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Dynamic behavior and onset of low-dimensional chaos
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This is a detailed experimental study of the dynamical behavior of a CO2 laser with modulated

losses. %'e describe the observation of period-doubling transitions into chaos that are in good agree-

ment with the predictions of the theory of one-dimensional maps and give examples of temporal
evolutions, phase-space portraits, power spectra, and Poincare sections. %'ith the help of bifurcation

diagrams we provide evidence for the appearance of generalized multistability. %e also discuss the
results of dimensionality tests that we have carried out on both our experimental data and corre-

sponding numerical simulations based on the Maxwell-Bloch equations after the adiabatic elimina-

tion of the polarization. %'e conclude with an evaluation of the Kolmogorov entropy.

I. INTRODUCTION

During the last few years, numerous theoretical papers
have shown the existence of self-pulsing instabilities and
chaos in laser models. ' Following a useful classifica-
tion introduced in Ref. 4, we restate that only class-C
lasers are capable, in principle, of the type of dynamical
behavior described by the I.orenz equations. s

Here, instead, we offer a detailed treatment of the tran-
sition to chaos in a single-mode class-8 laser. The
Maxwell-Bloch equations describing the interaction of N
homogeneously broadened two-level atoms and a single-
mode field in the slowly varying, amplitude approxima-
tion have the familiar form

aE/at = —t~,E gP —~E, —
'dP/dt = ice,P gEdLN— yiP—, —

a~/at =2g(EP'+E'P) y—
where E is the complex field amplitude, P is the complex
polarization, ddF is the population inversion, and a, yi,
and y~~ are their respective loss rates. b,NO is the un-
saturated population inversion, to, and co, are the cavity
and atomic frequencies, respectively, and

g'=top /A'eoV

is the coupling constant in terms of the transition dipole
moment p and the cavity volume V.

This model can be simplified when apphed to a class-8
laser, such as, for example, a CO& laser medium, where
the pressure broadening provides a homogeneous gain
line. A typical C02 laser system has a population relaxa-
tion time (1/y~~ ——10 s) that exceeds by 4 orders of mag-
nitude the duration of the decay of the polarization
(1/yj ——10 s); hence, the single-mode dynamics can be
described accurately in the rate-equation approximation.
On the basis of the inequality yi ~~a, y~~, we can solve the

~( t) =so[1+m cos(Qt) ] . (3)

Formally, the dynamical evolution can also be described
by the three coupled equations

&SIBt= —2ao(1+rncosZ)S+ GSb,N,
am/at= y~~(m ~N, ) 2GS~- , —

BZ/Bt=Q .

(4)

In the absence of modulation m =0, a linear perturba-
tion analysis around the steady-state values

S„=[(bJVO/~„) —1]y)(/26

yields a set of three eigenvalues A,;

polarization equation in (1) under steady-state conditions
and substitute the function P(E,bN) into the remaining
equations (adiabatic elimination).

The resulting two equations are insufficient to yield
chaos. Different schemes have been proposed previously
in order to increase the number of degrees of freedom of
class-A or class-8 systems. The remainder of this paper
will be devoted to a detailed investigation of a CO& laser
with modulated losses on which we have already present-
ed two preliminary reports. ' We note, however, that our
results apply also to a variety of other laser systems where
the pump,

' the cavity frequency, " or the yi, ' are time-
dependent parameters, as it was pointed out in Ref. 13.

The coupled field-molecule equations for a single-mode
laser in resonance, after adiabatic elimination of the polar-
ization, take the form

BS/Bt = 2tt(t)S—+GSddU,
'

a~/at= yii(~ ~,—) —2GS~,
where G =2g~/yi, S =

~

E ~, and ~(t) is given by
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where C =A%0/LV„ is the so-called cooperation param-
eter.

In the case when y~t is much smaller than xo, as in the
CO2 laser, the last two eigenvalues predict a linearized
eigenfrequency Qo/2n of the form

Qp/2n = [2m'Oy(i(C —1)]'i

The heuristic picture' of a resonant destabilization of
the system induced by a modulation process at a frequen-
cy Q of the order of Qo was confirmed in Ref. 13 even for
very small values of the modulation depth. For typical
CO& laser parameter values the linearized eigenfrequency
is of the order of 200 kHz which is a very easily accessible
frequency range for experiments.

In this paper we report detailed experimental and nu-
merical studies of the temporal behavior of this system,
its Poincare sections, power. spectra, and phase-space por-
traits of the entire bifurcation sequence. Phase diagrams
in the parameter space give a clear picture of the destabili-
zation process as a function of the various possible
resonant frequencies, and the bifurcation diagrams indi-
cate the existence of generahzed multistability.

We have performed also dimensionality tests on the
stroboscopic sections and on the time series constructed
from our data and compared these results with the corre-
sponding calculations based on the theoretical model. The
comparison is very favorable and the data are in good
agreement also with the general theory of nonhnear
dynamical processes.

FIG. 1. Experimental setup. M, mirror; EOM, electro-optic
modulator; B.E., beam expander; B.S., beam splitter; D,
HgCdTe detector; 6, grating; 1, amplifier; 2, high-voltage
power supply; 3, frequency synthesizer (Rockland); 4, Z-80A
microprocessor; 5, two-channel oscilloscope; 6, x-y oscilloscope;
7, spectrum analyzer (Rockland); 8, transient digitizer (I.e
Croy); 9, computer (HP1000).

length or the cavity frequency.
The x-y oscilloscope is used to obtain the phase-space

portrait (laser intensity I. versus voltage applied to the
EOM V). The real-time spectrum analyzer has a max-
imum frequency of 100 kHz. The LeCroy transient recor-
der (100-MHz bandwidth and maximum sampling rate,
32000 sainples) digitizes the signal and sends it to an
HP1000 computer for dimensionality and entropy tests.

For selected measurements, such as bifurcation dia-

grams and Poincare sections, we used a slightly different
experimental arrangement than shown in Fig. 1.

The transmission function of the EOM has the form

S=Socosi(rrV/V zi),

The experimental setup is shown in Fig. 1. A grating
with 97% efficiency selects only one line (P20) of the
10.6-pm band of the COi laser. The beam expander (ratio
1:3) is inserted in the cavity to accommodate the electro-
optic modulator (EOM) whose clear aperture is only 2
mm. Because the beam waist in the cavity is approxi-
mately 3.5 mm, it would be impossible to obtain laser ac-
tion without the beam expander. The total operating pres-
sure of the laser was varied from 13 to 20 Torr with par-
tial pressures of about 75% He, 15% N2, and 10% CO2,
while the current could be varied from 3 to 20 mA with a
stability better than 0.1%. The entire system was also sta-
bilized against thermal and vibrational disturbances. The
driving unit of the EOM is an amplifier that can provide
a bias voltage of 0—900 V from a stabilized high-voltage
power supply and modulation amplitudes of up to 500 V
peak to peak. The modulation function from a Rockland
synthesizer is controlled in both amplitude and frequency
by a Z-SOA microprocessor and then amplified. The
response of the driver is linear from 15 to 300 kHz, so
that the voltage applied to the ROM can be trusted to be
sinusoidal and to have a constant amplitude over the re-
quired range of frequencies. The axis of the EOM was set
to 45' with relative to the direction of polarization set by
the Brewster windows, with the result that the modulation
affects only the cavity loss rate and not the optical path

where So is the input intensity, Vis the voltage applied to
the EOM, and V &2 is the voltage required to change the
field polarization by 45' on a single pass through the
EOM. The nonlinear transmission introduces strong su-
perharmonic components in the laser response.

GI. EXPERIMENTAL RESULTS

One of the main results obtained with this system is the
observation of a period-doubling bifurcation sequence that
leads to deterministic chaos. In Fig. 2 we report four dif-
ferent experimental tests to confirm that this is a true
transition to chaos, namely: time behavior of the laser in-
tensity, phase-space portraits, power spectra, and Poincare
sections. These data were collected at a constant modula-
tion frequency co and loss rate bias ko, and by increasing
the modulation amplitude m which acts as the control pa-
rameter. The presence of subharmonic bifurcations is
clearly seen from the time series and power spectra. After
a first sequence of three period-doubling bifurcations
(f/2, f/4, f/g) we reach chaos and observe a broad-band
power spectrum. A further increase in the modulation
depth causes the system to enter a periodic window with a
frequency f/3 [Fig. 3(a)] and after a new subharmonic bi-
furcation (f/6) [Fig. 3(b)], the system enters a second
chaotic region. Up to this point, the whole dynamic
response of the system is reminiscent of an ordinary
Feigenbaum sequence. However, if we continue to in-
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crease the control parameter, higher-order periodic win-
dows of an even type begin to appear, such as, for exam-
ple, f/4, f/8, and f/6 [Figs. 3(c) and 3(e)]. These are
clearly different from what is observed at a smaller modu-
lation amplitude and they do not seem to be predicted by
a simple logistic map. As we shall see below, these bifur-
cations could correspond to the interaction of the subhar-
monic frequency with subhartnonic components of the re-
laxation oscillation frequency. ' '

The low level of noise in the system is demonstrated by
our observation of higher-order periodic windows includ-
ing f/7 and f/10 [Fig. 3(f)] which are usually too narrow
to be digitized. We believed that these windows have been
observed experimentally for the first time in a laser sys-
tem.

The phase-space portraits for the different subharmonic
frequencies show that the maximum value of the intensity

peaks increases when the modulation depth increases and
their peak value is reached when the voltage applied to the
EOM is closed to its minimum value. This was also ob-
served during the first subharmonic sequence and it is ex-
pected because the minimum voltage leaves the cavity in
the highest Q conditions which would lead to the max-
imum output of a steady-state laser. In the chaotic region
the signal is aperiodic but its maximum intensity level is
limited. We note, further, that although the leading edge
of the pulses evolves in a nonpredictable way, the trailing
edge has always the same shape as shown by a clear cutoff
in the time traces and by a dense line on the phase-space
portraits.

A stroboscopic measure of the intensity (in essence, a
Poincare section projected onto a single axis) is presented
also in Fig. 2 and was taken using the period of the exter-
nal modulation as a clock for the transient digitizer. This
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FIG. 2. Subharmonic sequence leading to chaos. From left to right: laser intensity as a function of time, phase-space plot, power
spectrum, and stroboscopic section for (a) f (fundamental frequency), (b) f/2, (c)f/4, (d), f/8 subharmonic, and (e) chaotic behavior.
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type of measurement opens the possibihty of analyzing a
very large number of periods (up to a maximum of 32000)
as opposed to the typical 800 which we would obtain by
collecting 40 samples per period. Furthermore, it allows a
much larger bandwidth in the processing of sequences of
narrow pulses, otherwise requiring a high sampling rate
with the related problems in data storing and proofing.

From the stroboscopic sections, we have constructed re-
turn maps, such as shown in Fig. 4 which indicat th t

e sequence of bifurcations leading to chaos can be
described quite well by a logistic map. This behavior has
bM:n observed by moving through the parameter space
along a straight line that corresponds to a fixed frequency
and variable modulation amplitude as indicated in Fi .
5(a).

I 1g.

In order to explore the behavior of the system in dif-
ferent regions of the parameter space, we scanned the fre-
quency for different values of the modulation amplitude.
The scans were controlled by the ZSO microprocessor, us-

ing a sweep rate that was several orders of magnitude
smaller than the frequency of the external modulation and
preserving the phase.

In Fig. 5(a) we have traced the boundaries between re-
gions of different subharmonic behavior while the dc loss
rate kc at its minimum value (no bias voltage applied to
the ROM). Under these conditions the appearance of

l 30psw

(ai

FIG. 4.G. 4. Return map 1(t +~) vs 1(t), where ~ is the modula-
tion period, for different periodic solutions: 0, f; X, f/2; 6,
f/4; +, f/8 of the period-doubling sequence. The two (0) cor-
respond to two f solutions taken for different modulation ampli-
tudes. The points corresponding to the f/4 and fl8 subhar-
monies fit a logistic map if we take into account that the axis of
the map are displaced from the axis corresponding to zero inten-
sity.

subharmonic components and the transition to chaos
occur for modulation depths greater than 2% in a very

192
narrow range of modulation frequencies betwee 190 dn an

2 kHz; this result is in quahtative agreement with the

p ysical interpretation of a resonant destabilization due to
the interaction between the modulation and the relaxation

chaos
f f f/a 'ls
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FIG. 3G. 3. Periodic windows inside the chaotic region. Laser in-

tensity I as a function of time (left side) and power spectrum

(right side) for: (a) fl3, (b) f/6, (c) f /4, (d) f/5, (e) f/6, and

(f) f /7 subharmonics. Each periodic window after the first fl6
subharmonic is separated by a chaotic region.

&hase diagrams in the parameter space [m (modu)a
amplitude), ai (modulation frequency)]. (a) For

minimum value of ko (Vb; ——0), we show the boundaries be-
tween different subharmonic bifurcations. (b) For different
values of ko, we show the boundaries between the f and f/2
subharmonic. Dotted line shows komin( Vb ——0 V) d hed li

shows ko( Vb; ——100 V), and solid line sho~s ko'( Vb; ——200 V).
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oscillation frequencies.
%%en ko is increased, by applying a bias voltage to the

EOM, the required modulation depth is smaller, indicat-
ing that in this case the region of instability is broadened
when the laser operates near threshold. This is especially
clear in Fig. 5(b) where we show the boundary for the ap-
pearance of the first subharmonic component for different
values of the bias voltage; it is clear that the requirements
on m decrease on increasing ko and, in addition, we see a
net broadening of the frequency regions over which the
dynamic behavior blames complicated. It is also clear
that other resonant frequencies appear at lower thresholds
for complicated behavior and they correspond to subhar-
monics (or harmonics of subharmonics) frequencies of the
relaxation oscillation frequency. We see that the most
resonant case (minimum value of m) occurs when the
modulation frequency matches the frequency of the relax-
ation oscillations.

It is worth noticing that the boundaries between dif-
ferent kinds of attractors in Fig. 5 are only drawn qualita-
tively because of the appouance of generalized multista-
bilitys' ' which gives different results for the curves
shown in Fig. 5, as we pass through a limit between two
subharmonic bifurcations by increasing or decreasing the
frequency. In some cases for the same set of control pa-
rameters (ko, m, o») it is possible to observe as many as
four different attractors depending on the initial condi-
tions. The reproducibility of these effects and the possi-
bility of separating the solutions allow us to confirm that
these are deterministic effects rather than effects due to
noise, as the general theory on nonlinear dynamics
predicts. ' Furthermore, and also due to the low amount
of random noise that is present in our system, we found
different attractors whose domain of attraction in param-
eter space is reduced to very narrow regions only a few
hertz wide, resulting in a very complex structure that we
have called "microstructure. " In Table I we observe that
a change of one part in 10 in frequency produces a jump
among different attractors. The final state, thus, depends
on the previous history.

These effects make it impossible to determine the phase
boundaries in parameter space quantitatively, and even
though some recent examples vrere shown, ' ' we believe
that in those cases noise averaging over the different pos-
sible attractors gives a blurred picture of the more comph-
cated noise-free experimental behavior.

We have already mentioned the existence of generahzed
multistability which can be easily observed with the help
of bifurcation diagrams. In Fig. 6 we show the peak in-
tensity as a function of m for constant values of ko and
co. Results for increasing [Fig. 6(a)] or decreasing m [Fig.
6(b)] differ substantially.

From these diagrams it has been possible to evaluate
the Feigenbaum universal constant 5f. The result ob-
tained after two bifurcations is 5f=3.7+0.2, which
differs from the value 4.669. . . predicted asymptotically
by the theory. Of course, 5f is defined only in the asymp-
totic limit so that is not surprising that there should be
some disagreeinent with the calculated value from our ex-
periment, where the maximum observable subharmonic
was f/8.

TABLE I. Modulation amplitude =0.12.

Modulation
frequency

(kHz)

191.270
191.290
191.310
191.320
191.324
191.327
191.331
191.337
191.348
191.480
191.600
191.755
191.800
192.000
192.190
192.256

Behavior

Chaos
f/5 or f/4
f/3 or f/4
f/2 or f
f
f/2 or f/3
f/3
f/3 or f/4
f/4 or f/5
f/3
Chaos
f/3
f/6
f/2 or chaos
Chaos
f/4 or f/3

P
fg

g+(„) l~l

$0

(b)

«» -«c~- "'

FIG. 6. Bifurcation diagrams. Peak intensity I~ as a func-

tion of the modulation amplitude m: (a) increasing m, (b) de-

creasing m. Cieneralized multistabiHty and hysteresis of the
nonlasing (nl) regions are show n.

Other remarks can be offered after a direct observation
of the bifurcation diagram shown in Fig. 6. With increas-
ing control parameter after a sequence of bifurcations, the
system, for high values of m, cannot follow the modula-
tion and jumps into a stable steady state for which no las-

ing action is obtained. Then the zero-intensity solution
was stabilized by the modulation in very narrow regions
of the parameter space indicating that this also is a
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resonant effect. After reaching this point and then reduc-
ing the modulation depth, the region where the zero-
intensity solution is stable enlarges and when the intensity
finally becomes different from zero the sequence of bifur-
cations looks completely different.

Thus far, we have shown the existence of subhartnonic
bifurcations and aperiodic behavior from the time series,
power spectra, and Poincare sections. However, the asser-
tion that the system displays deterministic chaos cannot
be justified until a clear distinction is made between the
aperiodic signals and random noise. Several authors'7's
have recently discussed the possibility of distinguishing
turbulence from noise; it is well known, for example, that
deterministic chaos in low-dimensional systems must
show a low fractal dimension in contrast to noisy signals.
Each strange attractor is characterized by a dimension
which must be smaller than that of the phase space of the
system. If there is a correspondence between the model
described in the Introduction and our experimental re-
sults, we would expect that a dimensionality test on a
chaotic signal would display a low (smaller than three)
fractal dimension.

In Fig. 7 we plot the logarithm of the number of pairs
of vectors in the embedded space whose distance is less

than e(logN(e}) as a function of the logarithm of e for
different values of the embedding dimension n .In the
scaling region, we have N„(e)—e" where v is the informa-
tion dimension of the attractor and it will be represented
by the slope of those graphs independent of the embed-
ding dj.menslon.

For very small values of e, the result is highly influ-
enced by noise, while for very large e, we observe a sa-
turated region where N(e) is constant. Of course, we are
interested on the intermediate regian where the complex
structure of the strange attractor, if it exists, will be made
especially clear. In Figs. 7(a}—7(c) we show the dimen-
sionality tests performed on time series and stroboscopic
sections corresponding to spectra with f/2, f/4, and f/8
subharmonic frequencies, respectively. As the solutions
are periodic, the slopes obtained for f/2 and f/4 solu-
tions saturate at v= 1 in the time series and v=0 in the
Poincare sections. For the f/8 subharmonic v is slightly
above 1.5 [Fig. 7(c)]. In Ref. 9 we gave an heuristic inter-
pretation of these results, claiming that the measured di-
mension for the f/8 subharmonic corresponds to the di-
mension at the accumulation point of a Feigenbaum cas-
cade. For the chaotic region shown in Fig. 7(e), the frac-
tal dimension jumps to a higher value (v= 2.4).

The correlation entropy Ez as a function of the embed-
ding dimension n was nearly 0 for periodic solutions, with
a maximum deviation of 30 Hz. This deviation from the
theoretical value is typical of the error that can be associ-
ated to the measurement. For a chaotic solutian, E2 ac-
quires a finite value (=40 kHz) which is much greater
than the 30-Hz maximum measured for a periodic solu-
t1on.

As long as the dimension is smaller than three, it is
reasonable to think that the model described in the intro-
ductian holds. In such a case, we have a single positive
Lyapunov exponent ()(.+) which is of the order of Ez.
With the help of the Kaplan and Yorke farmula'9 we esti-
mate the negative Lyapunov exponent (A, } as follows:
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FIG. 7. Plots of log%„{e)as a function of loge for different
values of embedding dimension n calculated from the time
series {left) and from the stroboscopic section {right) for dif-
ferent subharmonic bifurcations: (a) f /2, (b) f/4, (c) f /8, (d)
chaotic behavior. The best fit values of the slope v are calculat-
ed over an interval almost one decade large and are assumed to
have an average estimated error %0.1.

=100 kHz .
v —2

Finally, three other experimental results can be pointed
out.

(1) In the presence of a broadband spectrum, we detect-
ed three different kinds of temporal behavior. One corre-
sponds to Fig. 2(e) for which the dimensionality test was
performed [Fig. 7(d)]; as we noted above, these oscillations
display a clear peak intensity limit. For different parame-
ter values, a second kind of chaotic behavior can be found
where the maximum peak intensity is much higher and
the pulses are very narrow (& 100 ns) [Fig. 8(a)] and the
characteristic dimension grows to 2.1 in the Poincare sec-
tion which corresponds to 3.1 in the phase space [Fig.
8(b)]. In Fig. 9 we represent the third kind of signal cor-
responding to a broadband spectrum; this appears to be
completely aperiodic when a large number of periods is
observed. An expanded view, however, shows the ex-
istence of laminar periods corresponding to different
subharmonics of the fundamental frequency (f,f/2, f/6
in the example) with sudden uncorrelated jumps between
them. In this case, it is already necessary to determine if
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characteristic low-frequency divergence (dashed), and for the re-
gion above intermittency with a broadened f/4 subharmonic
(sohd line).
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the jumps are due to the existence of noise or to an intrin-
sically deteaaxanistic behavior coming from an intermit-
tent process.

(2) In a very narrow region of the parameter space, we
found a periodic window with frequency f/3 which bifur-
cates giving an f/6 subhannonic component [Figs. 3(a)
and 3(b)]. A further increase in modulation depth seems
to produce a transition to chaos by intermittency as we
show in Fig. 10(a) and to produce a low-frequency tail in
the power spectrum [Fig. 10(b)] as predicted by the
theory. 20

(3) For high modulation amplitudes and very narrow
regions of the modulation frequency, there is a stable
zero-intensity solution with a large hysteresis. It is worth
to stress that the zero-intensity solution is not due to the
large value of k. In fact if one increases the modulation
amplitude the laser action starts again.

IV. NUMERICAL RESULTS
90 '

180
f (kHz)

FIG. 9. Top: laser intensity as a function of time in a multi-
stable region. The expanded figures show the three different at-
tractors which are present in the signal. Bottom: broadened
power spectrum of the signal.

By numerical integration of Eq. (4), we were able to
reproduce the experimental results. %e shiv in Fig. 11, a
transition to chaos via subharmonic bifurcations similar
to that shown in Fig. 2. Furthermore, for different initial
conditions, but fixed values of m and co, we found dif-
ferent attractors (Fig. 12); this is the evidence of general-
ized multistability as discussed in the experimental sec-
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FIG. 11. Laser intensity as a function of time obtained by
numerical integration of Eq. (4): (a) f (fundamental frequency),
(b) f/4 and (c) f/8 snbharmonic, (d) chaos.

tion. Alternatively, if we change the parameter values by
very small amounts (e.g., one part in 104) the solution can
display a different behavior, in agreement with the expect-
ed presence of microstructure.

We have also processed the numerical time series in the
same manner as done with the experimental signal and ob-
tained the dimension of the attractors. The results
showed in Ref. 9 are in quantitative agreement with those
of Fig. 7.

V. CGNCI. USIONS

We have shown the existence of a period-doubling tran-
sition to chaos, int~n'mittency, generalized multistabtltty,
and microstructure in the parameter space of a quantum
optical system. All these phenomena can be explained in
terms of a simple model based on the rate equations for a
two-level system. Dimensionality tests and the calcula-
tion of the Kolmogorov entropy indicate that our experi-
ment has a new feature relative to previous ones, insofar
as, for the first time, we find a strict quantitative
correspondence between the experimental chaos measured
in the laboratory and the theoretical chaos provided by
the model. The calculation of the negative Lyapunov ex-
ponent let us conclude that the relevant contraction rate,

FIG. 12. Numerical results: (a) phase-space portrait {Ivs I)
and (b) po~er spectrum showing generalized multistability. A
different set of initial conditions causes the system to fall on dif-
ferent attractors: Dotted line shows f, dashed line shows f/2,
and sohd line shows f/8, for the same parameter values.

in phase space, is much smaller than the decay rate of the
polarization so that it does not play a relevant role on the
dynamics of the system.

In very narrow regions of the parameter space we found
that the dimension measured from the experimental data
is larger than three. In this case the dynamic behavior
cannot be described by our simple model for large values
of the modulation amplitude. Perhaps it is necessary to
include the polarization. In fact, a reduction on the frac-
tal part of the dimension v indicates that a larger negative
Lyapunov exponent, as it is expected coming from the po-
larization, plays a relevant role on the calculation of v.
This is the first time that information about the limits of
validity of a theoretical model can be extrapolated from
the calculation of the dimension of a strange attractor.
Further work is still necessary to understand the physical
origin of the generalized multistability, as well as the sta-
bilization of the zero-intensity solution for high values of
the modulation depth.
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