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Constant-stress nonequilibrium molecular dynamics: Shearing of the soft-sphere crystal and fluid
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A new method is described for studying shear flow in fluids and crystals using nonequilibrium
molecular dynamics {NEMD) based on determining the response of the system to a predetermined
homogeneous shear stress. Flow phenomena may be examined which would not be accessible using
other techniques. %'e demonstrate the existence of a yield stress for shear along the (111)plane of
an ideal (i.e., defect-free) fcc soft-sphere crystal. The significant differences with previous simula-
tion results using constant strain rate NEMD are discussed in terms of artifacts introduced by sam-

ple size effects and crystal geometries in relation to the direction of shear.

INTRODUCTION

Previous measurements of the shear viscosity of fluids
by nonequilibrium molecular dynamics (NEMD) have
been made by imposing a shear rate of predetermined time
and space dependence and then measuring the res~ponse of
the appropriate component of the stress tensor. Re-
cent developments have led to the possibility of inverting
this procedure to measure the viscosity by applying a
predetermined fixed shear stress to the system and observ-
ing the fluctuations in the shear rate.

The main aims of this paper are to show that while the
constant-stress method gives essentially identical results to
constant strain rate for liquids it offers important advan-
tages for studying the shear of highly viscous and solid
materials. This is illustrated by applying stress to a sam-
ple of the face-centered-cubic (fcc) soft-sphere crystal. At
low apphed stress the crystal strains as a solid with a dis-
tinct zero-frequency shear modulus Go. At higher ap-
plied stresses the sample first "yields" and then flows with
at least two discernible "fluid" phases linked by a distinct
phase transition. These flow phenomena would not be ac-
cessible using the Rahman-Parinello constant-stress
method. If spurious effects can be eliminated by ap-
propriate choice of sample size and boundary conditions
the method offers wider opportunities for studying flow
phenomena.

We also describe the equations of motion for constant
stress and outline an algorithm for use in NEMD simula-
tions. The method to be described is the off-diagonal
analogue of Evans and Morriss's technique for perform-
ing isothermal-isobaric molecular dynamics.

The starting point for this method is the following
equatjons of motion ' for isothermal planar Couette flow
in the xz plane:

where x is the unit vector in the x direction. a and y are
treated as undetermined parameters and are evaluated
from the constraints applied to the system. Firstly, we re-
quire that the total kinetic energy of the system,

2K, ——, g p;/rn,

remains fixed. This means that EC, =0 and implies that

where for simplicity we have assumed all particles have
the same mass m, and unless specified g indicates a sum

over all N particles. Substituting for p gives the value of
a required to satisfy the constraint

gp

The second constraint is to specify the rate of change of
the xz component of the stress tensor, o~. o is defined
by

—Vo = g (p p, /m +q„F,), (4)

where V is the volume of the system, so differentiating
with respect to time gives

—Vo = g(l/m)(p„p, +p„p, )+ g(q„F,+q„F,) .

Substituting for p and q from Eqs. (1) and (2) and re-
arranging leads to

g [(1/m)(2p F,+F„p, 2ap„p, )+q„F,]+tr-
g (p, /m q,F, ) 2g p„p, — m g—p

(2) Further substitution for a, Eq. (3), gives
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2 XpFE.p*
g(llm)(2p„F, +F p, ) —— + gq F, +t7 V1'

g (p, /m —q,F, ) —2 gp„p,

The term involving F, involves the second differential
of the potential so a further substitution has to be made.
Firstly, it is assumed that the particles interact through a
pairwise additive potential 4(r}, a function only of their
separation r = (q;1 ~

where q;J=q; —qj. The force on
particle i due to j is then given by

d4(r)
po ~ ~ ~ ~~@ ~ ~

gq„F,=+gq, F, =.ggq,
d( —4'q, )

Evaluation of the differential in Eq. (8) introduces yet
another term in y and after some tedious yet straightfor-
ward algebra one arrives at the final equation

The term involving I', can now be converted into a double
sum (g g implies g, ,'g, )

g (1/m)(2p, F,+F„p,) —— +o~ V
2 XpF&p.p.

Nl 1

qxgsj. @' qiJ pij m'qxpgj
m /qjf

pg 2( gp„pg) g gqx„qs,)
C ti

m m +pi qtj

2
qig

2
Qx,)

In this form y can be readily calculated from quantities
either stored or evaluated in the normal MD procedure
with the addition of 4".

IMPI.EMBNTATION

As with other methods for simulating planar shear flow
the equations of motion are integrated in conjunction with
the moving boundary scheme of Lees and Edwards (see
Ref. 4). We find that the integration of the coupled first-
order differential equations presents no problems if
fourth-order Gear predictor-corrector methods are used
but there are some extra considerations concerning the
moving boundaries due to the fluctuating shear rate.

If at time t =0 the periodic images are orthogonal then
at a later time t the distance moved by the image cell,
h {t), 15 glveil by

h(t)= J y(s)L ds, (10}

where L is the length of the MD cell in the z direction.
In the case of the constant-strain-rate NEMD y is con-
stant so that h (t)=yLt. In the present case, however, the
shear rate is a function of time so the evaluation of h (t) is
more complicated. A convenient way of doing this is to
reformulate Eq. (10) as a differential equation

Repeated

d qx

dt

~ Vx

df

d qx

d~4

differentiation gives

~Ox d y~
Qg2 gf 2

~Ox dy
dt dt

~Ox dy
y]4 g~4

etc. As y is a function of time, y' and the higher deriva-
tives are generally nonzero. If a particle moves out of the

h(t) =y(t}L

and then use the Gear fourth-order predictor-corrector
scheme to solve for h (t). This is a useful procedure since
the higher derivatives of y are also required when a parti-
cle crosses a z boundary. Consider the displaced periodic
image of a particle, q, in the +De z direction. Since
q' =q„+h, differentiating with respect to time gives

q x =qx+h

which from Eq. {11)is

0 x =Ox+/L ~
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primary cell through a z face then not only do its position
and velocity change to that of its periodic image, q', but
also all the higher derivatives used in the integration
scheme.

SIMULATIONS

It is expedient to choose a potential which is continuous
up to the second derivative and goes smoothly to zero at
the chosen cutoff, otherwise discontinuities in the force
cause sudden steps in the stress as particles move in and
out of their interaction spheres with a resultant drift of
the stress away from the required value. Interactions were
therefore defined by a soft-sphere potential modified ac-
cording to a prescription due to Andrea et ol.7

o was set equal to zero. Attempts to achieve a desired
stress in a single time step result in excessive shear rates
and consequent instabilities. It was found for this system
that the constraints of constant kinetic energy and con-
stant stress were maintained to at least the first seven sig-
nificant figures. After a period of equilibration at o„,
—1000ht, averages were obtained over a further 80006,t.
The mean shear rate calculated from this run was then
used as input to a second simulation, starting from the
same equilibrated configuration, with y fixed at this
value A.verages were then obtained for the same number
of time steps and the results are given, along with those
from Ref. 8, in Table I. The viscosity has been calculated
in the usual way from the ratio of the mean stress to mean
shear rate

4e(o/r)'', r (r~
4(r)= '

U(r ), r~ &r &r, and also from the a parameter

q=2(a) (X, )/(y }'V.

(12)

(13)
where U(r )= g, , C~ i5' ' is a fifth-order polynomial
in 5=r —r . The coefficients CO, C&, C2, . . . were
chosen such that the potential and its first two derivatives
are continuous at r and go to zero at r, The .values of
r and r, used were 1.5ir and 2 3cr, r.espectively.

The coupled first-order equations of motion, Eqs. (1),
(2), and (11),were integrated for a system of N =504 par-
ticles using a fourth-order Gear predictor-corrcetor
scheme with a reduced time step [b t' =Et cr '(m /e)'/i]
of -0.001.

RESULTS: SOi-i-SPHERE LIQUID

~e have compared the results from constant-stress and
constant-strain-rate simulations with those already ob-
tained for an N =108 unmodified soft-sphere system by
Evans. Initially the system was equilibrated, y set equal
to zero, at a reduced density (p" =¹r'/V) of 0.7 and a re-
duced temperature (T'=Tkble) of 1.0. To "drive" the
system to the desired stress cr„, o was set equal to a rela-
tively small value cr, /Et=10 ~10 and the simula-
tion started, having first set the kinetic energy to the
desired value by scaling the momenta, with y being
evaluated from Eq. (9). Once the stress had exceeded o„,

Although these equations do not give independent esti-
mates of the viscosity they do provide a useful consistency
check. In Table I the soft-sphere scaling procedure has
been used to present our results. The following definitions
are used for the reduced pressure (p'), stress (o ), viscos-
ity (t}'),and shear rate (y '):

p =pV/Nkb T,
o~ =cr V/Nkb T,
g'=rlo (me) ' (e/kbT)

y
' = —,

'
yo (m /e) ' (slkb T )

The factor of —,
'

appears in the expression for y' since
Evans defines y = —,

'
du„/dy, a point which has been over-

looked in recent papers. ' '" For T' =1.0, rl and y are re-
duced by the same factors as in Ref. 8.

From Table I it can be seen that the methods give
viscosities which agree to within the statistical errors.
The similarity of the calculated standard errors indicates
that there is nothing to be gained in terms of precision by
using the constant-stress method. Computationally it is
more complicated and the evaluation of the extra terms

TABLE I. Constant-stress and constant-shear-rate data for the soft-sphere Auid. The reduced densi-

ty (p ), temperature (T ), mean pressure (p =@V/XkbT), mean stress (o =0 V/NkbT), mean
shear rate [y =

z year(m/e)' (e/kbT) ' ], and resultant viscosity [g =ger (me) ' (e/kbT) ]
determined from the stress and from the u parameter (q ) for the simulations at (a) constant stress and
(b) constant shear rate. The errors quoted are the standard errors determined by the method described
by Fincharn (Ref. 9). The numbers in parentheses are results from a constant-shear-rate simulation
given in Ref. 8.

0.7 1.0

1.0

(1.0)

13.89
+0.03
13.89

+0.03
(14.13)

1.808

1.746
%0.040
(1.806)

0.376
+0.010

0.376

(0.4)

1.68
+0.04

1.63
+0.04
(1.58)

1.67
+0.11

1.64
+0.10
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[in Eq. (9)] increased the central proomsing unit (CPU)
time by -25% for this particular system. However, as
we shall demonstrate, the constant-stress method has de-
finite advantages for studying the effects of shear stress
on solids.

It can also be seen from Table I that the viscosity
evaluated from a is in good agromient with that obtained
from the stress, confirming the consistency of the equa-
tions of motion. All the results are in good agreement
with those of Evanss considering the differences in the po-
tential, number of atoms„and the shear rate.

RESULTS: SOj.-x-SPHERE CRYSTAL

We have measured the response of a fcc soft-sphere
crystal to stress applied parallel to a line of atoms in the
(111)plane. As the experiment is carried out at constant
stress it should reveal directly the existence of a yield
point in this material. It must be emphasized that these
simulations are carried out on small samples of an ideal
(i.e., defect-free) crystal. Hence any value for a yield
stress is likely to be much higher than at the onset of plas-
tic flow in real crystals, a phenomenon which is known to
proceed by the creation and motion of defects. ' ' The
main purpose of this paper is to prescsit a comparison
with previous simulation data on an ideal system. No at-
tempt is made to compare results with plastic flow in real
macroscopic crystals.

Evans"' has reported results for a constant rate of strain
applied to a system of 108 soft spheres at the soft-sphere
scaling density, X po (e/kb T)'~, of 0.95, for which the
equilibrium state is the crystaL The data obtained were
interpreted in terms of three distinct shear-induced fluid
phases with the high-shear-rate phase being that of the
normal shearing metastable fluid. This was described as
an example of shear-induced melting. Although it was
claimed "that the soft-sphere crystal behaves as a Bingham
plastic it is not possible to determine directly a yield stress
from a constant-shear-rate NEMD experiment as the
crystal is forced to undergo shear flow even for the small-
est shear rate. It has bow suggested' that the phase tran-
sitions and shear-induced melting observed by Evans' are
artifacts introduced by shearing a small periodic system in
an unfavorable orientation. Although the orientation of
shear with respect to the crystal lattice is not stated in
Ref. 14 it is assumed from the system size (N = 108) and
as there is no mention of noncubicity of the MD cell that
the shear was directed along the (100) face of a face-
centered-cubic crystal. The most hkely stable sheriring
plane, however, is probably the (111) face. '5 A simple
geometric analysis reveals that, even allowing for lateral
movement of the layers, the displacement barriers to the
movement of one plane of atoms over another along these
two faces are approximately three times lower in the case
of the (111)face.

The crystal sample was set up with X, close-packed
layers of N, N„atoms packed together in the ABC forma-
tion required for a fcc crystal, where N„N„N, =7X 8 X9
=504=%. The x direction lays parallel to the line of
atoms in the xy plane and the ratio of the orthorhombic
MD cell dimensions were then N a:N~(~3/2)a:X, (~2/

6„=(o~tr(0) ) V/kb T, a,P=x,y,z .

The value obtained was 6'„=13.3+1.4 which is about
eight times larger than the yield stress. This is well
within the range of simple thixiretical predictions. '

Our data exhibit at least three distinct stress-dependent
phases. At applied stresses below the observed yield stress
the crystal strains as an elastic solid. This behavior can be
generally described by the equation

~=GOY * (14)

where 60 is a shear modulus and y is the strain which for
the geometry used here is given by [see Eq. (10)]

~3)a where a is the nearest-neighbor separation and is
equal to 2'/ o for ~'=1.0. Tlus system was then equih-
brated at the soft-sphere scaling density of X=0.95 for
9000ht. Averages were then obtained at equilibrium
under isokinetic conditions by integrating Eqs. (1) and (2)
with y set equal to zero.

The crystal system was subjected successively to stresses
(o' ) of magnitude -0.56, 1.13, and 1.71, using the
method already described. All of these levels of stress
were supported without shearing, in each case, for times
in excess of 10 ht Upon further increasing the stress to
-2.28, however, the crystal was observed to undergo
shear. To pinpoint more precisely the yield stress, calcu-
lations at four more stress levels were performed, each
starting from the strained configuration at o' —1.71.
Results from all these are given in Table II.

It is interesting to note from Table II that the applica-
tion of stresses just in excess of the yield point leads to
significant metastable behavior. At o~ =1.776 the crys-
tal supported the stress for a time of —12000 ht' before
yielding rapidly to give a stable shearing phase. The
behavior at a slightly higher stress of o' =1.848 is illus-
trated in Fig. 1 where the distance the periodic images
have moved h'(t) =h (t)/o [see Eq. (10)] has been plotted
against time. At short times, ~2500ht, h(t) is reason-
ably constant indicating that the crystal is straining only.
The crystal then yields and flows at a relatively slow rate
before undergoing a transition at around 15000ht to a
second shearing phase.

In Fig. 2 the mean shear rate is plotted as a function of
the applied stress for all the simulations given in Table II.
The metastable points are distinguished by the diamonds.
It can be seen that the sample exhibits a distinct yield
stress cr~ = 1.74+0.03. Also given in Fig. 2 is the
constant-shear-rate data of Evans, '4 nominally for the
same system. Clearly there are significant differences be-
tween the two sets of results. We note that extrapolation
of Evans's data implies a yield stress about half our ob-
served values whereas a higher value is expected on the
basis of the different orientations of the crystal with
respect to the shear. In an ideal, (i.e., defect-free) crystal
simple theoretical models suggest that the yield stress
should be about an order of magnitude less than the
infinite-frequency shear modulus 6„.The latter quantity
can be evaluated from the equilibrium stress fluctuations'
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TABLE II. Constant-stress and equilibrium data for the soft-sphere crystal. The (111) direction
is in the xy plane. The reduced mean stress (0. =cr V/Xkq T), mean shear rate

[y =
2 yo(m/e)' (e/kt, T) ' ], resultant viscosity [rt =rto' (ms) ' (e/AT) '], and mean pressure

(p =@V/NkqT) determined from the equilibrium and constant-stress simulations at the soft-sphere
scaling density X=p (e/k~ T)' of 0.95. N, and N, are the total number of time steps and the number
of time steps over which averages were taken at each value of cr, respectively. The points bracketed
together showed clear evidence of metastable behavior for the fixed value of the stress. In each case the
lower figures represent those of the more stable state.

—0.007
+0.019

0.561

1.133

1.705

i 1.776

)1.776

'1.848

1.919

1.991

-0

-0

-0

0.059
+0.009

0.055
+0.005

0.280
+0.025

0.314
+0.022

0.408
%0.038

0.495
%0.044

23.21
k3.49
26.24
+2.48

5.11
+0.78

4.74
20.34

3.78
+0.35

3.56
+0.32

26.40
+0.01
26.44
+0.02
26.55
%0.02
26.70
+0.02
26.74
+0.02
26.82
+0.06
26.79
+0.03
27.05
+0.05
27.12
+0.05
27.31
20.11
27.64
+0.10

11200

104M

11200 .,

12800 ~

12000 .i

16800

60

XZ
G

8

2Q
)f l

po

0 5 10 15 20 25

~I

0. 6

FIG. 1. Response of the soft-sphere crystal sample to a con-
stant applied stress of o =1.886 (e =g V/NkqT). The dis-
placement of the periodic images, k (t)=k(t)/tr [see Eq. (lO)]
plotted as a function of time. Note the yield point and the two
distinct shearing phases.

FIG. 2. The mean reduced shear rate

[y =
2 ya(trt/s)'~ (s/kb T)'~' ] plotted against the applied

stress (o. ) for the simulations of the 504-particle soft-sphere
crystal. The open squares represent our data. The solid squares
denote nonshearing points and diamonds have been used for the
metastable points given in Table II. Also plotted, as circles, are
the constant-shear-rate data of Evans (Ref. 14).
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FIG. 3. The means strain (y} plotted as a function of the ap-
plied stress for the nonshearing points. Notation as for Fig. 2.
The dashed line is a fit of the first two points to the form

=Go y with Go =2l.84

FIG. 4. The mean reduced pressure (p =pV/NkqT) plotted
as a function of the applied stress. Notation as for Fig. 2. The
dot-dashed line marks the value of the yield stress. The
constant-shear-rate data of Evans (Ref. 14) is plotted as circles.
The pressure of the equilibrium crystal (C) and the metastable
Auid {MF)are marked by the horizontal arrows.

In Fig. 3 the time-averaged value of y is plotted against
cr' for the applied stresses up to and including the meta-
stable point o =1.776. The lowest two stress points fit
well to the form of Eq. (14) with a reduced shear modulus

Go of 21.84. At the higher stresses it is clear nonlinearity
occurs as the yield point is approached. In a narrow
range of stress just in excess of oo it appears that there
is a stable low-shear-rate —high-viscosity phase. This
gives way to at least one higher-shear-rate —lower-
viscosity phase for stresses & 1.776, more of which will be
said in due course.

None of our stress-induced phases correspond with
those observed previously in computer simulations. '

This can also be seen in Fig. 4 where the pressure has been
plotted as a function of the applied stress along with the
data of Evans. ' Below the yield stress our pressure data
extrapolate smoothly back to that expected of the equili-
brium crystal (C).' Even into the shearing regime the
pressure increases are modest compared to those observed
previously, '4 the latter being more characteristic of the
rnetastable fluid (MF) at this density. There is clearly
much less disruption of the crystal structure when the
shear is directed along the (111)face. We believe that the
"shear-induced melting"' was an artifact of a system in
which particles are prevented from remanging into stable
shearing planes by the cubic shape of the MD cell.

Although the crystal and shear geometry used here
more readily facilitate shearing, it should not be conclud-
ed that the results are devoid of artifacts. In Fig. 5 the
nonconstrained off-diagonal elements of the stress tensor
are plotted as a function of the applied stress. It can be
seen that application of stress in the xz plane causes the
development of significant tangential components. Clear-
ly the crystal mould like to strain in the xy and yz direc-
tions but is constrained not to do so by the fixed cell
geometry. Further evidence of this is available from the
shear moduli. The modulus obtained from the stress-

1. 0

0. 0 '—..— LJ

FK'r. 5. The mean nonconstrained xy (open triangles) and yz
{open squares) components of the stress tensor plotted against
the applied stress. Solid triangles and squares represent
nonshearing points and diamonds and inverted triangles denote
the metastable points. The yield stress is sho~n dot-dashed line.

strain relationship Go ——21.84 which is significantly
greater than G„. Norinally Go&6„so this also sug-
gests that the direction in which the stress is initially ap-
plied is not that in which the crystal strains most easily.

The occurrence of these off-diagonal stresses below the
yield point is probably related to the observed metastabili-
ty of the fcc crystal above the yield point. Analysis of the
structure and dynamics of the system reveals that the
(111) crystal planes maintain their integrity throughout
the simulations with no interchange of particles between
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the layers in the z direction. There is, however, a change
in the registry of the layers from the ABC formation re-
quired of the fcc crystal, which coincides with the transi-
tion to the higher-shear-rate regime. At this point most
of the layers slip into the MBA formation of a hexagonal-
close-packed (hcp) structure and this is accompanied by
the simultaneous collapse of the tangential stresses. This
result suggests that hcp is the stable shearing geometry for
the chosen applied stress although complete rearrange-
ment is impossible in our nine-layer crystal sample.
Clearly a more general method of controlling stress tensor
elements is required (similar to the Rahman-Parinello
method ) if the true response of different crystals to an
arbitrary direction of shear is to be determined.

CONCLUSIONS

in good agreement. Results obtained for stress applied to
the (111) face of a small sample of a defect-free fcc soft-
sphere crystal demonstrate the existence of a well-defined
yield stress in the system and at least two stable shearing
phases. However, our results are in marked contrast to
those obtained previously' using constant shear applied
to the (100) face. We find no evidence for the crystal
melting into the normal shearing fluid phase even at shear
rates twice those used in Ref. 14. At constant applied
stress the properties of the equilibrium crystal are
recovered as the stress tends to zero. The results show
that shear-induced meting and other phase transitions can
be merely artifacts introduced by the constraints placed
on the system and by the small size and particular
geometry of the MD cell.

We have demonstrated the practicability of a constant-
stress NEMD method capable of following crystalline or
fluid systems continuously through the straining to the
flowing regimes. For a liquid phase simulation results
from constant-stress and constant-strain-rate NEMD are
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