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The two-mode dye laser exhibits a quasibistable behavior wherein the lasing switches alternately

between the modes at random intervals. This behavior can be described in terms of a first-passage-
time (FPT) formalism. A Langevin model of the system has been the basis for most analytical ap-
proximations to the problem and here the results of detailed, four-dimensional, Monte Carlo simula-

tions are presented. These results are compared to the various analytical and experimental results

available. Attention is paid to the differences in alternative FPT problems and especially to prob-
lems involved in comparison with experimental data. One recent major advance in modeling the dye
laser has been the introduction of pumping fluctuations into the Langevin equations, Effects of the
introduction of pumping fluctuations on the FPT problem are explored and comments are made on

previous attempts to account for their presence by the use of averaging techniques.

I,. INTRODUCTION

A two-mode homogeneously broadened laser is a rela-
tively simple system and yet presents an extremely rich
spectrum of behavior to study, Investigations, both
theoretical and experimental, of phase-transition analo-
gies, ' bistable behavior, ' two-time intensity correla-
tions, ' " first-passage-time roblems, ' and
searches for deterministic chaos have been reported
based on this system. The relative simplicity of the
Langevin approach to modeling the laser provides a
theoretically tractable system of equations, while the pres-
ence of simple third-order nonlinearities lends a variety of
interesting features to the dynamics of the system.

For the purpose of studying such bistable behavior in
the context of a first-passage-time formalism and, in these
studies, comparing theoretical and experimental results,
the two-mode dye laser is one of the more convenient and
popular systems. The experimental realization of this
quasibistable laser system is relatively simple; in either
single-frequency ring (two counterpropagating, traveling-
wave modes) or standing-wave (two closely spaced longi-
tudinal modes) configurations it will spontaneously switch
between lasing in one mode (one direction in the ring
laser) and the other. Measurements on both types of sys-
tems have been reported. z ' '

The actual dye laser is, of course, a much more compli-
cated system than the model would make apparent. It is,
however, found that under certain conditions, specific
forms of the Langevin description are very good models
for the system. Several complications do arise, though, in
attempting to extend the most basic of Langevin models
to account for some of the observed behavior of the sys-
tem. The basic two-mode, homogeneously broadened
laser Langevin equations will manifest the fundamental
features of the bistable behavior characteristic of the ex-
perimental system. It is found, however, that to adequate-
ly describe the detailed behavior of the system it is neces-
sary to include fluctuations in the pump or gain terms of
these equations as well as to keep the Langevin noise

terms that represent spontaneous emission. This coinpli-
cation then produces a set of equations that, thus far at
least, have proven analytically untractable.

In the following the first-passage-time problem will
once again be examined. Results of a Monte Carlo com-
puter simulation of the Langevin models will be presented
with an emphasis on what effects the inclusion of pump-
ing fluctuations have, and the results will be compared
with the available experimental data.

In Sec. II we will briefly describe the analytic results
available and the numerical methods used in this work.
Before presenting any results relating to the first-passage-
time problem itself it is helpful to have some familiarity
with the system's overall behavior. In order to better
understand the system a discussion of the general, qualita-
tive behavior of the two-mode homogeneously broadened
laser will be given in Sec. III.

The new results of this work will be presented in Secs.
IV and V. The results of the simulations performed
without pump fluctuations are presented first in Sec. IV
and then the effects of their introduction are presented
separately in Sec. V. Finally, general conclusions are re-
viewed in Sec. VI and the application of the results to oth-
er systems is discussed.

II. ANALYTICAL RESULTS AND NUMERICAL
METHODS

The first-passage-time problem in the two-mode dye
laser is investigated in some detail in Refs. 4 and 19—26,
so only the most important and useful results from these
works will be reproduced here. One of the simplest
descriptions of the system is that of a pair of coupled
third-order Lamb equations for the complex mode ampli-
tudes, P, and P2. Supplementing these equations with
Langevin-type noise meant to represent spontaneous emis-
sion into the modes, we then have our starting point„
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We will work with a slightly simpler form of these
equations. %e introduce the dimensionless variables

These substitutions uniquely scale both the saturation
coefficient and the spontaneous-emission noise strength to
unity. Thus we have

Ei =«i —
I
Ei

I

'—0 I &21')Ei+qi(t»

E2 = «2 —
I
E21'—41Ei I

'z+q2«},
where

Ei =x i +Ex2, i/I =g) +sg2,

E2 =x3+Exg, g2 =g3+lgg,
and the coupling constant (=2 for a homogeneously
bmadened system. The spontaneous emission terms q(t}
are, again, taken to be 5-correlated white noise and are
necessary to obtain the correct statistical behavior at low
pump parameters but also to be able to see the switching
behavior at all in the numerical simulations. ' ' The
pump parameters for the two modes can in general be dif-
ferent; however, for these investigations, we will always
set ai ——a2 ——a. We have then a system of four equations
to implement on the computer or to solve analytically.

The inclusion of fluctuations into the pump parameter
lias been ail important advance In modeling the intensity
correlation functions of both the single-mode and two-
mode dye lasers'~"' and so we expect to see some ef-
fects of pumping fluctuations in the first-passage-time
problem also. The equations, including pumping fluctua-
tions, read

with

'9='91+&'92

and the other symbols as above.
As is usual in these prolems we allow q& and q2 to be

5-correlated white noise. Since the spontaneous emission
is considered to take place on a time scale short with
respect to the cavity-decay time this is considered a good
approximation. The pump noise i}(t) is, however, taken
as an exponentially correlated colored noise. Since it is
derived from processes like turbulence in the dye flow it is
not expected to take place on any particularly fast time
scale and so the characteristic time is left as a free param-
eter (1/I ). The spontaneous emission terms q; are in-
dependent of each other and their strengths have been
scaled such that

(q;(r}q&(t+r)) =2515(~}, ij =1,2, 3,4.

The colored-noise pump fluctuations have a strength
given by another parameter Q. We have then, for the
pump fluctuations,

r'i;= —I'ri;+I f;(t), i =1,2

(f (t)f)(t+r))=Q515(v), ij =1,2. (3)

The model given by Eqs. (1) is the one upon which all
analytic treatments of the first-passage-time problem have
been based thus far. The model consisting of the six equa-
tions (2) and (3) is what is used in the numerical investiga-
tions in Sec. V with the effects of pump fluctuations in-
cluded.

The numerical implementation of these equations is
based on the work of Ref. 35. The method has been used
elsewhere to study other problems associated with the
laser with a noisy pump. ' ' ' ' The equations are in-
tegrated for a small iteration time interval and a large
number of iteration steps and this produces a record of
the intensity of the two laser modes versus time, much
like those measured experimentally.

Although the Eqs. (1) for the laser are four dimensional
the phase space for the system is essentially two dimen-
sional. That is, the distribution is uniform in the phases
of the two fields and the only structure is in the two inten-
sity dimensions. For a system of I.angevin equations such
as these there exists a corresponding Fokker-Planck equa-
tion for the probability density describing the system,
P(Ei,E2, t). In this particular case the drift vectors satis-
fy what are known as the potential conditions and the
steady-state probability density can be written as '

p( ) N —v(x) ~ 1' 2 (4)

where

V(Ii,Ig) = —,
' a (Ii+I2) ,' (I i +I2)——,' (—IiI2. —

The representative point for the system can be described
as sitting on the "potential" surface V which, again,
reduces to two dimensions for this problem.

The potential has two minima that lie near the points
I

&
-a,I2-0 and I& -O, Iq -a. The spontaneous emission

i.s an additive noise which, in this case, can be described as
jostling the representative point around on this potential
surface. Eventually the system, if started in one well, will
be pushed hard enough and in a proper direction so that
the representative point scales the barrier and falls into
the other well. The amount of time that the representa-
tive point requires to first pass beyond a certain boundary,
given that it started within another, specified, region is
known as the first-passage time for that particular trajec-
tory (and that given set of boundaries). It is this quantity
that will be investigated here.

The first-passage-time (FPT) problem for the potential
given in Eq. (5) has been studied in the past using several
different boundaries to define the problem. In Fig. 1 the
two different first-passage boundary systems that have

(g'(r)ri(r+~)) =Ql e

g(t) is an Uhlenbeck-Ornstein process for which the fol-
lowing equations can be written to describe its evolution:
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FIG. 1. Sketch of the FPT problems on the potential surface
in the intensity phase space. Minima of the potential lie near
the points II ——O, I2 ——a, and I~ ——a, I2 ——0 and there is a saddle
point near I& ——I2 ——a/3. (a) Method 1, a one-dimensional FPT
problem is defined on the two-dimensional potential surface.
The passage is defined as the time taken for a trajectory starting
in the shaded region I& &IL to cross the boundary I& ——IH. (b)
Method 2, a two-dimensional FPT problem starting from a
semicircular region of radius r near one minimum of the poten-
tial and passing across the boundary I& ——I2.

been the subject of much of the analytical work thus far
are shown. In Fig. 1(a) a one-dimensional passage prob-
lem is indicated on a sketch of the potential surface. The
system is assumed to start with one mode intensity in the
region I, &II, with a distribution that corresponds to the
stationary distribution of the system (in one dimension)
over that region. A first passage is deemed to have oc-
curred when the representative point moves from its start-
ing position in this region and passes, for the first time,
past the boundary I~

——IH. Since these boundaries are de-
fined in terms of only one of the mode intensities (and cal-
culations are done in one intensity variable) this is a one-
dimensional FPT problem.

Since the system is not restricted to move in only one
dimension a more accurate FPT problem will takeo some
account of the shape of the potential in the other dimen-
sions. Method 2 [Fig. 1(b)] takes some account of this by
taking the start region to be a half circle, radius r, cen-
tered on the deepest points of the wells, Ii a,I2 ——0 and——
I, =O, Iz ——a. A first passage is then considered across the
boundary I& ——I2 that separates the two wells. Estimates
of the average first-passage times are not, then, directly
comparable for the different methods and this should be
borne in mind.

The inclusion of pump fluctuations into the system
complicates the potential picture. First of all, the total
phase space has been expanded by the addition of the
noise variables. The system of equations (2) and (3) does
not satisfy the potential conditions. Thus, the idea of
picturing the system as a representative point in a two-
dimensional phase space may no longer be mathematically
accurate. Nonetheless, the FPT problem can be, and is,
examined as a one- or two-dimensional problem, by ignor-
ing the expanded phase space.

The first-passage times are extracted from records of
intensity versus time like those shown in Fig. 2. The dis-
tribution of intensities from a long enough record (or
many, shorter, ones) will be very close to the stationary
distribution for the system. Extracting an average and a
distribution of first-passage times from this record is
straightforward. Although each passage trajectory is not
independent of the rest as it would be in the ideal case, we
find that estimates of various quantities pertaining to the
two-mode dye laser problem are fairly accurate in spite of
this admitted deficiency and at a substantial savings in
computing time and costs. Although the Monte Carlo
procedure used in Refs. 22 and 26 is much more statisti-
cally rigorous, in some ways much can be gained by look-
ing at the system by the method used here.

In those references the equations are iterated until a
passage is recorded. At this time the iteration procedure
is stopped, new initial conditions are generated, and the
iteration procedure begins again. In this way one does not
have to rely on the convergence of the long-time average
of the intensity distribution toward the stationary distri-
bution as an ensemble average is produced with initial
conditions already distributed according to the stationary
distribution arrived at by analytic means. In addition,
this reinitialization after a passage event insures that there
is only a very small chance of getting overlapping trajec-
tories included in the average. The resulting statistical in-

dependence of all of the trajectories makes error estirna-
tion straightforward. With the present technique, on the
other hand, one relies on the overlapping trajectories to
contribute something to the FPT distributions in order
that one might reduce the computation time considerably.

The advantage of being assured of having the correct
(stationary) distribution of initial conditions is, of course,
lost when the stationary distribution is not available in an-
alytic form This is. indeed the situation that we are in in
the case of the laser with pumping fluctuations. As there
is no known stationary distribution for the intensity in
this case we must rely on the ergodicity assumption (that
the time average is equivalent to an ensemble average) to
obtain the result. It appears that the time average actually
need not be performed over too long an interval to repro-
duce such properties as the stationary moments and the
autocorrelations and cross correlations in situations that
can be checked analytically. It is with the knowledge that
the ergodic assumption works in these cases that it was
assumed to be valid for the extraction of the stationary
FPT distributions also.

There is still a requirement to iterate the equations for a
substantial length of time in order to acquire a reasonable
estimate of the average dwell time; that is, a significant
number of switches from one well to the next must occur.
As the system becomes more and more stable at high
pump parameters (the wells become deeper), this require-
ment becomes prohibitively time consuming.

Analytic expressions for the average first-passage time
have been given by several authors along with asymptotic
expressions for both the long- and short-time behavior of
the FPT distributions. All of these results are derived for
the system of equations (1). An expression for (Tz ) was
first given by Singh and Mandel in Ref. 19 and put in



INVESTIGATION OF FIRST-PASSAGE-TIME PROBLEMS IN . ~ .

simplified form in Refs. 20 and 21. For a Method 1 type
of first passage they find

exp(a /12)

C =4m/3 (Ref. 4) and C =9(m/3)' (Ref. 23) from mul-

tichmensional approaches.
Using an eigenmode analysis, and the Method 1 prob-

lem Hioe and Singh arrived at the following result:

with C = —,
' (m/3)' . This formula (6) has been obtained

several times in different ways, although the prefactor C
has not been consistent from one derivation to the next.
Other results have been C =3(m./3)' (Ref. 22) and
C=m (Ref. 4) from one-dimensional approaches and

a (v'3 —1)
exp

A path-integral approach has also recently been applied to

FIG. 2. Oscilloscope photographs of the mode intensities vs time for a two-mode dye ring laser. In each photograph th«pper
trace shows the time development of the clockwise propagating mode and the lower trace shows the counterpropagating mode. Spon-
taneous mode switching is evident in both cases. (a} represents laser operation at a slightly lower average pumping power than that in
(b}. In both (a} and (b} the traces shown are 0.1 sec in duration.



this problem but this method does not yield any con-
venient analytical form for comparison here. There are
no analytic results available for the system (2) and (3) with

pumping fluctuations.
An asymptotic expression for the long-time behavior of

the FPT distribution was first given in Ref. 20 for the

Method 1 problem,

TpP(Tp)-
& )

exp —
&T )

This result has been derived again for Method 2 (Ref. 23)
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FIG. 3. Computer-generated Monte Carlo simulations of the intensity vs time behavior of the two-mode dye laser. (a) Simulation
of Eqs. (1) with a pump parameter a =8.0 and no pumping fluctuations ( Q=O). Mode 2 is offset by 20. (b) Simulation of Eqs. (1)
with pump parameter a=4.0 and no pumping fluctuations. Mode 2 is offset by 10. (c) Simulations of Eqs. (2) and (3), including
pumping fluctuations. Simulations were performed with a mean pump parameter a=45.0 and with pumping noise strength Q=50
and bandwidth of the pump fluctuations I = l00. Mode 2 is offset by 206.
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a = 45.0
Q = 50.0
r = ioo.o

FIG. 3. (Continued)

but with a different expression for C used in the defin-
itio of (Tz}. Lenstra and $ingh have worked out a
short-time asymptotic result for the Method 1 distribu-
tions. This rather complicated formula for the probability
[Eq. (69) of Ref. 22] will not be reproduced here.

Given all of the various formulas for the average FPT
and the FPT distributions, we must now note that, strictly
speaking, neither of these two quantities have ever been
measured and reported. The quantities measured in Ref.
20 were the duiell time distributions and their means. The
relationship between these quantities can be somewhat
complicated or quite simple, but they are not identical
measures. A dwell time is measured as the time between
the clear "switches, " as seen in Fig. 2. In a one-
dimensional Method 1 approach the first-passage time is
concerned with one mode intensity. Instead of measuring
from one switch event to the next, as in a dwell-time mea-
surement, however, one now measures from any arbitrary
point between two switch events to the next switch event.

In the case of the very clear switching of Fig. 2 there is
little question that, to a very good approximation, for
reasonably set passage boundaries, the average d~ell time
is twice the average first-passage time. Occasionally
though, as the pump parameter is turned down, and espe-
cially under the influence of pumping fluctuations, the in-
tensity of one mode may quickly cross the passage boun-
dary and return; if one examines the intensity traces for
the two modes no switch will appear to have occurred and
yet a legitimate first-passage event, as defined above, has
clear1y occurred. This complicates the relationship be-
tween the average flrst-passage time and the average dwell
time. Eventually, as the system behavior approaches that
of Fig. 3(b) and the pump is turned down further still the
dwell time is no longer very well defined. The FPT is, on

the other hand, perfectly well defined whether the system
is (quasi-) bistable or not. The relationship between the
average FPT and average dwell time degrades, then, with
decreasing pump parameter.

Given this complicated relationship between the aver-
ages of the two quantities it is even harder to see what the
relationship is between their distributions. Again, the
dwell-time distributions have been measured and com-
pared to calculated FPT distributions and the validity of
this procedure is open to some question. FPT distribu-
tions will be presented below and their features compared
to those of measured dwell-time distributions without any
claim to the validity of the assumption of a simple rela-
tionship being made.

III. OVERVIEW OF THE DYE LASER BEHAVIOR

Before discussing the first-passage-time problem any
further the behavior of the two-mode dye laser will be re-
viewed in broad terms. The laser, without further cou-
pling of the modes by such means as backscattering, is
bistable —or at least quasibistable since it will switch
states, from clockwise propagating to counterclockwise
propagating, at random. This switching behavior is
shown in the oscilloscope photographs of Fig. 2. The in-
tensity of each of the output beams is displayed and the
very rapid switching transitions are obvious.

Using the numerical method mentioned in Sec. II to in-
tegrate the equations of motion it is quite easy to produce
a similar intensity-versus-time picture for a well-defined
set of conditions represented by either Eqs. (1) or (2) and
(3). In Fig. 3(a) we see such a trace produced by simula-
tions done for a pump parameter a=8 and without
pumping fluctuations ( Q= 0). Here again the rapid
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switching behavior from clockwise to counterclockwise
propagation is evident. The time scale of the simulation
is in the dimensionless units defined by the equations
above. We flnd that as the pump is turned down the
behavior of the mode intensities becomes more and more
erratic and the clear switching of the laser disappears. '

In Fig. 3(b) we can see that the switching is essentially lost
at a pump parameter a=4.

Figure 3(c) shows an intensity-versus-time plot with
pumping fluctuations for the choice of a=45, Q=50,
I =100. Comparing Figs. 2, 3(a}, and 3(c) it is clear that
the experimental intensity traces of Fig. 2 more closely
resemble the computer solutions in Fig. 3(c) than those in
Fig. 3(a}. The one obvious effect of the introduction of
pump noise is the suppression of the intensity noise in the
mode that is "off,"or not lasing as strongly. It is also ob-
vious that when the mode switches back "on" the magni-
tude of the noise in that state is larger than it would be
without the pump fluctuations. It is evident then that
pumping fluctuations do significantly affect the operation
of the actual laser system.

One condition should be placed on what has been said
above about the introduction of pumping fluctuations.
Only inasmuch as the fluctuations are fast with respect to
time scales such as the intensity-correlation time or mean
dwell time of the laser in one mod{: will they be able to
produce the modifications in the intensity-versus-time
behavior that are seen in the physical system. Obviously
any very slow or "adiabatic" changes in the pump param-
eter (i) will not modify the behavior in the way the above
fluctuations do but only raise and lower the mean dwell
time in accordance with Eqs. (6} or (7) and (ii) can easily
be eliminated from most experimental measurements.

This early conclusion leads to a comment on the use of
convolution methods to incorporate pumping fluctuations.
This method has been to average the results obtained, say
for the mean dwell time or first-passage time, over a suit-
able range of pump parameters. ' 6 By convolving the
analytic results for ( T» ) given in Eqs. (6) or (7) with, say,
a Gaussian spread function in the pump parameter a,
pump drifts may be accounted for. These drifts, however,
must occur on time scales slow enough so that the de-
tailed behavior over the period of a few switches or so is
unaffected. It is, after all, only then that Eqs. (6) and (7)
for {T» ) are to be considered valid. As can be seen by
the comparison of Figs. 2 and 3 this is not the case, and
the pump fluctuations have to be dealt with more careful-
ly.

A further point that is worth noting and that can be
seen from looking at the intensity traces in Fig. 3 alone is
that the range of parameters over which the first-
passage-time problem can be treated here is somewhat
limited. In the system without pump fj.uctuations, which
is the system on which much of the analytic work has
been done, it is seen that for pump parameters below
about four or five the first-passage-time calculations are
no longer comparable to the available experimental mea-
surements which deal with dwell times rather than aver-
age first-passage times. Dwell times would be very diff-
icul to extract from intensity traces such as those shown
in Fig. 3(b).

IV. THE SYSTEM %ITHOUT PUMP FLUCTUATIONS

The two-mode homogeneously broadened dye laser
without pump fluctuations will be dealt with separately in
this section, despite the importance of such fluctuations in
practice. The reason is that there is a large body of exist-
ing analytic work that has dealt with just this problem.
Thus it is a matter of some importance to compare these
results, obtained using simulations of the full four-
dimensional problem, to the analytic results obtained
under various simplifying assumptions. The results for
the system with the pumping fluctuations included will be
examined in Sec. V.

The first matter to be examined will be the sensitivity
of the average first-passage time {Tz ) to the definition of
the first passage and to the variation of the parameters in-
volved. Figure 4 shows, for the case of a =7.5, the results
of a numerical solution of Eqs. (1) giving the average
first-passage time versus the boundary positions for the
two different inethods of defining the flrst passage.

In Method 1 (see Fig. 1) it is easily seen that {T» ) is
relatively insensitive to the value of IL, as long as, say,
II &a/2, so that the second well does not overlap the
start region. Similarly, we find that ( T» ) is relatively in-
sensitive to IH as long as 4 & IH & 9. As IH moves above
or below this range it either includes parts of the lower
well of the effigy;tive one-dimensional potential, thereby in-
creasing the chances of a very rapid passage and signifi-
cantly lowering the mean, or it moves into an intensity re-
gion that is infrequently visited by the system, thus in-
creasing (Tz) drastically. The former of these two cases
will play an important role when the pump fluctuations
are included in Sec. V.

In Method 2 we have only one parameter r, the radius
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FIG. 4. Variation of the mean FPT ( T~ ) with the boundary
parameters of the FPT problem. o, ( T») vs IL for Method 1

{see Fig. 1); ~, (T~) vs IH for Method 1; and X, (T~) vs r for
Method 2. The parameters a =7.5 and Q=0 {no pump fluctua-
tions) were used.
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of the initial well (region) in which we start the system.
The crosses in Fig. 4 show the variation of (Tz) in
Method 2 as a function of r. We see that as more points
near the passage boundary are included (T~) grows
smaller but not significantly. (Tz ) is again not very sen-
sitive to variation of the boundary position.

Although each of these methods gives fairly robust re-
sults for the value of (Tz), the values actually obtained
by using each of these methods do not agree. (T~), as
calculated by Method 1, is always somewhat larger than
the same quantity calculated by Method 2.

Several of the analytic expressions for (Tz ) given in
Sec. II are displayed as a function of a, along with the nu-
merical results obtained here, in Fig. 5. The values for the
mean first-passage time, as determined by Method 1, are
displayed as open boxes and those determined by Method
2 are indicated by solid circles. Analytic expressions
representing Eq. (6) with the various prefactors (as ex-
plained in the figure caption) are also shown. It is obvi-
ous that, although the functional dependence on a is con-
sistent among everything plotted, all of the predictions for
the prefactor for Method 1 are too small by about a factor
of 4. The results for Method 2, on the other hand, show
that the theory of Ref. 23 predicts a value of ( Tz ) that is
too large (although not by a large amount) when com-
pared to the Monte Carlo results. i4

Since Fig. 5 shows results from consideration of the
system of equations (1), plotting (T~) versus a is prob-

ably the most natural way of comparison, as a is the most
easily accessible control. parameter. On the other hand,
when comparing theoretical predictions with experimental
data, the most natural parameter to plot against is the
mean intensity (I). Any plot of ( T~ ) versus a must oth-
erwise assume some relationship between the measured
quantity (I) and the plotted quantity a. Such a relation-
ship is given in Ref. 36, but it was derived under the as-
sumption of no pumping fiuctuations.

Turning now to the probability distributions of the
first-passage times, again one finds differences between
those obtained by different methods and also differences
as the parameters are varied. In Fig. 6 two plots of the
probability density of first-passage times versus dimen-
sionless time are shown, both created by computer solu-
tion of Eqs. (1) and using Method 1. Along with the
Monte Carlo results plots of the long-time exponentials
given in Eq. (8) are shown, using the value of (Tz ) ob-
tained from the simulations. Curves showing the
behavior of the short-time asymptotic result of Eq. (69) of
Ref. 22 are also drawn. The curves generated with the
short-time asyinptotic expression clearly do not fit the
Monte Carlo distributions very well. The general form of
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FIG. &. (T~) vs a for Q=O (no pump fluctuations).
simulation results using the Method 1 FPT problem. 0, simula-
tion results using the Method 2 FPT problem. Theoretical
curves are Eq. (6) with, from top to bottom,
C=9(m/3}'~ from Shenoy and Agarwal, Ref. 23, using Method
2. ———,C=4m/3 from Hioe and Singh, Ref. 4, using a
multidimensional approach akin to Method 2. - . -, C=m,
again from Ref. 4, using Method 1 in a rotated coordinate sys-
tem. Lying nearly on top of the last curve,
C =3I,'m/3)', from Lenstra and Singh, Ref. 22, using Method
1.

0.1-

O Q 1
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FIG. 6. Probability density of first passages vs first-passage
time for pump parameter a=6.0 and no pumping fluctuations
(Q=O). The histograms are produced by using Method 1 with
(a) IL ——1.0,IH ——2.0 and (b) IL ——1.0, IH ——3.0. The solid curves
are the short-time asymptotic expression [Eq. (69) of Ref. 22]
and the dashed curves are the long-time asymptotic expression,
Eq. {8), with the numerically extracted values of (T~). In {a)
(T ) =1.99 and in (b) (T ) =2.83.



P. LETT 34

the curves in Fig. 6, however, does appear to be correct
even though the normalization. of the curves does not.
The short-time expression of Ref. 22 seems to assume a
mean for the first-passage times that is much smaller than
that actually found. (Indeed, this is also what was con-
cllldcd f1'onl Fig. 5, above. } Tllc analytic fuIlction rises up
to meet what would be a much more rapidly falling long-
time exponential than one actually finds. The long-time
exponential form is certainly a good fit, provided that the
numerically found value of (Tz) is used instead of the
analytical predictions above.

Probability distributions generated by using Method 2
are shown in Figs. 7(a) and 7{b) with a pump parameter of
eight and well radii of r=0.5 and 5.0. Here again the dis-

tribution rises from P(0)=0 and rapidly reaches the same
long-time asymptote given in Eq. (8}. As the radius of the
well increases the initial rise of the distribution becomes
much steeper, as evidenced in the figure. The increasing
mell radius includes more and more points closer and
closer to the saddle point, and therefore many more short
trajectories, to cause this rapid rise.

Figure 7(c) shows a distribution generated by Method 1

and using the same simulations as used to produce Figs.
7(a) and 7{b). The relatively slower rise of the distribution
in Fig. 7(c) and the quickness with which the distributions
reach the asymptote in 7(a) and 7(b) are evident. The
average first-passage times are substantially different for
the two methods as noted in the discussion above.
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FIG. 7. probability density of first passages vs first passage time for pump parameter a=g0 and no pumping fl«tuatio» (Q=0).
Histograms are thc numerically extracted distributions and the smooth curves are the long-time asymptotic expression of Eq. (8) using
the numerically extracted averages (T ). (a) Distribution produced using Method 2 and r=0.5. (b) Distribution produced using
Method 2 and r=5.0. (c) Distribution produced using Method 1 and II. ——0.4, IH ——8.0.
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V. THE SYSTEM INCLUDING PUMP
FX,UCTUATIONS

The system of equations (2) and (3), with pump fluctua-
tions included, was also investigated in the same manner
as above. Many of the same comments may be made in
this section as in the previous one except that in this case
we must also specify the noise strength Q and bandwidth
I' of the colored-noise pump fluctuations in order to de-
fine the system. Recent studies have made it apparent
that paraineters Q =500, I"= 1000 may be more realistic
than the values used here but this parameter change will
only accentuate or moderate the effects discussed below.
The important qualitative features have been confirmed.

In Fig. 8 the variation of the mean first-passage time
with Ii, Iz, or r is shown for the case of a =40, Q= 500,
I =5. The crosses represent the variation of (T~) with
Il and the boxes represent its variation with IH in
Method 1. (T~) is, once again, relatively insensitive to
their variation. One point to note is the wide range over
which ( T~ ) is almost invariant with respect to variation
of I~ in comparison with the small range for variation of
IL. It is apparent that the well shape is very much
changed by the introduction of pump fluctuations. As
might have been noted from observations made in Sec. III,
the potential wells for the case with pumping fluctuations
appear to be very long and narrow, stretched out along the
intensity axes. The triangles in Fig. 8 show the variation
of ( T~ ) with r in Method 2. It is, once again, only weak-
ly varying and yields again consistently lower values for
( T~ ) than does Method 1.

With the introduction of pump noise into the system
there are now three parameters on which (Tz ) may de-

ce = 40.0
g = 5OO.O
I =50

%0
lL, or r

FIG. 8. Variation of the mean first-passage time ( T~ ) with
the boundary parameters of the FPT problem under conditions
of a fluctuating pump. X, (T~) vs IJ. for Method l. Cl, (T~)
vs IH for Method l. 6 ( T~ ) vs r for Method 2. The average
pump parameter a =40.0 and the strength and bandvndth of the
pump fluctuations are g=500, 1 =5.

pend. The variation of (T~) with a still appears to be a
rapidly rising function of pump parameter, whereas either
shortening the correlation time of the noise or increasing
the noise strength reduces ( T~ ). Both of these latter ac-
tions have the tendency to increase the excursions of the
pump parameter from its mean value a.

From what has been said above it can be gathered that
the rapid fluctuations in pumping due to dye-flow irregu-
larities and the like are not likely to be well accounted for
by the type of adiabatic convolution technique attempted
previously. The effect of incorporating the pump fluctua-
tions in the Langevin description of the problem on the
variation of ( T» ) with (I) is shown in Fig. 9. The origi-
nal data of Ref. 20 are plotted versus mean intensity along
with the analytic results of Eq. (6) (also plotted versus
mean intensity by using the relationship given in Ref. 36).
Also shown (as solid points) are simulation results includ-
ing pump fluctuations characterized by the parameters
Q= 50 and I'= 100. In addition some new measurements,
performed on a ring dye laser system, are presented for
comparison in Fig. 9(b).

Plotting the dwell-time data and averaged FPT results
versus mean intensity allows one to compare the two
theoretical models on an equal footing. No assumptions
are made about the relationship between the pump param-
eter and the mean intensity and each model is given its
own scale factors for time and intensity to achieve a "best
fit" to the data. In fitting curves to this data too much
emphasis should not be placed on fitting points with ex-
tremely long dwell times. As pointed out by Roy et al.
originally, these points (with dwell times approaching a
minute) are particularly sensitive to the effects of external
perturbations. As mentioned in Sex:. II the relationship of
the average FPT to the average dwell time will be as-
sumed to be a simple numerical factor of 0.5, and will be
absorbed into the scaling constant for the time.

From Fig. 9 we can see that the average FPT as a func-
tion of (I ) is not very sensitive to the introduction of the
pumping fiuctuations (although the scaling parameters do
change). In comparison with the fluctuationless analytical
formula, the convolution technique will produce a canted
but more sharply curved function of a (or (I) ) than the
fluctuationless analytical formula, as six:n in Ref. 26. The
introduction of the pump fluctuations into the Langevin
equations, however, produces a less sharply curved func-
tion of (Tz) versus (I) than the fluctuationless expres-
sion. These simulation results, although they suffer from
poor statistics, seem to fit the data better than do either of
the other options. Another distinct advantage of the
simulation results with the pump fluctuations included
over the purely additive noise results is that the lowest in-
tensity points are still consistent with the extraction of
dwell times from the measurements of intensity versus
time. The lowest point on the solid curves in Fig. 9 corre-
sponds to a=4. This is certainly the limit for validity of
Eq. (6) and a parameter that produces intensity traces
resembling the one shown in Fig. 3(b). This would strain
the abihties of any experimental system to extract dwell
times.

The range of pump parameters used for the simulations
in Fig. 9 was 10 & a & 50 with the noise parameters Q= 50
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FIG. 9. Mean dwell time vs mean output intensity for a two-
mode dye laser. In (a): &(, data from Ref. 20 taken using a
two-mode standing wave dye laser. In (b): +, data taken using
a two-mode dye ring laser. In both (a) and (b): , simulation re-
sults from Eqs. (2) and (3) with Q=SO and I =100 and pump
parameter range 10+a &SO. , analytic expression, Eq. (6),
derived assuming a constant pump ( Q=O). In both (a) and (b)
the scales are the experimental ones and the theoretical and nu-
merical results include scale factors for both the dwell time and
intensity for best fit.

and I = 100. The average first-passage time was extracted
by using Method 1 (II 2——.0,IH ——a); however, the (I)
dependence is the same for Method 2 and would simply
imply a different scale constant for the dwell times. The
range of intensities used in the simulations was limited,
again, by the rapidly increasing dwell times and limited
computing capacity.

The new data, shown in Fig. 9(b), are taken with a ring
dye laser system. The fits of both the Monte Carlo calcu-
lations and the theoretical predictions without pump noise
are much less satisfactory than those shown for the stand-
ing wave laser data in Fig. 9(a). The agreement could
perhaps be improved somewhat over that shown by ad-
justing the time and intensity scale constants but the data
in Fig. 9(b) definitely show a stronger dependence on M )
than the data in Fig. 9(a). Other ring laser data ' have
shown even more erratic behavior. The obvious difference
between the ring laser and the standing wave laser is that,
in the former, backscattering is present. This further cou-
ples the two modes and modifies the switching dynamics.

Finally, one can look at the influence of the pumping
fluctuations on the distributions of first-passage times.
The probability density of first-passage times along with
the lang-time asymptotic results of Eq. (8}, generated by
Methods 1 and 2, are shown in Figs. 10(a) and 10(b),
respectively. Parameter values of a=45, Q=S0, I'=100
were used. The distribution for Method 2 in Fig. 10(b}
shows very little qualitative difference from the distribu-
tions generated by Method 2 shown in Figs. 7(a) and 7(b).
On the contrary, the distribution for Method 1, shown in
Fig. 10(a), displays quite a striking new feature when
compared to the Method 1 distributions in Figs. 5 and
7(c). A sharp peak that rises well above the asymptote
and then falls sharply is now evident. The rise is exceed-
ingly fast and not resolvable with this histogram bin size.
Note that the ratio of IL to IH is about the same for Figs.
7(c) and 10(a) and that IH is set approximately equal to
the mean on-state intensity in each case. Reducing IL by
a factor of 10 begins to suppress this feature. The peak is
due to the low-intensity region beginning to overlap the
now-distorted potential weB that lies along the axis of the
mode intensity being examined. The FPT distribution
now includes points that actually begin their trajectory in
the well that one is "passing into" and thus contribute to
the large number of very short passages that are seen in
Fig. 10(a).

As the experimental data have all been taken under con-
ditions something like Method 1, this feature may be ex-

pected to show up, in spite of the fact that these were
dwell time and not FPT distributions, if pump fluctua-
tions are truly iinportant. A check of the results in Ref.
20 shows no such feature to be evident although the rather
coarse binning of the distributions may hide a small peak
just as it hides the initial zero in the distribution. The
lack of a sharp peak in the distributions of Ref. 20 is,
however, most likely due to the rather large integration
time used in those measurements to facilitate distinguish-
ing switch events from noise. The low-intensity excur-
sions of the on state that produce this peak were precisely
the noise that was being discriminated against. More re-
cent measurements of dwell times 3 performed on a ring
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laser system and using a minimum of integration have
produced some additional (Method 1) data. A sample dis-
tribution is shown in Fig. 11. The sharp peak of Fig.
10(a) is clearly evident in Fig. 11 and is an interesting con-
firmation of the numerical work done here.

The presence, and the height with respect to the rest of
the distribution, of the sharp initial peak is affected by
several factors. The peak is enhanced by anything that
enhances the magnitude of the excursions of the pump pa-
rameter from its mean. Thus either a larger strength Q or
a shorter correlation time (larger I ) for the pump noise
would increase the peak height for a given mean dwell
time of the system. (This assumes fixed passage boun-
daries with respect to the mean intensity. )
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METHOD 1

I„=2.0 t„=45.0 FIG. 11. Probability density of dwell times vs dwell time.
The measurements were performed on a ring dye laser (from
Ref. 27).

0.%-

0.05- t
J.

0.00

0.1-

a = 45.0
Q = 50.0
1 = 100.0
AVG = 19.4

10

Tp

METHOD 2
r = 10.0

20

Lowering the pump parameter too far has the tendency
to raise the initial point of the asymptotic exponential
curve (accompanied by a faster decay) to the point where
the sharp peak is no longer apparent. On the other hand,
if the pump parameter is raised too far the fluctuations
seldom reach the low-intensity barrier and the peak again
recedes into the long-time exponential. The peak is most
evident when a =Q.

Comparing the laser parameters, corresponding to Fig.
11, with the simulation parameters used in Fig. 10(a), we
have I"~„„&I „andQi, , & Q„.Integration in the ex-
perimental detection system would have reduced the peak
height by an undetermined but probably substantial
amount. The rest of the distribution decays away more
quickly in Fig. 11 than in Fig. 10(a) because the experi-
mental measurements were performed closer to "thresh-
old" than the simulations.

0.08" VI. CONCLUSIONS

O.DI-

a = 45.0
Q = 50.O
l' = 100.0
AVG = 'f1.0

0.02-

FIG. 10. Probability density of first passages vs first-passage
time for a mean pump parameter a=45.0 and pump fluctuation
strength Q=50 and bandwidth I =100. (a) Method 1 distribu-
tion: IL ——2.0, IH ——45.0, (T~ ) =19.4. (b) Method 2 distribu-
tion: r=10.0, (T~) =11.0.

One of the fundamental problems in working with dye
lasers near their operating threshold is that pumping fluc-
tuations play a rather large role in modifying some as-
pects of their behavior. In order to study this system, in-
cluding the fiuctuating pump, a four-dimensional
I angevin model was subjected to an extensive exarnina-
tion by Monte Carlo techniques.

An example of the interesting new features discovered
in the FPT results due to the introduction of pumping
fluctuations in the two-mode dye laser system is the sharp
initial peak in the first-passage-time distributions, when
calculated by Method 1. This peak was first discovered
by numerical calculations and confirmed in recent experi-
ments by Chyba et al. The numerical investigations of
the system allow one to easily see the variation of the
mean first-passage time with various parameters and,
most importantly, also allow one to remove the pump
fiuctuations from the system so as to provide a ineans of
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testing the available analytic results. Since the pump fluc-
tuations seem to be present in experimental systems and
seem to affect the results substantially, the numerical
work including a fluctuating pump also serves an impor-
tant role as a predictive model for the actual system.

Although the finite time steps used in the numerical
work may have a tendency to inflate the extracted values
of (Tz ) (see Ref. 22), the discrepancies between the ana-
lytic predictions and the Monte Carlo results are suffi-
ciently large that they cannot be due solely to this. It is
also worthy of note that the analytical results of Ref. 23
give estimates of (T~) that are actually larger than the
Monte Carlo results.

It can be seen from the foregoing discussion that some
methods previously used to account for the presence of
pumping fluctuations in the two-mode dye laser system
are actually misleading. Attempts to flt the data have, in
these cases, been made by incorporating the pump fluctua-
tions into the calculations by an averaging method rather
than by allowing the fluctuating control parameter to
dynamically affect the system. This latter, more accurate,
treatment leads to an immensely difficult analytic prob-
lem that is, however, readily amenable to numerical study
as shown here.

Use of the averaging technique convolving the results
for ( T~ ) with a spread function in a in Ref. 26 leads to
some rather misleading conclusions. First of all the fit of
the data to the analytic theory without pump fiuctuations
in the original Ref. 20 appears at least as satisfactory as
that shown in Fig. 7 of Ref. 26. This is largely due to the
method of fitting used in Ref. 26 (linear least squares on a
log scale); this forces the curve through some of the most
dubious of the points simply because they are the largest.
In practice the long-dwell-time points are the most sus-
ceptible to outside disturbances and it is fairly clear from

Ref. 20 that the two data points with the largest values of
( T» ) are somewhat suspect. The inclusion of Monte Car-
lo results in the range a ~4 in a comparison with experi-
mental dwell times is also misleading since the system is
hardly switching in this region. This problem is present
in both Refs. 20 and 26. This problem is eliminated by
using a theory that incorporates the pump fluctuations
into the Langevin equations of motion and thereby alters
the pump parameter required to produce a given value of
( Tz ). A related but still more complex problem would be
to include backscattering effects into the model.

A final observation is that the system that has always
been identified with this type of work has been the two-
mode dye laser. Although this system, especially in the
single-frequency ring configuration, is an obvious choice
for study there are other systems for which the same
analysis holds. In particular, clear mode switching has
been observed in two-mode semiconductor laser diodes.
These systems may indeed prove more suitable for this
type of investigation, especially with regards to the con-
trol of pump noise properties. It is not clear whether or
not these devices exhibit significant pump fluctuation ef-
fects or whether the significantly faster time scales of the
switching will cause problems for the experimentalist.
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