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Heat and matter transport in binary liquid mixtures
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Following some preliminary clarification of microscopic heat current definitions for mixtures, we

describe nonequilibrium molecular dynamics algorithms for the evaluation of heat and matter trans-

port coefficients in binary liquid mixtures. Simulations have been carried out for a dense fluid of
Lennard-Jones atoms, approximating an equimolar argon-krypton mixture, at a thermodynamic
state which has been studied in several previous equilibrium simulations. Our results suggest that
the estimates of the mutual diffusion coefficient from these equilibrium simulations are -15%%uo too
high. Most importantly, we determine the cross-coupling coefficients which characterize the Soret
and Dufour effects. These are obtained from two entirely independent sets of simulations and are
found to be equal, in accordance with an Onsager reciprocal relation. %hen we run our algorithms
with high external fields, we incidentally find evidence of demixing which is of interest in the gen-

eral context of nonequilibrium phase transitions.

I. INTRODUCTION

Accurate kinetic theories for dense fluids are lacking
and, as a result, most of our knowledge of liquid transport
coefficients comes from computer simulations. The earli-
est methods using equilibrium molecular dynamics and
Green-Kubo relations have now been largely superseded
by nonequilibrium molecular dynamics' (NEMD) where
the current caused by an apphed external force is mea-
sured. Early boundary driven NEMD algorithms (with
the exception of Lees-Edwards homogeneous shear2) suf-
fered from incompatibility with periodic boundary condi-
tions leading to results that were strongly dependent on
system size. This problem has been overcome by the re-
cent development of synthetic homogeneous NEMD algo-
rithms so that it is now possible to obtain transport coeffi-
cients by simulating systems as small as those used in
simulations of equilibrium properties, although it must be
admitted that the run times have to be much greater than
for equilibrium thermodynamic properties.

The work of the present paper is most directly based on
the "color current" self-diffusion algorithm of Evans
et al. and the thermal conductivity algorithm of Evans,
which has since been used in other publications. s 7 We
give the generalizations of these algorithms to binary mix-
tures in Sec. III. This is quite straightforward once the
appropriate microscopic definition of the heat current is
identified. We discuss this point in some detail in Sec. II
since the noninstantaneous character of the definitions in
the existing literature makes them inconvenient for simu-
lations. The numerical results for a single state point of
an argon-krypton mixture are discussed in Sec. IV, fol-
lowed by concluding remarks in Sec. V. The major con-
tribution of the present paper is that it provides the first
determination by any simulation method of a thermal dif-
fusion ratio in a binaiy mixture. (Gillan and Holloway
have simulated the heat of transport for a model of defect

motion in a one-dimensional solid, which is somewhat
analogous. )

II. FORMALISM

Q

de
P VJ'g Vu:P, — —

where p is the total mass density, x„ is the mass fraction
of species v, u is the barycentric velocity, I' is the pressure
tensor, and e is the specific internal energy. In addition,
J„=x~(u„—u) is the diffusion current density of species
v with center-of-mass velocity u~ and J~ is the total ener-

gy current density excluding convection and viscous dissi-
pation. We also have, for entropy transport,

dS
p = —V J,+5,

dt
(4)

where s is the specific entropy, J, is the entropy current
density excluding convection, and 5 is the entropy source
strength per unit volume and unit time.

A. Macroscopic

All of the results quoted in this section are standard
and can be found in many textbooks, for example.
The reason for this brief review of the macroscopic results
is partly to fix notations but also an attempt to make as
clear as possible the differences of the present work from
previous microscopic treatments of transport in mixtures.

In the absence of external forces and chemical reac-
tions, the (hydrodynamic) equations of matter, momen-
tum, and energy transport take the form

XQ

p = —VJ„,
dt
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Assuming local thermodynamic equilibrium,

ds d8 p dp y v

dt dt pi dt „dt
—j)——pDi Vx),

then we obtain, using the Gibbs-Duhem relation,

(15)

where p is the pressure and p„ the specific chemical po-
tential of species v, we can substitute Eqs. (1)—(3) in Eq.
(5) and hence make the identifications

J =—Jg —gpPI
(6)

1, i 1

T&g T„" " T
J' VT ——gJ (TV(p /T)] ——0:Vu

L i i Bp i /Bx i
D) ——

px2T
(16)

H«e L}i is the bulk diffusion coefficient of species 1 rela-
tive to the local center of mass. This means that, for un-
eq~l mass spceies, the diffusion is measured with respect
to a moving plane. Experimentally the diffusion current
is m~ured relative to the local center of volume and the
relevant diffusion coefficient is then

(7) D =PU2D) ) (17)

where h„ is the specific enthalpy «species v. Now we
can write

1 1 15= — Jg VT ——gJ Vrp„——g:Vu.
T2 T. " "T

with the definition V zp„=V@,„—(dp„/dT)V T. This
transformation removes from Jg the heat-flux contribu-
tion associated with interdiffusion of one species through
the others and removes from the diffusive driving force
(chemical potential gradient) that part caused purely by
the temperature gradient.

Identifying the forces and fluxes in Eq. (9) and special-
izing to the case of a binary mixture we obtain, noting
that Jz———Ji, the following form of the phenomenologi-
cal linear laws:

Ji ——L ii Xi+L igXg,

Jg ——Lg iXi+LggXg,

(10}

where II=A ——,'pl.
Jg is the heat flow measured experimentally, but for

theoretical purposes it is much more convenient to define

Jg ——Jg —g A„J„,

where uz is the partial specific volume of species 2. As
implied by our notation, D has the advantage over D~ of
being the same for both species. There is a multitude of
other possible definitions of diffusion coefficient s'0'z but
we ignore these and refer to D as the mutual diffusion
coefficient.

Measurements of the Soret effect are generally carried
out in the steady state defined by Ji ——0. There are vari-
ous coefficients that have been used to quantify the
phenomenon. From these we arbitrarily choose the
thermal diffusion ratio kr, defined by

TVx, =—krVT .

From Eqs. (10) and (15) it is easily seen that

(18)

—Jg=AVT . (20)

ig
pTD]

&he Dufour effect, though easily seen in gases, is hard to
measure accurately for hquids. An experimental value for
Lg i can be deduced from L ig and the ORR (14).

Fourier s law of heat conduction is, in the form applic-
able to most experimental deteixuinations for mixtures,

where

1
Xi ————Vr (Pi —Pi),T

1
Xg ——— VT .

T2

(12)

Again measurements are most commonly made in the
stay state Ji ——0. Noting that, for the steady state,
Jg ——Jg and using Eqs. (10), (11),and (14) it is found that

Lgg-
L 2

(21)

We ignore the laws describing viscous dissipation since, by
Curie's principle, they do not couple to the heat and
matter transport in the Hnear regime. The phenomenolog-
ical cross coefficients Lig and Lgi describe thermal dif-
fusion (the Soret effect) and the diffusion thermoeffect
(Dufour effect), respectively. According to an Onsager re-
ciprocal relation (ORR),

Lg) ——I.)g . (14)

For completeness, we shaB now give the relations be-
tween the L~ and the transport coefficients which are
most directly accessible experimentally. In subsequent
sections, however, we shall only give results for the L~

If we write Fick's I.aw for isotheiiaal diffusion in the

Even the (more difficult} experimental measurement of
heat current in the uniform state Xi ——0 is not sufficient
to determine Lgg itself, since then Jg&Jg.

B. Microscopic

We consider a system of N particles, N& of mass rn,
and Nz of mass

rnid,

contained in a box of volume V. For
brevity we adopt the notation that g represents a sum
over all particles and g" represents a sum only over parti-
cles of species v. It is implicitly assumed that in double
smns the hvo inchces are not permitted to be equal. q;
and p; denote the position and momentum, respectively,
of particle i and q;~ =q& —q;. The interaction energy of
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the pair (i,j ) is p;~ and the force on i due toj is F;J.
The microscopic definition of J„is simply

Pj Pj—u m~
m„

'2

VJ„=N„m„(u„—u), (22)

a&here

N„m„u„= g"p; (23)

(Nimi+Nim2)u= gp; . (2&)

However, it is more convenient for use in the NEMD
"color-current" algorithm to define

(26)

Pj
uv mv

m~

Pl

As we have defined J& above tobe that part of Jg exclud-
ing energy transport due to interdiffusion and we can
equivalently state that J~ must have no terms proportion-
al to u„—u, it is easy to see that

'2

1
VJD ——N(ui —u2) =N

N)m)
1

N2m2
VJi . (25)

(27)

Irving and Kirkwood'3 showed long ago that We therefore find that

u» + g((ij l

Pj

m„
Pj —u„——, q; FJ + —,N„m„(u„—u) I2

J
(28)

1 PiS;=—m„
2 m~

2

I+ g(kkl —qtkFk}
k

Contact can be made with previous work by notin that
(28) reduces to the result of Bearman and Kirkwood [see
also Ref. 11(b)] if we replace the tensor E„l+VL „by the
(scalar) enthalpy of species v, measured in the comoving
frame of the species. Thus Bearman and Kirkwood's heat
current definition is, apart from the last term in (28)
which is negligible for linear response, a hybrid between
the microscopic JI2 of Irving and Kirkwood and the mac-
roscopic equation (8). Whilst the Bearman-Kirkwood def-
inition gives the correct heat current on a time-averaged
basis (assuming that the off-diagonal elements of the pres-
sure tensor have time average zero), (28) is clearly of more
general validity and can be used as an instantaneous defi-
nition. The importance of this in the context of NEMD
simulations will be remarked upon below.

It is convenient to define the tensors, for particle i of
species v,

Pj
VJII ——g g" —u„S;

mv

Pj —u T'
m„

= XX" (30)

These expressions for the heat current are valid micro-
scopically and instantaneously and therefore suitable for
time averaging in simulations.

The phenomenological coefficients are related to the
time-correlation functions of the microscopic currents
through the Green-Kubo (GK) relations which, for an iso-
tropic system, can be written as

Liil=(V/ks) I dt(Ji(t)Ji(0)}, (31)

Ligl=(V/ks) I dt(Ji(t)Jg(0)}, (32)

L~l=(V/ks) I dt(Jg(t)Jg(0)) . (33}

Using these tensors we can noir verite

(29) A particularly clear general derivation is given by Zwan-

zig, ' together with an explicit calculation for Li& which
is easily modified to obtain Li& and L~. Alternative
methods of derivation are discussed in Zwanzig's review
article. "
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III. SIMULATIONS

A. NEMO algorithms

I v 'v g PE

n; =p; —p„n for i of species v,
(41)

Morriss and Evans' have given the generalization of
linear-response theory to a (one-component) system mov-

ing according to the (non-Hamiltonian) dynamics
represented by the isokinetic equations of motion

where n is a unit vector in the direction of P,„,. We have
anticipated with these definitions that the time-averaged
currents generated wiB be in the same direction as the
external force. We also introduce analogous force vari-
ables:

qt
—— +8; F,„,(t), (34) F„=N„'g"F; n,

f;=F; F„n—for i of species v.
(42)

p, =P, +C; P,„,(t) —ap;,

gp; (F+C; F„,)

(35)

(36)

With these definitions the system energy in the absence of
external forces is

2

E =E'+ g N„"2m- '

(43)

8 + Cg P,„,=O,
pt

(37)

Here P,„,(t) is a constant force switched on at time t=O.
Assuming that adiabatic incompressibility of phase space
(AII ) (Ref. 1),

The equations of motion used for our thermal conduc-
tivity algorithm are analogous to the Evans algorithm4 for
pure substances:

is satisfied, then the linear response of any phase variable
J, with zero equilibrium average is given by

lim (J,(t)) =(k&T) ' J Ct(J, (t)E'd), (38)
f~ao 0

(Ir;+p„n) fori of species v,
my

p„=F„,
ir;=f;+T; F~(t)—a~It; fori of species v,

(44)

(45)

(46)

Ps
C —P"8 . .F

. m
(39)

is the adiabatic (a=O) rate of energy dissipation due to
the external force.

The idea of synthetic NEMD is to devise gf; and C; so
as to satisfy momentum conservation and AII and such
that E'd= VJs P,„, where Js is one of the currents ap-
pearing in the GK relation for the required transport
cocfflclcIlt. By nloilltorlIlg (J~(t)) fof thc fcsultlIlg 11011c-

quilibrium steady state the GK expression can be evaluat-
ed from Eq. (38), leading to

L,b= Hm M~,
~ex~~o

(40)

M,b ——T lim
Fex~

Hitherto, NEMD simulations have been for pure fluids
and the phase variable J, in Eq. (38) has usually bell the
same current as the one appeeing in E' since no I.,b
with a&b was expected to be nonzero. The only differ-
ence in the present work, apart from the thermostat (as
discussed below) is that we expect both a heat current and
a diffusion current to flow as a result of directly driving
either one of than.

Because of the appearance of particle velocities relative
to their species center of mass in the definition (27) of the
heat current, it is convement to introduce the following
momentum variables:

1 $"ir'( f + T "Fg )
Ptl y

m„
v 2

I

Here T; is the tensor defined by Eq. (23), except that

pg lfl +u„ is replaced by m;, and so E ' = VJ~ F~ . The
mutual diffusion algorithm is a simple generalization of
color self-diffusion:

I
qt

—— (e;+p„n) fori of species v,
Ng

(48)

P„=F +c+n(t),

g e ~ ~

v & i

g"m

(51)

Here c& ——X/Nl and c2 ———N/%2 so that E' = VJD-FD.
It is easily shown that each of these algorithms satisfies
AII and momentum conservation.

Notice that the Gaussian thermostat multiplier (a& or
ao) is applied to Ir; and not to p;. If it were applied to p;
and the simulation started away from the steady state, the
thermostat would tend to prevent relaxation to the correct
steady-state diffusion currents. This is related to the
strictly correct definition of thermodynamic quantities for
mixtures with interdiffusing species. An alternative pro-
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cedure would be to thermostat only those momentum
components perpendicular to the external force. Apart
from their natural appearance in the kinetic part of the
heat current, there is no particular advantage in using the
peculiar variables p„and m;. Noting that u=0 in NEMD
(the simulation cell may be regarded as a comoving fluid
element in the Lagrangian hydrodynamic sense), it is easi-
ly seen from the last of Eqs. (30) that the thermal conduc-
tivity algorithm can equally well be formulated in terms
of the usual momenta p;. Nevertheless, use of the pecu-
liar variables makes it very obvious that the diffusion
force Fn directly drives only the interspecies motion,
whereas the thermal conductivity force F& directly drives
only the intraspecies motion.

Although there is clearly some arbitrariness in the defi-
nition of the heat current, it is interesting to note that we
were unable to devise a NEMD algorithm yielding
E' = VJ(2 F,„, and also satisfying both momentum con-
servation and AII'. ' lt should be remarked, however, that
these two conditions are not absolute necessities in
NEMD: Gillan's thermal conductivity algorithm for pure
substances' satisfies neither and yet is correct. The
Evans algorithm is simpler to implement because of the
noninstantaneous character of Gillan's equations of
motion and heat current definition (similar to the
Bearman-Kirkwood definition of heat current in mix-
tures).

B. Technical details

We studied an equimolar argon-krypton (denoted 1-2)
mixture, modeled by Lennard-Jones (12-6) atoms with

mi ——39.95 u, m2 ——83.80 u, o'ji ——3.405 A, +~2——3.633 A,
si i/ks ——119.8 K, eiilks = 167.0 K, and o i2 and ei2 given

by the Lorentz-Berthelot equations. The potential P~(q)
was truncated at q =2 Scr~ and r.aised to be continuous
at the cutoff. All of our results are quoted, without spe-
cial distinguishing notation, in reduced units defined with
respect to the parameters m„cr», and sii appropriate
to a pure argon fluid. The characteristic time is
r=o»V'(mi/sii) =2 ps. The temperature and density
investigated were k&T/e» ——0.965 and Noii/V=0. 7137.
This state point is precisely the one simulated by Jolly and
Bearman' (JB) and is also one of those simulated by
Jacucci and McDonald (JM) and by Schoen and
Hoheisel ' (SH), all in connection with mutual dif-
fusion.

Our simulations were all carried out on 108- or 256-
particle systems with the usual periodic boundary condi-
tions. The equations of motion were solved by a fourth
order Gear predictor-corrector scheme. The slight discon-
tinuities in the forces and their derivatives do not seem to
cause any problems. Various methods were used to check
the reliability of the computer programs and we briefly
describe these. The programs were checked against the
earlier NEMD results of Evans et al. and Evans, by us-
ing identical parameters for our two species. In the dif-
fusion case, the algorithms are the same (apart from a fac-
tor 2 in the c„)and a single value of Fn is sufficient, but
for the conductivity algorithm the present algorithm is

only equivalent to the old one in the limit Fg~O .(All
these algorithms have no known physical meaning except
in that limit. ) Satisfactory agreement was found.

Internal consistency checks were also done: Using, in-
stead of (47) and (51),

(52)

and

V V

g N„p,F„1

V mV
(53)

respectively, leads to E'=0. A drift in E' of no more
than 0.2% over 10 time steps was regarded as sufficiently
small. This could be achieved with a time step of 0.005~
for FD &2.0 or F& &O.S, but the time step had to be re-
duced to 0.003' for FD ——2.S and 0.0015m for F~ ——4.0. (It
is unreasonable to try to hold E constant when starting a
run from a nonsteady state since then the enostat tends to
prevent relaxation of the diffusion current. )

During our averaging runs, now with the thermostat
equations (47) and (51), we corrected for slight tempera-
ture drift every 50 or 100 time steps. E is not a constant
of the motion but, in the steady state, (E ) =0. Hence we
have

V(JD) Fn NdksT(a——p),
V(Jg) Fg Nqk~T(ag——),

(54)

(55)

where N& is the number of degrees of freedom. In con-
trast to the common practice of making the approxima-
tion Nd=3N, we use the exact value N~ ——3N —6 ap-
propriate to our algorithm. A legitimate question is
whether this rare use of the correct temperature definition
could be a significant factor in the comparison between
our results and those of earlier workers, but this is pre-
cluded by the very large X used by SH. ' Equations
(54) and (55) were always satisfied well within statistical
error for the averaging parts of our simulation runs and
were also used as one indication of when a steady state
had been achieved.

IV. RESULTS AND DISCUSSION

Tables I and II show the range of simulations carried
out and give their lengths (in units of r) The run lengt. hs
generally decrease quite sharply as the external force is in-
creased from zero but some of the runs with low external
forces were not continued long enough to get reasonable
statistics for the cross coefficients and are therefore much
shorter than would otherwise have been necessary. In ad-
dition, some of the runs with large external forces exhibit-
ed partial phase segregation which increased the required
lengths, presumably due to fluctuations in the degree of
phase segregation. The resultant fluxes due to the various
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TABLE I. Thermal conduction simulations.

I cllgth {units of t)

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.80
1.00
1.20
1.50
2.00
2.50
3.00
3.50
4.00

1225
1450
1000
300
225

1875
150

900
800
725
525

3870
175
1S0
105
80

135
60

150
60

external forces are given by Figs. 1—4. The errors indi-
cated are standard errors calculated from 5000-time-step
subaverages which are assumed to be approximately in-
dependent. This method of error estimation is quite crude
and, if it were leading to serious underestimation, could
undermine confidence in our results for the (small) cross
coefficients. It is therefore reassuring that, using the
same type of statistical analysis, in the test runs where the
two species were made identical the cross currents were
always consistent with zero, as they should be.

Figures 1 and 2 show graphs of M~ against F& and
Mii against FD, respectively. It can be seen that there is
significant number dependence for large external forces.
In the linear-response regime, however, only very slight
number dependence can be detected within statistical er-
rors in Fig. 1 and scarcely any at all in Fig. 2 (perhaps
only because the statistical errors in Fig. 2 are rather
larger). The extrapolated zero force values are estimated
to be I.~——3.95+0.05 and L ii ——0.0145+0.0010.

TABLE G. Mutual diffusion simulations.

Length (units of v)
%=108 %=256

0.10
0.15
0.25
0.50
0.75
1.00
1.25
1.50
2.00
2.25
2.50

4750'
1000'
275'

1875
3425

875
630

1275
465
240
240'

825'
550'
625'
275'

1050
525

1215

'Run of insufficient length to get reasonable statistics for cross
coefficients.

I I I I I I

FQ

4.6
I I I I I I I I I I

4.0

(b)
38 ~ I I I I I I I I I

0.0 0.1 0.2 0.3 0.4 0.5

F

FIG. 1. Heat flows induced by the thermal conduction algo-
rithm. Squares and diamonds represent 108- and 256-particle
simulations, respectively. Error bars are not shown when they
are smaller than the symbol height. (a) Large range of Fg,
(%=108 only); (b) detail for small Eg.

Only the latter value can be compared to those of other
workers '9 22 J.B (Ref. 19) and SH (Ref. 22) have quoted
values for D as defined by our equation (17). From these
and their calculated values of the purely thermodynamic
factor we can extract their values of L„. We note that
SH have clearly adopted the expression for D given by
Eq. (1.14) of the JB paper although the first equation of
Ref. 21 appears inconsistent with this by a multiplicative
factor. Methods of obtaining the thermodynamic factor
from the radial distribution functions are discussed in
Refs. 19 and 21 but they do not lead to very accurate
values and so we prefer to compare L» directly. Admit-
tedly we are here sidestepping a difficult problem which is
of interest in its own right.

In the same reduced units as those me have used, the re-
sults of JM (Ref. 20), JB (Ref. 19), and SH (Ref. 22) are

(I ii )iM=0.0170,

(L, » )~=0.0165,

(Lii )sH=0. 0174 .
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0.05 0.00 I I I I I I I I

0.04—

0.03—

0.02— 00 o Q4

M
1Q

-0.01

0.00 -0.02

(a)

I I I l I

0.02

FD

-0.010

F

-0.015—

I

0.01

0.0

'0

0.5

(b}

0 020 I I I f I I I I I I

0.0 0,1 0.2 0.3 0.4 0.5

F

FIG. 2. Particle flows induced by the mutual diffusion algo-
rithm. Symbols as in Fig. 1. (a) Large range of Eg,' (b) detail
for small FD.

FIG. 3. Particle flows induced by the thermal conduction al-
gorithm. Symbols as in Fig. 1. (a) Large range of F~ (%=108
only); (b) detail for small Fg, .

Clearly the three results obtained from equilibrium simu-
lations are nearly equal and the present NEMD result is
—15% lower. [The error of JB uncovered by SH (see Ref.
22} is in self-diffusion coefficients and should not invali-
date the JB value of 2 ii. ]

We cannot absolutely rule out the possibility of a sharp
turning point in Fig. 2 which would lead to an underes-
timation of our value of L». With the computing
resources available to us we cannot hope to get reasonable
statistics for lower values of Ez Nevertheless. , we believe
the NEMD result to be more reliable. An overestimate of
L i, is just what is expected from truncated GK integra-
tion (or equivalently time differentiation of the rms dis-
placement at finite time), since the negative tail of the
relevant autocorrelation function is lost in noise and so,
for dense liquid state points, a negative contribution to the
GK integral is ignored. A warning against similar overes-
timation of the self-diffusion coefficient is found in the
early work of Levesque and Verlet ' and its existence was
confirmed by Evans et al. This effect may be much
more dangerous when determining mutual diffusion coef-
ficients for which much poorer statistics are obtained,
despite the considerable effort made by SH in particular
to overcome this problem. In particular, me stress that

the careful investigation of number dependence by SH
(Ref. 21} does not fully address this difficulty of the GK
simulations. This could only be done, if at all, by a com-
bination of a large system, high-precisian arithmetic, and
a high-precision fmite-difference algorithm. In the ab-
sence of theory for the negative tail of the autocorrelation

0.00

-0.01—

FIG. 4. Heat Aows induced by the mutual diffusion algo-
rithm. Symbols as in Fig. 1.
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V &2
3

U2= 3 3~2 N)cr)+N2o2
(56)

we find that Fn ——0.1 corresponds to
~
Vxi

~
=2X10

cm '. Since the maximum possible change of xi is 1,
this value is clearly unrealistically high for a macroscopic
fluid cell. As in all NEMD work, the gradient must be
substantial on an atomic length scale to yield reasonable
statistics.

%ith these same assumptions about the thermodynamic
factors, we obtain from Eq. (19) the estimate kT ——0.28.
Thus for the minimum effective temperature gradient
simulated (

~

VT
~
=3.5X10 Kcm ') the steady-state

mass fraction gradient will be
~
Vxi

~

=8X10 cm ' For
a more experimentally realistic temperature gradient of 10
K cm ', one would expect to find

~
Vx,

~

=0.024 cm
In order to obtain even such poor statistics for individu-

al values of the cross currents, we have had to use inuch

function, an informed extrapolation to i = ao is not possi-

ble.
Plots of M iQ against FQ and MQ i against FD are

shown in Figs. 3 and 4, respectively. Any difference be-

tween 108- and 256-particle simulations is negligible
within the statistical uncertainty, except for the single
case I'~ ——1.25, but we expect that there would also be sig-
nificant number dependence for the other high external

forces where we only have 108-particle results. It will be

noted that it is difficult to detect any definite trends for

FQ &0.5 or for FD ~ 1.0. This may indicate that, for the
cross effects which are very weak, these forces are truly in

the regime where linear response is valid so that no extra-

polation is necessary. On the other hand, it may just be a
consequence of larger statistical errors. Whichever of
these explanations is correct, because of the lack of detect-
able force dependence we have estimated the zero-force
extrapolated values from appropriately weighted averages
of all values of MiQ for FQ ~0.5 and all values of MQi
for F~ ~ 1.0. The results are, for N = 108, L,Q= —0.0155+0.0005 and LQi ———0.0168+0.0013, and for
%=256, LiQ ———0.0168+0.0005 and LQi ———0.0164
+0.0013.

Evidently, L 1Q and LQ1 are equal within statistical er-

ror, which represents, to our knowledge, the first NEMD
test of an ORR (though it is probably better regarded as
yet another test of our NEMD algorithms). Based on the
complete set of results, our final best estimate is
L iQ ——LQ i

———0.0162+0.005.
Before further discussing our results, we digress to

describe their relation to experiments on real liquids.
From Eqs. (20) and (21) and the values of heat current
and thermal conductivity found in the simulations, it is
easily deduced that the temperature gradient correspond-

ing to FQ ——0.1 is ~VT
~

=3.5X10s Kcm '. This is
similar to the equivalent temperature gradients used by
Evans for pure liquid argon but many orders of magni-

tude greater than experimentally accessible values. Mak-

ing a similar estimate of
~
Vxi

~
From Eqs. (15)—(17) is

complicated by the purely thermodynamic factors. Tak-
ing the thermodynamic factor defined by JB and SH to be
1 and making the simplifying assumption that

longer runs than are generally needed for pure fluids. As
a by-product of these long runs, the accuracy of some of
our values of M» and especially MQQ is rather better
than has usually bun obtained for pure fiuids. Clearly,
for a given length of run, better statistics are obtained
from the conduction than from the diffusion algorithm.
In part this refiects the nature of the physical processes
involved: there is a sign change in the diffusion-current
autocorrelation function but the heat-current autocorrela-
tion function decays monotonically to zero. If we are
only interested in obtaining LiQ ——LQi, then the thermal
conductivity algorithm should be preferred. For the most
straightforward comparison with experiment, however,
kz or some other coefficient closely related to L iQ/L» is
required. This can only be obtained from the diffusion al-
gorithm.

The poor statistics of the diffusion algorithm could be
circumvented if extrapolation from higher values of FD
were possible. Unfortunately, there is a rapid increase in
Mii above a system size-dependent value of FD. We at-
tribute this to a "finger instability" where the two species
phase separate into counterstreaming fingers so that inter-
species friction is significant only along a boundary or
boundaries parallel to FD and therefore greatly reduced
from its value in a mixed phase. The phenomenon can be
seen in typical instantaneous particle configurations pro-
jected on a plane perpendicular to FD. For FD ——1.0 the
phase separation is only incipient, but it is quite fully
developed for FD =2.5. This phase separation at high FD
is an obstacle to the easy calculation of Lii and we are
therefore investigating alternative diffusion algorithms
where it may be suppressed. However, the chosen state
point may be particularly hard to treat with our present
diffusion algorithm since it is fairly close to the equilibri-
um phase separation.

Although it is a nuisance if we are only trying to deter-
mine Lii, this diffusively driven phase segregation is of
interest in its own right and has already been studied in a
closely analogous lattice model. We plan a more de-
tailed investigation using our continuum simulations but,
apart from the evidence of particle configurations and the
rapid increase of M, i, we can already easily see one other
manifestation of the phase segregation in Fig. 4: at large
FD, ~MQi~ decreases toward zero, an expected conse-
quence of phase demixing since the Dufour effect is only
found in mixtures. There is also some evidence of phase-
transition behavior in the thermal conduction simulations
at high FQ but the exact nature of the change is not so
clear.

V. CONCLUDING REMARKS

For the argon-krypton system studied, thermal dif-
fusion is a small effect as expected, since the molecules
are not very dissimilar. Even so, we have unambiguously
detected both thermal diffusion and the Dufour effect.
For an initially homogeneous (model) argon-krypton mix-
ture in a thermal gradient, argon migrates toward higher
temperatures. It is interesting to recall that, of the two
phenomena, only thermal diffusion is easily found experi-
mentally in liquids. The difficulty of ineasuring the
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Dufour effect experimentally reflects, in addition to prac-
tical difficulties (principally lack of a suitable steady
state), the greater statistical uncertainty found in the dif-
fusion simulation.

To our knowledge, no cross coefficient has ever been
obtained for a binary mixture by the GK equilibrium
simulation method. We also believe the GK results for
mutual diffusion in dense liquids to be unreliable because
correlations over intervals longer than a few collision
times are unobtainable due to noise in the simulations.
(This problem still exists but is less important in the GK
determination of thermal conductivities and viscosities. )

In addition, since GK results are based on fluctuation for-
mulas whereas NEMD results come from simple time
averages, the former require longer runs to obtain similar
statistics. Usually this is offset by the need to carry out
the extrapolation to zero force in NEMD but such an ex-
trapolation seems, on the basis of our calculation here, to
be less important in obtaining I.i~ ( =L(2i). Our NEMD
algorithms therefore seem well suited to the task of mak-

ing a systematic study of thermal diffusion.
Probably the best available theory of transport coeffi-

cients in a dense fluid mixture is the revised Enskog
theory (RET). It is directly applicable only to hard-
sphere (HS) mixtures but could be modified in a straight-
forward way to handle continuous potentials as was done
for pure fluids. ~ The published RET results for binary
HS mixtures only give mutual diffusion coefficients and
the mass ratios studied are all much higher than in our
simulation. We therefore attempt no comparison of our
results with RET. Even for more similar mixtures, such a
comparison would not be particularly illuminating since
we have only simulated a single-state point while the main
question about RET is whether it correctly predicts
trends. We hope to carry out a more extensive set of
NEMD simulations for HS mixtures. This will provide a
more direct test of RET itself because the extra step of
finding effective HS diameters for continuous potentials
will be eliminated.

Note added in proof. After this work had been complet-
ed, it was pointed out to us by Professor R. J. Bearman
that, contrary to the impression given above, there has
been an accurate experimental measurement of the
Dufour effect in liquids.

In the definition of Vrp„appearing in Eq. (9), we have
deliberately left the meaning of Bju„/BT somewhat impre-
cise. In the usual application of the macroscopic formal-
ism (to experiments) the exact meaning intended is
(BjM„/BT)p jzj. Correspondingly, h„ in Eq. (g) is inter-
preted as

p~
=@~—T

BT p lQj

l Hh„= (Al)
T (Nj'

where H is the total enthalpy. I N ]I represents the com-
plete set of numbers of particles of all species and I N I

' is
I N ] with N„omitted. The microscopic formalism would
be consistent with this if the ensemble averages in Eqs.
(31)—(33) and (40) were in the ( T,p, I N ) ) ensemble but in
the NEMD simulations the ensemble is ( T, U, IN J ) where
U represents the volume per particle.

Therefore, in the context of NEMD simulations, we
strictly ought to make the interpretation

m„ BN„

Pv
=@~—T

u [Nj

and correspondingly replace Vrp„by
T

(A2)

V T.upv= Vij v VT— Bp~

(A3)

That is, we remove from the chemical potential gradient
those parts caused by gradients in both temperature and
total number density. The extra terms in (A2) and (A3)
lead to a small ensemble correction between the simula-
tion and experimental results. In the particular argon-
krypton mixture studied the correction will be negligible
because the mixture is very close to ideal. ' ' '
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