.804
1.806
1.807
1.808
1.808
1.808
1.808
1.807
1.807

(10' ms ')

5.675
5.675
5.675
5.675
5.675
5.675
5.674
5.674
5.674
5.674
5.674

noDg
(10 m 's '}

6.304
6.304
6.304
6.305
6.305
6.305
6.306
6.306
6.306
6.306
6.306

noDI
4
10" m-'s-')

3.158
3.158
3.158
3.159
3.159
3.159
3.159
3.160
3,160
3.160
3.160

3. Ionisution modeLs

To test the theory under conditions of particle creation,
the ionization model of Lucas and Saelee3i is considered
irst:

P(q, s')q = ,
' Bo(c,c')c— (77)

e'= —,
'

m (c')i .

Setting P(q, e') =1, as in the above model assumes that all
the fractions 0(q & 1 are equiprobable (APE).

Taniguchi et uI. have also considered the above model
using a two-term Soltzmaam solution. The transport
coefficients for model (76) have been calculated using the
present theory and the results for the /=1 and 2 approxi-
mations are compared with those of Lucas and Saelee
and Taniguchi et a/. in Table X below for various

0.1(1—F)(e—15.6) A, e & 15.6 eV

0, e ~15.6 eV,

0.1F(s—15.6) A, s&15.6 eV

0, e g15.6 eV,
(76)

P(q, s') =1,
m/mo ——10 i, To —o,
no=10 m, E=l Vm ', i.e. , E/no —10Td. —

F is referred to as the degree of ionization by Lucas and
Saelee„who used both a Monte Carlo technique and a
two-term Boltzmann solution to determine the transport
coefficients for the above model. The ionization partition
function [P(q,e')] defines a probability density such
that P(q, s')dq is the probability of one of the two elec-
trons after ionization having a fraction between q and

q +dq of the available energy given that the incident elec-
tron has energy e'. It is related to the quantity 8 ( o, c)c,

defined by (40), by

values of F.
Comparing the results in Table X we see that apart

from the Dt. values for F=0.5, 0.75, and 1 the moment
results and those of Taniguchi et a/. s agree to within the
reading error of the plots given in Ref. 35. For these DL
values, however, the moment results agree with the
Boltzmann solution of Lucas. The results of Lucas, how-
ever, are rather erratic when compared with either those
of the moment method or that of Taniguchi et a/. For
example, for F 0.5, the Boltzmann equation solution of
Lucas for a and W disagrees with the other methods
while Lucas's Monte Carlo results for these coefficients
are in quite good agrecnnent. On the other hand Lucas' s
Monte Carlo results for Dr and Dt. are in disagreement,
while his Boltzmann equation solution is in agreement.
Similar behavior occurs for F 1. For both F~0.5 and 1

Lucas's e, results disagree with the results of the other
methods. We can give no explanation for this. Only for
F=O (no ionization) do all four methods agree.

Taniguchi et a/. have also given values for the quanti-
ties W and Dt' for model (26). In Table XI their results
are compared with the present results for the /= 1 approx-
imation. The two methods are in good agreement.

In their work Taniguchi et a/. ' denote the quantities
W' and DT' by W„and D„and refer to them as the

pulsed Townsend (PT) drift velocity and diffusion coeffi-
cient, respectively. Here we stress that, except when
F=O, these are not measurable transport coefficients and
although they can be calculated theoretically, we feel it is
misleading to separate them from the actual transport
coefficients and refer to these quantities as transport coef-
ficients in their own right.

Finally, for model (76) we find, as did Taniguchi
et al. , that changing the ionization partitioning function
to

P(q, e') = —,
' [5l1—&)+8&)] (79)

and settjng 5= z does not alter the transport coefficients

significantly.
To investigate ionization over a range of E/no values

and to examine the dependence of the transport coeffi-
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TABLE X. Transport coefficients for model (76): /=1, 2 (moment method), T [Taniguchi et al.
(Ref. 35)], L [Lueas (Ref. 33)], MC [Monte Carlo —Lucas (Ref. 33)]. Values marked with + are from
Table 2(b) of Ref. 33, and values marked with 4 are from Table I of Ref. 35. All other values have been

read from plots in Refs. 33 and 35; reading error +0.05.

(10 ms ') (10 ms ')
DT

(10 m s ')
DL

(10' m's-')
E,

(eV)

1=1
l=2
T
L
MC

7.33
7.32
7.32'
7.4
7.4

2.73
2.72
2.74'
2.7
2.7

2.63
2.65
2.65
2.65
2.65

S.55
5.55
5.56
5.58'
5.60'

l=1
l=2
T
L
MC

7.14
7.13

8.03
8.03
8.0
7.9
8.2

2.75
2.74

2.72
2.75
2.8
2.7
3.3

5.37
5.37

1=1
l=2
T
L
MC

1.34
1.34
1.3
1.50*
1.32

8.59
8.60
8.6
8.3
8.6

E=O.S
2.76
2.75
7.75
2.7
2.85

2.76
2.80
2.9
2.75
3.1

5,21
5.21
5.23
5.49*
5.30

l=1
l=2
T
L
MC

1.91
1.92

9.06
9.07
9.1
8.8
9.3

2.77
2.76

2.78
2.82
2.9
2.8
2.95

5.07
5.07

l=1
l=2
T
L
MC

2.43
2.43
2.4
2.93'
2.45'

9.47
9.48
9.5
9.2
9.6

2.77
2.76
2.75
2.65
2.65

2.79
2.84
2.9S
2.85
2.85

4.96
4.96
4.95
5.40
5.10

cients upon the partitioning of energy between the two
electrons after ionization the following model was used:

0,)
——10 A

production of electrons by ionization is greater. This is
observed in Table XII, i.e., as E/no increases the varia-
tion of the transport coefficients with b increases, partic-
ularly a/no. The mean energy shows the least depen-

O'inel= '

0'ion= '

1 A, e&10 eV

0, p&10 eV,

1 A, e&15 eV

0, v&15 eV,
TABLE XI. The quantities 8' and DT of model (76) for

various values of I.

In Table XII the transport coefficients for three values of
E/nu are shown for different choices of b, in (79) and for
P (q, s') = l.

Intuitively we expect that if the transport coefficients
are dependent upon how the two electrons after ionization
share the available energy, then this dependence should be
more apparent for the higher values of E/no where the

0.5

M(l =1)
T
M(l =1)
T
M(l =1)
T

(10 ms ')

7.33
7.32
7.34
7.33
7.34
7.33

DT
(10 m s ')

2.73
2.74
2.57
2.58
2.44
2.45
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FIG. 26. Reaction rate coefficient and mean energy for
model (80) with 5,= 2, as functions of E/no.

FIG. 28. Transverse and perpendicular diffusion coefficients
for model (80) with 5,= 2, as functions of E/no. The dots give

the quantities npDzand n'pDt, .

dence upon 5 for all values of E/np considered. For
„', —,, and —,

'—and for APE, W and npDT also show
little variation, npDI and a/np, on the other hand, are
somewhat more sensitive to the choice of these values of

In the case of b, =O all transport coefficients, apart
from a/np for 300 Td and s for 300 and 500 Td, show
significant deviation from the values for the other choices
of b, . Setting b, =0 physically implies that after each ioni-
zation collision an electron appears at the origin of veloci-
ty space. Again, one would expect this to influence the
transport coefficients for a traveling swatm, particularly
as the ionization rate increases, as shown in Table XII.

The above is only a very limited investigation, since as
pointed out in Ref. 4 there are many possible choices for
the function P(q, s'). Nevertheless, it has been sufficient
to demonstrate that as the ionization rate increases it be-
comes increasingly more important to have an accurate
knowledge of P(q, s') in order to be able to calculate the
correct transport coefficients. At present it appears that

P(q, s') is either set ixlual to 1 or to equation (79) with
6=0 or —,. How close this is to the actual partitioning
for a real gas is questionable, particularly the choice
6=0. On the basis of preliminary tests, Thomas in his
investigation of ionization in neon concluded that the
transport coefficients were practically independent of the
choice of 6, and so set 5=0 in all his subsequent calcula-
tions. In a later investigation in neon Garamoon and
Ismail, in contrast to Thomas, found their results to be
sensitive to the value of 5 and found 5=0.5 to give best
agreement with experiment. We point out, however, that
they considered only two choices of 5, 0 and 0.5. In a
subsequent investigation in argon, Ismail and Garamoon
set b, =0.5, while for their work on mercury vapor Gara-
moon and AMelhalcems considered b, =O and 0.5 and
again concluded that 5=0.5 was the better of the two.
Tagashira et al. , on the other hand, preferred to use
P(q, s')=1 in their analysis on argon. Brunet and Vin-
cent '"' appear to have been the only ones to base their

s s s s s s $ I s s s s

8" 10-

u/n

-10-

E/~(10 Tdy
5 E l~ (10 Td)

10

FIG. 27. Drift velocity for model (80) with 5= 2, as a func-

tion of E/no. The dots give the quantity W .

FIG. 29. Percentage difference between the 1=1 approxima-
tion and converged multiterm approximation for the transport
coefficients for model (80).
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TABLE XII. Transport coefficients for model (80) at E/no ——300, 500, and 800 Td for various
choices of 5 and for all fractions equiprobable (AFE).

E/n p

Td

300 0
1

1

3
1

2

AFE
0
1

4
1

3
1

2

AFE
0
1

4
1

3

2

AFE

0!/np
(10-» m3s-~)

1.61
1.60

1.59

1.51
4.68
4.51

4.49

4.47

4.37
9.62
9.41

9.37

9.33

9.20

8
(10 m s ')

3.23
3.20

3.20

3.19

3.19
4.74
4.63

4.61

4.62
6.25
6.11

6.08

6, 12

noDT
(10" m-'s-')

4.29
4.32

4.32

4.33

4.32
4.61
4.67

4.68

4.68

4.68
5.28
5.31

5.32

5.32

5.34

noDI
(10 m 's ')

3.79
3.66

3.63

3.68
3.95
3.73

3.68

3.77
4.25
3.95

3.93

3.92
4.01

6.73
6.73

6.74

6.75
8.99
9.01

9.01

9.02

9.04
13.21
13.01

12.99

12.97
13.09

TABLE XIII. Convergence of transport coefficients in the l index for model (80): E/no ——1000 Td,

h, = q, Tg ——125000K, T=122878 K, vm~ ——23.

a/n p

(10-" m's-')

1.279
1.248
1.249
1.248
1.249
1.249

(10~ ms ')

6.748
6.825
6.817
6.818
6.818
6.818

npar
(io'4 m-'s-')

6.453
5.660
5.830
5.777
5.794
5,789

n pDL
(io'4 m-'s-')

3.256
4.170
4.145
4.148
4.146
4, 148

(eV)

16.03
15.82
15.90
15.88
15.88
15.88

TABLE XIV. Convergence of transport coefficients in the v index for model (80). Same conditions
as Table XIII; I =6.

13
14
15
16
17
18
19
20
21
22
23

Q/no
(10-'4 m's-')

1.251
1.250
1.250
1.249
1.246
1.248
1.248
1.248
1.248
1.248
1.249

W
(10' ms-')

6.820
6.820
5.819
5.819
5.819
6.818
6.818
6.818
6.818
6.818
6.818

noDT
(io" m-'s-')

5.780
5.782
5.784
5.785
5.788
5.788
5.788
5.789
5.189
5.789
5.789

noDL
(10" m-'s-')

4.141
4.143
4.144
4.146
4.147
4.147
4.148
4.148
4.148
4.148
4.148

{eV)

15.86
15.87
15.87
15.88
15.88
15.88
15.88
15.88
15.88
15.88
15.88
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choice of P(q, e ) on experimental data in their investiga-
tions in hydrogen and nitrogen.

For b = —,', the transport coefficients for model (80)
have been calculated for E/no in the range 100—1000 Td.
The results are plotted in Figs. 26, 27, and 28. In Figs. 27
and 28 the quantities W', Dz. , and DL have also been
plotted. Comparing 8' with 8", DT with DT, and DL
with DL it is clear that theories" which treat ionization
as just another inelastic process and ignore the generation
of the new electron can at best, be valid for only small de-
grees of ionization. Note from Fig. 27 that ionization
enhances the centroid velocity, i.e., W& 8', since the
ionization rate is higher for the faster electrons at the
front of the swarm. We also observe in Figs. 28 that
Dr & DT* and DL & DL'. In both Figs. 27 and 28,
II '~ ~, Dr'~Dr, and Di'. ~Dr. as E/no and therefore,
the ionization rates, decreases.

In Tables XIII and XIV below, the convergence of the
transport coefficients in the I index and in the v index,
respectively, is shown for E/no 1000——Td.

Finally for model (80) the percentage difference be-
tween the I= 1 approximation and the converged multi-
term results for the transport coefficients have been plot-
ted in Fig. 29. From this plot it is evident that although
the two term approximation may suffice for IY and a/no,
it will fail for Dr and DL.

IV. CONCLUDING REMARKS

In considering details of the numerical work it is im-
portant to bear in mind the fundamental role played by
the interaction integrals which were mentioned in Sec.
IIB. These integrals must be evaluated in order to obtain
the collision matrix, and from a practical point of view
their accurate evaluation is essential for the subsequent
successful determination of the transport coefficients.
The convergence problems encountered by the original
Lin-Robson-Mason code in calculating the transport
coefficients for some gases were traced to the failure of
their Gauss-Laguerre quadrature (GLQ) to successfully
evaluate the interaction integrals for certain types of cross
sections varying rapidly with energy. Along with other
modifications, the code that calculates the collision matrix
has since been altered to allow for the option of Newton-
Cotes methods when GLQ is not appropriate.

In general then, we have found the moment method to
work well, and it is particularly fast and accurate when
the interaction integrals can be calculated analytically or
evaluated accurately by GLQ. For the cross sections that
vary rapidly with energy one must often resort to
Newton-Cotes methods of integration and although accu-
rate transport data can still be obtained, there is a marked
increase in the computer time required. In such cases,
however, it is believed that a significant reduction (partic-
ularly for isotropic scattering) in computer time could be
achieved through the use of recurrence relationships for
the interaction integrals, derived in Ref. 8.

It has been pointed out by Skullerud, that moment
methods cannot be expected to converge for "soft" in-
teractions where

o(s)-e~, p & ——,
' .

For the simple elastic model of electron scattering

O,i ——c A2

o=16 amu, To ——293 K
(81)

we have found this to be the case. Evaluating the interac-
tion integrals exactly, we find that for E/no &0.05 Td
converged values for the transport coefficients are unob-
tainable, although for lower values of E/no the conver-
gence is good, indicating the presence of a cutoff value in
the electric field strength and possible electron runaway.
Indeed, if runaway is occurring, then any hydrodynamic
solution of the Boltzmann equation will break down. It is
acknowledged, however, that although electron runaway is
a sufficient condition for failure of the present two-
temperature moment method, it is not necessary. As it
was found for the attachment heating model (54) that
when the high-energy region of the distribution function
varied significantly from the Maxwellian form, conver-
gence problems similar to those for model (81) for
E/iio & 0.05 Td were encountered.

In contrast to Skullerud's comments~ concerning the
use of velocity moment methods to calculate the velocity
distribution function, we find that in the case of elec-
trons these functions are obtainable. Although not as
accurately calculated as the moments themselves, the ac-
curacy is usually more than sufficient to give the form of
the distribution functions over the energy range of interest
for the value of E/no being considered. This was demon-
strated in Sec. III A 1 for Reid's inelastic ramp model by
the good agreement between the present plots and those of
Ref. 17.

In the situation where reactions occur two important
developments were made: (1) the reactions were treated in
a comprehensive and rigorous manner by going to second
order in the hydrodynamic expansion and (2) a multiterm
solution of the Boltzmann equation was presented. From
a numerical point of view we have successfully combined
a matrix inversion method with a scheme to solve the
eigenvalue problem that arises when reactions occur. The
success of the method has been demonstrated for the cases
of electron attachment and ionization through the use of
models. Examples of the attachment cooling and the at-
tachment heating of electrons were considered and the
pressure dependence of the transport coefficients due to
the three-body attachment of electrons was investigated.
For high ionization rates the need for more precise
knowledge, concerning how the two electrons after an ion-
izing collision share the available energy, was shown. For
low ionization rates however, this appears (from the limit-
ed investigation of Sec. III B2) not to be too critical. The
remaining step to be taken, is to apply the method to a
real gas situation, e.g., the investigation of ionization in
the gases considered in Refs. 34—41, as a check on the va-
lidity of the two-term approximation used by these work-
ers. %'e also believe that the present moment method,
with the collision matrix calculated to first order in the
mass ratio, would be suitable for the study of the scatter-
ing and annihilation of slow positrons in gases. The an-
nihilation operator for positrons has the same form as the
attachment operator (30) for electrons.
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