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Using a Landau potential F=+¢®+ 3g¢* + %61//2, where ¥ is a suitable order parameter, one

can quantitatively explain symmetry-breaking phenomena in Couette-Taylor flow near a tricritical
point. Ideas from bifurcation theory have been used to show that € depends quadratically and g
linearly on the aspect ratio and on the angular velocity of the inner cylinder. This agrees well with
earlier experimental results in quite a wide area around the tricritical point.

I. INTRODUCTION

Landau’s phenomenological model for equilibrium
phase transitions has also been used for a long time to
quantitatively describe forward bifurcations in nonequili-
brium systems.! Recently it has been shown to be ap-
propriate, too, in a transition between forward and back-
ward bifurcations, analogous to the tricritical
phenomenon.? The structure of the coefficients is not,
however, predicted in the model.

In this paper recent ideas from bifurcation theory are
applied in order to find expressions for the coefficients in
a Landau model describing bifurcations in Couette-Taylor
flow near a tricritical point. Bifurcation theory® classifies
multiple bifurcations into normal forms, whose coeffi-
cients have a simple structure. These normal forms can
be perturbed with unfolding parameters and, as these pa-
rameters vary, the character of the bifurcations will
change. The coefficients obtained this way agree quanti-
tatively with earlier measurements? in a wide area around
the tricritical point.

In Couette-Taylor flow between infinitely long coaxial
cylinders with the inner one rotating at angular velocity o
there is a spatially ordered multivortex state if  is greater
than a critical value. In this paper the units will be fixed
so that this critical value is 1. By restricting the length H
of the cylinder so that the aspect ratio L =H /d is near 1
(d is a gap between the cylinders), one can have a sym-
metric flow pattern with only one vortex pair provided »
is not too small. Then if w is increased beyond a critical
value w(L), the symmetry of the rolls breaks. One vortex
grows at the expense of the other. Also, if w is fixed and
big enough, and one varies L (by changing H), the sym-
metry of the rolls can change. These bifurcations can
happen continuously or abruptly, corresponding to a
second-order or first-order phase transition, depending on
the precise value of the parameter (o or L) held fixed.
This phenomenon has first been investigated both theoret-
ically and experimentally by Benjamin and Mullin* and
later by Cliffe,* Liicke et al.,’ Schmidt,” and Aitta et al.?

In our work,? we found a tricritical point, and we no-
ticed that our data could be fitted very accurately by a
Landau model:

=cky*+cg¥*—Tep’—hy . (1)

The tricritical point occurs where g and € simultaneously
vanish. A small asymmetric term # was needed because
the apparatus was not perfect. The order parameter,
which measures the amount of symmetry breaking, was

foHv, dz

[ v dz

The axial velocity component v, was measured by laser
Doppler velocimetry. The coefficient € was defined as

Y= )

e=2_1, 3)
(21

so that it measures linear distance from the bifurcation
point.

In this paper I will consider “perfect” bifurcations
(h =0) which occur when the potential F is symmetric in
¥, and the coefficient k in (1) will be scaled out for con-
venience. I show that the coefficients € and g may be ex-
pressed in terms of L and o in a new way, such that the
Landau model explains the bifurcation phenomena over a
much wider range than with the coefficients used earlier.
The expression for € fits quantitatively with the experi-
mental results of Ref. 2. € depends quadratically on
and formula (3) is a linear approximation valid for » near
®,. g depends linearly on @ when earlier it was assumed
independent of . These dependences were first revealed
by measuring the time evolution of the order parameter as
the system relaxed to a stationary state,® and they
motivated this work.

II. BIFURCATION PHENOMENA AND A POTENTIAL
MODEL

One can explain the bifurcation phenomena near a tri-
critical point using a simple sixth-order potential

F)=gy’+3gv'+7ep?, @
where ¢ is the order parameter. The dynamics of this dis-
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Angular velocity w

Aspect ratio L

FIG. 1. Phase diagram of the system. S is the symmetric phase, A4 the asymmetric phase, and S /A the hysteretic phase. TC is
the tricritical point. At special places on the phase diagram it is shown how the potential F depends on the order parameter ¢. F has
three equal minima on the dotted line corresponding to the first-order transition line.

sipative system is assumed to be described by

ay __dr
Todt_ d¢ ’ (5)

where 7 is a characteristic time. In a static state

daF _ s 3 -

v =y’ +g¢’ +eyp=0. (6)
The local minima of F represent stable states and the
maxima unstable states. The shape of the potential
changes qualitatively at special values of g and ¢, and
where this happens one speaks of a phase transition.

Figure 1 shows the phase diagram for a short Couette-
Taylor system, whose features can be described using (4).
Three phases exist: S, where the vortex pair is always
symmetric; A, where it is always asymmetric; and S/A4,
where the symmetry/asymmetry depends on the previous
history of the system. In other words S/A4 is a hysteretic
phase. In S the potential F has one minimum at ¥=0; in
A it has two minima, and a maximum at ¥=0; and in
S /A there are three minima and two maxima. The solid
curve is where €=0 and it is where the symmetry-
breaking bifurcation takes place. It is referred to as the
phase curve. The dashed curve, referred to as the hys-
teresis branch, is where

gi=4e. )]

The phase curve and the hysteresis branch meet tangen-
tially where e=g =0. This is the tricritical point (TC).
Figures 2 and 3 are bifurcation diagrams. The solid
curves correspond to stable states and dashed curves to
unstable ones. Figure 2 shows qualitatively how the order
parameter ¥ depends on w with L fixed. Figure 3 shows

how it depends on L with o fixed. The bifurcation pa-
rameters A, and A; depend linearly on @ and L, respec-
tively. In order to allow for both types of bifurcations
any realistic bifurcation parameter should depend on both
o and L. This dependence can be revealed by analyzing
qualitative changes in the diagrams piece by piece (as in
Ref. 3, pp. 259—260).

In Figs. 2(a)—2(c) the first bifurcation turns from for-
ward to backward. This tricritical behavior is expressed
by the equation

Y +ay’—A,¥=0. ®)

It has solutions ¥=0 and ¥*=—+a*(+a’+A,)"?
which gives one pair of real roots if @ >0, corresponding
to L <Lyc, and two pairs if a <O corresponding to
L > Lyc. In Figs. 2(c)—2(e) the first and second bifurca-
tions meet and disappear. This is expressed by

— P+ A2+ by=0, )

which has solutions $=0, and also = *+(A2+b)'/? pro-
vided A2 > —b. This last condition excludes an interval of
A, if b <0, corresponding to L < L. This interval van-
ishes when b =0 corresponding to L =L, (the phase
curve turns over). For b >0, corresponding to L > L,
nonzero solutions for ¥ always exist.

In Figs. 3(a)—3(c), a bifurcation emerges. This is
described by

P +ALY+cy=0. (10)

The solutions are now ¢¥=0, and also ¢¥==*( —Al—o)\2
provided A2 < —c. For ¢ >0 corresponding to @ <y,

the only solution is ¥=0. Nonzero solutions for ¥ exist in
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an interval of A; when ¢ <0 corresponding to @ > wy. In
Figs. 3(c)—3(e) the second bifurcation has a tricritical
turning from backward to forward. The appropriate
equation is

P +dP’+AL9=0. (1)

Its solutions are ¥=0 and ¥*=—3d+(+d*—A.)"?
which gives one pair of real roots if d >0 corresponding
to w<wyc and two pairs if d <0 corresponding to
@ > OTC.

Since A, and A, occur at most quadratically in all these
equations, one concludes that the coefficient € in Egs. (4)
and (6) should have quadratic plus linear dependence on L
and . The phase curve (e=0) in Fig. 1 is then a conic.

It is convenient to define X and Y by

x=L=ke (12)
T Lc—Ly
and
(@ L<t, =
______________ ..:_'_
(b)| L=L
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2@ LyesL<te =
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Bifurcation parameter A

FIG. 2. Order parameter ¢ as a function of bifurcation pa-
rameter A,. Solid curves mean stable and dashed curves unsta-
ble states. The figure can be understood as vertical cuts through
the phase diagram at various values of L. Ltc and L are as in
Fig. 1. These bifurcation diagrams were revealed by Benjamin
and Mullin (Ref. 4) and later verified by Cliffe (Ref. 5).

O —Opy
Y=

=— (13)
Oc—oOm

In terms of these rescaled variables the equation of a gen-
eral conic is
PX*4+qXY +rY? 45X +tY +u =0 (14)

and it will be a reasonable simplification to assume that
the phase curve is a parabola, which requires that

q*=4pr . (15)

At the points (L,wy) and (Lc,wc) the phase curve has
horizontal (X axis) and vertical (Y axis) tangents; in (X,Y)
coordinates these points are (—1,0) and (0,1). The para-
bola with these tangents is

P(X242XY+Y? 42X —2Y +1)=0 (16)

and this is the final equation of the phase curve. The
solutions of (16) are

Y ,=(1+V—-X ) 17)

or alternatively

(a)| w<wy,

(b) | w=w,,
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Bifurcation parameter A

FIG. 3. Order parameter ¢ as a function of bifurcation pa-
rameter A;. The figures can be understood as horizontal cuts
through the phase diagram at various values of w. These bifur-
cation diagrams have not been explicitly reported before.
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X, ,=—(1xVY ). (18)
The expression for €,

€=p(X*+ Y2 4+2XY +2X —2Y +1) (19)
can be written, using (17), as

e=p(Y—-Y Y —-Y,) (20)
and using (13) too, as

ez———e—‘—-{(w—-wl)(w—wz) . (21

(wc—awp)

The angular velocity corresponding to the first bifurcation
is @, and to the second one w,. Although € has quadratic
dependence on o the earlier formula (3) for € is approxi-
mately right for o close to o,.

It will be convenient next to rotate and shift axes by de-
fining

p=X+Y (22)
and

v=Y-X—1. 23)
Then

e=p(u?—2v) (24)

and the phase curve becomes the standard parabola’
v=3u’. (25)

In order to get an expression for g one needs to use the
normal form for this bifurcation problem. A normal
form is a Taylor series with the minimum number of
essential terms to describe a multiple bifurcation. The
higher-order terms are not simply truncated but
transformed away by a smooth change of coordinates.
The nearby simpler bifurcations can be captured by add-
ing unfolding terms and the universal unfolding has the
minimum number of such terms. A detailed classification
of normal forms with their universal unfoldings is given
in Ref. 3. However, there the bifurcations are considered
in one dimension; here the bifurcations occur in the (L,w)
plane. The relevant normal form for our tricritical bifur-
cation is

Ho=19’+2mAy* + A% (26)
and its universal unfolding is
H=y’+2mAMp’+ A\ Y+ap+ By’ . 2N

m must be negative because the bifurcations are basically
forward. a and B are the unfolding parameters and the

bifurcations are assumed to be perfect. H =0 is
equivalent to equation (6) if one identifies

g=2mA+pB (28)
and

e=A+a. (29)

Notice that in this parametrization € has no term linear in
A.

2089

In principle, one may be interested in bifurcations along
any line in the (u,v) plane although experimentally it is
easiest to work along lines where L is constant or o is
constant. On the line

v=Ilp+c (30
one has

e=p(u?—2lu—2c), 31
which can be expressed in the form (29) by choosing

A=Vp(u—10 (32)
and

a=—p(l*+2c). (33)

By using formula (32) for A in (28) one obtains

g=2mVp(u—Dh+p8. (34)

This means that g has linear dependence on p. Generally
this dependence can be presented as

where R and S are fixed constants independent of the line
(30). Then

m= 35‘/—5— (36)
and
B=RI+S . (37)

The constants R, S, and p are as yet undetermined. The
unfolding parameters a and B have a clear significance
here. They specify a line in the (u,v) plane along which
one can study the bifurcation structure. In particular, 8 is
proportional to the slope !/ of the line and for given B, a
determines the intercept ¢ on the v axis. When a is O the
line is tangent to the phase curve, and when B is 0 too,
this tangent passes through the tricritical point.

The tricritical point is where e=g =0, which gives
prc=—(S/R), vpc=~(S%/R?). The tricritical point has
a symmetric position on the parabola if S =0, and if
S >0, it is shifted up and if S <0, down, since R is nega-
tive.

Now one can determine the nature of the hysteresis
branch. Its equation g%=4e becomes in terms of y and v

(R2—4p)u®+2RSp +S2+8pv=0 . (38)

This is a straight line if R = —2V/p, that is, if m =—1.

m describes the curvature of the hysteresis branch. If

m < —1 the branch curves down and if —1<m <0, up.
The potential can now be written in the form

F=4y+3(Ru+S9*+ 3p(u—2v1y? (39)
so the order parameter in a static state is either =0 or
P=—3(Rp+8)t[(yR2—pu’+ s RSu
+38742pv]'2 . (40)



2090

Two special situations are worth mentioning. One is
the bifurcation structure in Ref. 2 which has been mea-
sured in the Y direction. Then / =1 and

A=Vp(X+Y—-1), (41)

a=4pX , (42)
and

B=R+S . (43)

The other is the ideal situation, where the hysteresis
branch is straight (m = —1) and the tricritical point lies
on the symmetry axis of the phase curve. Then
Xtc= —%, YTC=—1-, or alternatively purc=vyc=0,
which gives S =0. Then the hysteresis branch is v=0.
The equation for the order parameter also simplifies, and
it is either =0 or

Y=Vpux(2v)'/?]. (44)

One can calculate the equation for the first-order transi-
tion line and in this ideal situation it is v=4u? with
©>0.

III. EXPERIMENTAL EVIDENCE

This work was motivated by the preliminary analysis of
some measurements,® which show how the order parame-
ter varies with time when the system relaxes towards its
stationary state. This analysis revealed that € depends
quadratically [Fig. 4(a)] and g linearly [Fig. 4(b)], on o,
when L has a fixed value. Qualitatively the agreement of
the model and experiment is obvious, but quantitative
conclusions concerning the values of parameters R, S,
and p must be deferred until a proper analysis has been
done.

The model can be compared in other ways to earlier ex-
perimental results. The idealized model with m = —1
gives just those bifurcations for which one has evidence
directly (Fig. 2) or indirectly (Fig. 3). This means that for
our experimental setup,” m must be very near —1, be-
cause a strong curvature of the hysteresis branch will give
new branches in the bifurcation diagrams (compare Fig.
VL 7.4 in Ref. 3). Also the measurements”® show that
the hysteresis branch is almost straight, at least within the
experimental accuracy, and it is not obvious whether m is
greater or less than — 1.

Our measurements? were done only in the neighborhood
of the tricritical point, and we do not have systematic
measurements of the order parameter at the second bifur-
cation. This gives some inaccuracy to the determination
of the scaling parameters Ly, wy, Lc, and wc. The fit-
ting procedure we used gave for each L a critical angular
velocity w; corresponding to the perfect bifurcation.
These (L,w,) values have now been converted to the (u,v)
plane by first making a reasonable guess for the scaling
parameters. These converted data points have been fitted
(using a least-squares method) to the parabola

v=A+Bu+Cu*, 45)
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FIG. 4. The coefficients € and g obtained from preliminary
analysis of how the system relaxes toward equilibrium at various
values of  and a fixed L, here at the hysteresis area.

where, in the model, 4 =0, B =0, and C= -;— Then the
scaling parameters have been readjusted until the least-
squares fit values for 4, B, and C are nearest the model
with the smallest standard deviation. The result of this fi-
nal fit is shown in Fig. 5 as the solid curve and the data
points are marked by + symbols. It gives 4 =0.00170,
B=-0.00173, C=0.50043, and L, =1.1275,
oy =1.8499, L-=1.2956, 0-=2.4979. Note that the
scaling parameters are not really known with this accura-
cy, because small changes of the parameters do not affect
the fit much.

The hysteresis branch in the ideal situation is the u
axis. An approximation to the experimental hysteresis
branch has been obtained in the following way. The data
analysis in Ref. 2 gave values for g and k as functions of
L alone, with € depending on o as in Eq. (3). k was not
scaled out. The equation for the hysteresis branch would
therefore be g’=—4ke, and its solution is
o=w,{1—g*L)/[4k(L)]}. Using this formula, together
with the data, one finds the set of points on the hysteresis
branch marked by circles in Fig. 5. The same scaling pa-
rameters have been used as earlier. The points have been
fitted to the line v=D giving D =0.00077 which is close
to zero.

One should note that the experimental points and the
solid curves do not come from the same model, and the
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FIG. 5. Quadratic fit to the phase curve data (Ref. 2). Circles represent the hysteresis branch.

old model cannot be very accurate when w+w, especially
in the hysteresis area. However, one can see that the new
model for the potential agrees well with the experimental
results over the whole range, although the agreement is
not perfect near the bottom of the parabola, where the tri-
critical point is.

The order parameter data in Ref. 2 can, in principle, be
refitted by using this new model, g should be expressed as

g=Pu+Q, (46)
where
p=—=R 47
Oc—aopm
and
Q=R LLC:II:; —R ow—MwM +S . (48)
Equation (21) lets one write
e=To*+Uw+V , (49)
where
r=—=28 (50)
(wc—wp)
U=—T(o,+ay), (51)
V=Tww, . (52)

To make the fit, the lowest-order asymmetric term h
should be included to allow for small imperfections in the
experimental apparatus. Then fitting to

P+ (Po+ QW +(To*+ Uo+ V+h =0 (53)

will give the constants P, Q, T, U, V,and h. Pand T
should not depend on L if the model and the order pa-
rameter are appropriate. The curvature of the hysteresis
branch is given by

_P
VT

1 and w, could be calculated from the coefficients T, U,
and V. Knowing both of them would let one construct
the phase curve in a much wider area than earlier. It
would then be possible to find the scaling parameters L,,,
@y, Le, and ¢, more accurately, using the least-squares
fit (45) discussed earlier. With the scaling parameters
known, one could finally obtain the parameters R, S, and

p

m= (54)

With this model one could also study quantitatively the
dynamics (5) near the tricritical point. By measuring the
time evolution of the order parameter, when the system is
allowed to relax to different final states, one could find
the parameters ,, w,, and m, and, if one knows the scal-
ing parameters, also R, S, and p. This would give an in-
dependent test of the model.
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