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We present a general formalism for obtaining a coupled set of first-order rate equations for the

optical field at a finite number of points in an optical resonator. We compare these local-field equa-

tions to an expansion in modes of the individual resonators and point out a shortcoming of the latter

technique that has not been recognized before. %e consider the special case of a set of two coupled

resonators and derive the coupled rate equations for the fields in each of the two cavities with cou-

pling coefficients. The resulting formulas are both simpler than those derived from coupled-mode

theory and more accurate in the sense that they give a steady-state response which agrees with that

calculated from the composite cavity modes. We show how the use of a single local-field rate equa-

tion can carry the same information as a full set of multimode rate equations in some cases, in par-

ticular, that of partial reflection back into a laser from a distant source.

I. INTRODUCTION

The springboard for the analysis of almost any laser's

dynamics —modulation response, noise properties, or even
a simple stability analysis —is the rate equation describing
the optical field in terms of material parameters and other
dynamical quantities (e.g., gain). While the ultimate ar-
biter of the field's behavior must be Maxwell's equations,
the set of second-order partial-different wave equations
that follows from Maxwell's does not lend itself to a sim-

ple solution in the face of fluctuating coefficients in the
equation. Fortunately, in almost all cases, a sufficient
description is provided by a set of first-order ordinary dif-
ferential equations in which the field is characterized by a
small number of variables, e.g., the spatial average of the
field amplitude over different regions of the resonator. In
fact, for many systems, even complicated sets of coupled
resonators, the field dependence can be adequately
described by a single variable, the amplitude of the lasing
mode of the composite cavity. ' Such a formalism has
been used to analyze the dynamic response and noise
properties of multielement lasers. ' With small modific-
ation, it can be extended to produce a set of multimode
rate equations, expanding in terms of the modes of the
composite cavity.

An alternate description of a multielement optical reso-
nator is produced by writing rate equations for several
variables which somehow represent the field inside of
each of the coupled elements. This second approach
conveys more of the flavor of interactions among indivi-
dual lasers while the former approach takes a more global
view. The resulting set of coupled rate equations is intui-
tively appealing —each field satisfies the rate equation for
its own individual cavity, modified by the addition of a
coupling term linking it to a neighboring cavity. In most
treatments, the dynamical variables are chosen to be the
amplitudes of the individual cavity modes (henceforth, the
ICM's) which make up the lasing composite cavity mode
(CCM). Such analyses have qualitatively predicted the
properties of weakly coupled systems. However, they

suffer from two flaws which severely limit their useful-
ness.

The first is that the CCM (which is the proper descrip-
tion for steady-state operation) is generally made up of
more than one ICM from each cavity. In the case of
weakly coupled systems, it consists of predominantly one
ICM from each resonator, but the stronger the coupling
between cavities, the stronger the need to include multiple
ICM's from each cavity to accurately model the CCM.
Consequently, any description of such a CCM in terms of
two ICM's is going to be incomplete. There are treat-
ments which do take into account the coupling among
other longitudinal modes, ' and such treatments can be
expected to give more accurate results than those that do
not. The second flaw, however, afflicts all treatments
which attempt to expand in terms of individual cavity
modes.

The second problem involves the following point: The
complete set of modes of the individual cauities do not con
stitute a complete set when those cauities are coupled to-
gether In fact,. they never constitute a sufficient descrip-
tion of the composite cavity model. This is a subtle point
that bears a bit more explaining. When we solve for the
modes of an isolated resonator, we have implicitly made
the stipulation that all fields outside the resonator (or
within some infinitesimal distance from the mirrors) are
outgoing. This is a reasonable assumption, since the only
source of light in an isolated laser lies inside the resonator,
and any light encountered outside the resonator is indeed
outgoing. The modes thus found lie in the discrete spec-
trum of the operator corresponding to wave propagation
in the resonator. They form a complete set only for fields
which are outgoing.

%'hen we couple two resonators, however, there arise
incoming fields in each cavity. In fact, coupling cannot
take place without such fields. The modes of an isolated
resonator cannot adequately describe such a field. A com-
plete description of the field inside each cavity must in-
clude the modes corresponding to the continuous spec-
trum, corresponding to fields incident upon the cavity
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from the outside. Such a description must include a sum

over the discrete modes, plus an integral over the continu-
ous modes. However, a representation of this sort which
includes the intermodal coupling leads to a set of integro-
differential equations for the modal amplitudes which is
more difficult to solve than the original problem. The
conventional approach is to drop the continuous part of
the spectrum and to hope that what is left is sufficiently
complete to describe the field.

What are the results of dropping modes from a
coupled-mode theory' The time evolution of each mode
is determined by the scattering of energy from one mode
into another. If we do not include a mode in a coupled-
mode theory, then while the rate equations remaining will
account for the energy scattered out of the remaining
modes (and into the "lost" modes), there is no mechanism
for the scattering of energy from the "lost" modes back
into the "kept" modes. In effect, then, the lost modes be-
come "black holes, " absorbing energy from the system
and never returning it. Consequently, threshold gains cal-
culated from such a theory are going to be overestimated,
since they will take into account these spurious energy
sinks. The amount of the overestimation depends upon
the relative fraction of the CCM described by modes of
the continuous spectrum. Unfortunately, for strongly
coupled cavities, that amount is substantial. While this
problem can be ameliorated somewhat by imposing ficti-
tious boundary conditions upon the ICM's to force them
to more closely match the CCM's (as is discussed in Ref.
4), this method requires one to a priori possess fairly de-
tailed knowledge of the CCM's.

It appears, then, that coupled-mode theory cannot easi-
ly provide quantitative information about the behavior of
fields in composite cavity resonators. However, one of the
attributes of coupled-mode theory —a description of the
field by a few variables which somehow characterize the
individual cavities —is still desirable. As we will show, we
can produce such a description by choosing as the dynam-
ical variables the amplitude of one of the traveling waves
in each cavity at some fixed point within the cavity rather
than the amplitude of an individual cavity mode (hence
the moniker "local-field" rate equations). This choice,
plus a little dc analysis, will yield a set of rate equations
and analytic expressions for all coupling coefficients with
no long summations or involved overlap integrals. Fur-
thermore, because it implicitly comes from the composite
cavity modes, it encounters none of the difficulties of
standard coupled-mode theory. The method is powerful
and general, yet conceptually quite simple. It relies on the
approximation that the optical field adiabatically follows
the characteristics of the resonator, an approximation that
has been widely made and recently justified. ' In Sec. II
we will present the derivation in abstract form. In Sec. III
we apply it to the most common coupled system, a two-
section longitudinally coupled-cavity laser and derive the
coupling coefficients. In Sec. IV we show how a modifi-
cation of the technique can incorporate multimode
behavior in a single rate equation and justify the delay-
dlfferentlal equat1on composed by I ang and Kobayashl
to describe optical feedback. In Sec. V we summarize the
analysis.

where each of the I,J depends upon the complex frequen-

cy Q. We shall adopt a matrix notation, where each of
the fields E; is a component of the vector E, and I;J is a
component of the matrix I . The steady-state eigenvalue
equation (1), written in matrix notation, becomes

I (Q)E=O,

where 0 is the zero vector. Equation (2) has nontrivial
solutions for E only if I is singular, and this requirement
yields the lasing frequencies Q.

We should like to find a set of rate equations of the
form

(3)

so our goal is to establish a correspondence between Eqs.
(3) and (2). Let us begin by working backwards. If we
want to solve Eq. (3), we would assume exponential varia-
tion in E,

p p jQT

in which case Eq. (3) would become

(4)

II. GENERAL THEORY

In a previous work, ' we found that for single-mode
lasers a suitable first-order rate equation is provided by
first finding the steady-state eigenvalue equation for com-
plex frequency, and then replacing the frequency jQ by
the differential operator dldt. Elsewhere, we formally
justified this approximation for both single-mode and
multimode systems and calculated the lowest-order
correction terms. The assumption underlying this ap-
proximation can be stated in several equivalent ways. A
rather formal statement of the approximation is that
"linear operators commute with all variables except the
electric field, which they act upon. " Perhaps a more
meaningful expression is that the only significant time
derivatives are those of the electric field; time derivatives
of other variables (for example, a fluctuating index of re-
fraction) will be sufficiently small that they can be
dropped. We shall refer to this approximation throughout
the paper as the "adiabatic approximation, " because the
electric field inside the resonator adiabatically follows the
instantaneous characteristics of the resonator. It is an as-

sumption widely made in the literature without comment,
but it is implicitly assumed in any first-order rate equa-
tion.

We will attempt to characterize the field by a set of am-

plitudes tE;(x;)J of traveling waves at fixed points x;
within the composite cavity. As a practical matter, one
would choose a single fixed point in each of the coupled
cavities. In steady-state, it is simple to assume complex
exponential behavior of the form exp(jQt) and to then
find a set of linear relations linking the field amplitudes

(E; ). The coefficients are typically functions of Q. The
process is well codified for several geometries; ' a self-
consistency requirement yields a set of linear equations of
the form

pl „(Q)Z,=O,
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I (Q}=0 .

Let us linearize Eq. (2) about a value Qo which is near a
root of (6},

[I (Qo)+ (Q —Qo)l n(Qo)]E=O,

where I n is the derivative of I with respect to Q. Then,
we can multiply by —jl"n

' to get

jQE=jQoE —jl ri '(Qo) I'(Qo)E .
Now, if we replace jQ by d/dt, we have

(8)

—E=j[rQ,—r „-'(Q,)l (Q,)]E,

which is in the form of Eq. (3), with

T=[IQo—I n (Qo)I (Qo)] .

We can remove the "fast" (optical) oscillation by taking
E= Aexp(jQot), so that the components of the vector A
are the amplitudes of a field oscillating at frequency Qo.
This assumption is convenient because if Qo is an exact
root of the dispersion equation (6) and there is no time
variation in I", then A is stationary. Under this defini-
tion, the desired rate equation for the amplitudes of a field
oscillating at frequency Qo is

jQE= TE .

We know from Ref. 1 that Eq. (2} holds adiabatically for
small fluctuations in the steady-state solutions, provided
that we replace jQ by the differential operator. If we de-
fine I (Q) —=detI (Q },then the nontrivial steady-state solu-
tions to (2) are the eigenvectors corresponding to the roots
of

ic approximation. As a practical matter, the equation is
simplest and most useful if we linearize about one of the
roots of I that corresponds to a low-threshold CCM,
since the first term of the series is all that is needed.
However, for certain situations, e.g., distant optical feed-

back, a slight variation on this technique can give a close
fit to I over a number of longitudinal mode spacings, as
we will see in Sec. IV. For now, however, we will take an
explicit example of two longitudinally coupled resonators
and produce the rate equations for the optical field.

El ——roe E1,
El P11El+t21E2 ~

E2 ——r3e E2,
E2 P22E2+ 112E1

(1 la)

(1 lb)

(1 lc)

(1 ld)

III. T~O-SECTION COUPLED CAVITY

As an example, to illustrate the simplicity of this tech-
nique, we shall derive local-field rate equations for a two-
section longitudinally coupled cavity laser, illustrated in
Fig. 1. It consists of two sections of lengths L i and Lz
terminated on the outside by mirrors with amplitude re-
flectivities ro and r3, respectively. They are separated by
a gap, which is characterized by its transmission and re-
flection coefficients tiz, t2i, ri~, and r22, as illustrated.
We shall derive rate equations for the amplitudes of the
traveling wave fields in each cavity that are traveling to-
ward the gap, as measured at the gap (Ei and E2 in the
figure}. We denote the waves propagating away from the
gap by El and E2.

For an optical field at frequency Q, we can write the re-
lations linking the fields by inspection. They are

—A=, [-l-n-'(Qo)UQo}]A. (10) where qadi= 2jQp, Li/c,—(pi= 2J'Qp&L2/—c, and pi and

p2 are the (complex) indices of refraction in each cavity.
Elimination of E'i and Ez yields

Equation (10) not only gives us the desired rate equa-
tions and expressions for all the coupling coefficients, it
also tells us just how accurate the entire rate equation
(first-order differential equation) approximation really is.
Here, the factor jQ corresponds to the differential opera-
tor d /dt. For frequency ranges in which the linearization
of Eq. (7) is a good match to I, the approximation is
good; otherwise, it is not. However, even the simplest
linearization is going to be a good approximation for vari-
ations in Q —Qo over some fraction, say, —,0, of a longitu-
dinal mode spacing. For almost all lasers, that frequency
is well beyond the timescale of fluctuations of interest.
Note that we do not actually have to possess an exact root
of (6); we simply have to be within a domain of the root
where the linearization provides a good match to I .

It can be shown that I can always be chosen such that
I ( Q) possesses no finite singularities. Therefore, a
Taylor-series expansion of I has an infinite radius of con-
vergence in the Q plane. Consequently, we can take a
Taylor series at any point Q; and by replacing each factor
of jQ by the operator d/dt, we can construct a higher-
order rate equation of arbitrarily high accuracy over an
arbitrarily large frequency domain, all within the adiabat-

e ~21
E2

~0~11

e ' &12
E2 —— E2+ El .

3 22 22

(12a)

(12b)

Cavity (
t l2

Cavity 2

L2

FIG. 1. Schematic of a toro-section coupled-cavity laser. The
gap is characterized by reAectivities r ~ &

and r22 and transmis-
sivities t2~ and t22. The reflectivities at the ends are ro and r3.
The lengths are I.~ and L2, and the (complex) indices of refrac-
tion (incorporating gain or loss) are p~ and p2. AB fields are
measured at the gap in each laser cavity. Primed fields are the
amplitudes of the waves traveling away from the gap; unprimed
fields are the amplitudes of the waves travehng toward the gap.
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Consequently, we can write the matrix I'(Q) as

f3f22

(13)

It is a well-known result of microwave theory that for a
lossless two-port network characterized by transmission
and refiection coefficients t21, t12, r», and r22, K is al-
ways negative and real.

Let us compare Eqs. (17) for the coupling coefficients
of the local fields with the coupling coefficients derived
from coupled-mode theory (not including the continuous
spectrum):4

For most cases of interest, the gap is short enough that
the transmission and reflection coefficients of the gap are
independent of frequency over the gain hnewidth of the
lasing medium. Consequently, we can drop their deriva-
tives. The derivative of I becomes

2JP&L& e
C l'OP'i )

2JP2L2 e
(14}

—C
~3~22e

2JP2I 2

C
(r3r21e —1)'Pg

2JP2L2

If we write the rate-equation system for amplitudes of a
field oscillating at frequency Qo [i.e., the analog of Eq.
(10)] as

dEi =JCOiEi +JK2iE2,

=J2E2+ JK12E1 (16b)

then we have

C
co 1

—— ( ror 1 1 e —1 ),
2jp~Li

C
t02 —— . {r3r22e —1),

(17a)

—C
+21 ~ t21 {roe

2JP iL &

—C
IC12= . t12 {rie ),

2JP2L2

(17c}

{17d)

and the eigenvalue equation defining the lasing frequency,
I (Q)=0, is

e ' &2~&~2—1

The last term on the right-hand side is significant; we will
give it a special designation,

&2I & ~2

F11722

Since I n is diagonal, inverting it is trivial. The matrix
that enters the first-order rate equation (10), —gri'I', is
given by

C —C t21
(rorile —1) . rorlle

2JP iL & J pl 1 rl 1

K = —g (Ql —Co~) I riel e ~dV

Pze2necy V, 20
2

where Qi„is the resonant frequency of the vth ICM, to& is
the resonant frequency of the pth CCM, pi is the index of
refraction used to define the ICM in cavity 1, p, is the ac-
tual index of refraction seen by the CCM, el„is the field
pattern of the vth ICM, and e,&

is the field pattern of the
p, th CCM. The advantage of local-field equations begins
to appear. In coupled-mode theory, one must solve for
the complete field patterns of both the ICM's and CCM's,
as well as the lasing eigenfrequencies r0&, perform many
overlap integrals between the different modes, and finally
sum over all of the composite cavity modes. As many as
400 terms in the summation may be necessary before the
expression {20) converges. On the other hand, one need
only solve for a root of the eigenvalue equation (and in
fact, only get close to a root) to use local-field equations.

By ignoring the presence of self-coupling coefficients,
Marcuse' has heuristically calculated cross-coupling coef-
ficients based on considerations of power fiow. The
cross-coupling coefficients for a given system can vary,
depending upon how one chooses to normalize the fields
(the effect of a change in field normalization is to multi-
ply one and divide the other cross-coupling coefficient by
the same constant}; nevertheless, there are irreconcilable
differences between Eqs. (17c) and (17d) and the heuristic
formulas. The latter are lacking the final parenthetical
expression in each of (17c) and (17d).

As a comparison of the local-field rate-equation-derived
coefficients, the heuristic formulas, and numerical results
based on coupled-mode theory, we consider the particular
case of two identical cavities. We take piL1 —@21.2 pi. , — —
lpi

——p2—=gr, and ro r3 ——1. The r——eference planes around
the gap can be chosen so that r» ——r22 =r, and r is posi-
tive real. In this case, the secular equation can be solved
analytically,

(e r r)(e r+r) =t2—1t12~e ~(r +t21t12)

The intercavity coupling coefficients become

—C 1
+21

2
~

L
t21 2 )iy2

—C 1

~JP+ (r + t21t12 )

Allowing for differences in field normalizations, these are
the same as Marcuse's heuristic formulas, with the addi-
tion of a correction factor I/(r +t21 t12)' . As we men-
tioned, for a lossless gap, E—= t,2 t2, /r»r22 must be nega-
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tive real. Thus„our definitions of r» and riz require that
the product t&&t&i be po»tiv«ea»»nce

I
&

I

'+
I
t

I

'= 1

for a lossless gap, the correction factor is simply 1, and
the heuristic formulas are correct.

However, for lossy gaps, numerical calculations show
that the heuristic formulas fall short by a factor "close to
one-half. " For a lossy gap,

~

r
( + (

t
) ~1; consequent-

ly, the correction factor is going to increase somewhat.
How large will it get'7 As the gap losses increase, the
transmission will become negligibly small compared to the
reflectivity, which will approach the dielectric reflectivity
of one surface of the gap. In this limit, then, the correc-
tion term will become

1 1-

(r +r2iri2)

and r simply approaches the dielectric reflectivity of the
first surface of the gap. For a GaAs air interface, that re-
fiectivity is r=0.55, which exactly accounts for the
discrepancy between heuristic and numerical results.

It is important to note that the correction term is real
only for the cases of equal optical path length, equal gain,
and equal reflectors on both lasers, and the gap must be
either lossless or an integral number of quarter-
wavelengths long. These are rather specialized cir-
cumstances, and are unlikely to occur in a practical de-
vice. In general, one must use the exact formulas (17) to
be assured of the correct coupling coefficients.

The need for rate equations above and beyond the
steady-state dispersion equation (18) arises in considera-
tions of the dynamics of the device. Both the self- and
cross-coupling coefficients depend upon the carrier densi-
ty; knowledge of their dependence thereon is necessary for
a small-signal analysis. Because of their accuracy and
simplicity, the formulas in (17) are more suitable to such
treatments than either heuristic or numerical formulas.

IV. DISTANT FEEDBACK
AND THE DELAY-DIFFERENTIAL EQUATION

Let us now consider the case of a distant feedback mir-
ror, corresponding, for example, to a small reflection off
of a distant optical element. In this case, the longitudinal
mode spacing of the composite system may only be a few
megahertz, while the bandwidth of the laser may be a few
gigahertz. In this case, we must approximate I over
many cycles of its periodicity (over a range of 0 that en-
compasses many roots} to get a valid rate equation. How-
ever, we can accomplish exactly that.

%e derived our rate equation by assuming exponential
time variation. This assumption converted time differen-
tials into factors jQ, and the adiabatic approximation jus-
tified in Ref. 1 allows us to convert them back again.
However, we can generalize this process by viewing I (0)
as the Fourier transform of a linear operator. Thus, if we
can approximate I by a sum of functions of 0 that are
transforms of linear operators, then inverting the
transform gives us a set of linear rate equations in terms
of those linear operators.

To illustrate this technique, we shaH calculate the rate
equation for a short cavity coupled to a lossy, much
longer cavity (cavity 2 is taken to be the longer cavity).

Let us eliminate Ei from the equation system so as to
consider only a single field. Elimination of Ez from Eq.
(12) yields

r
1

—1 —E —1 E1 ——0. (24)

By characterizing the field by a single dynamical variable,
we have reduced the matrix equation to a scalar equation
I'Ei ——0. The assumption of low return reflectivity means
that

I'3 I"22e g( 1

so we can drop the second "1"in Eq. (24), which becomes

e
E1 ——0. (25)

Now, the right parenthetical term in Eq. (25} is much
smaller than 1; the left parenthetical term, which can be
written as

e —1
—y) —11I("0 11 (26)

I (0)= —yi 2J'N~ —ln(r p1—ii ) Kr'3 p22e— (28)

Now we recall the definition of y& ———2jQp, iLi/c, and
multiply by c/2@iI. i to get

r

cpm . cj0 j —j— 1n(rpr» )
2P 1L 1 2P 1L 1

—21Op, 2L 2/c

2P 1L1
(29)

We define the following quantities:

2p2Lq

C

CK= KT2/'3
2P1L &

cpm . c
coo= J 1n(rprii) .

2p&L & 2p&L &

Then Eq. (29}can be written as

(j 0 j) a~pe '"'}E—'i ——0.

(30)

Now, using the Fourier-transform relations, we still find
that the factor jQ converts to the differential operator
d/dr; however, we can now interpret the exponential
exp( —jQr) as a time delay of r The relevant rat. e equa-
tion is

is therefore also much smaller than 1 when Eq. (25) is
satisfied. Therefore, since the exponential is equal to 1

plus something much less than 1, it can be approximated
by the first two terms of its Taylor series:

e ' " =1—(y&+2jNn') ln(rpr—i&), (27)

where 2jNn is the—nearest integral multiple of 2jm to
the lasing frequency. Using these two approximations, we
find that I becomes
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dEi(t)
=j cgoF. i(t)+aEi(t —v) .

This equation is, of course, the delay-differential equation
of Lang and Kobayashi. Explicitly evaluating the cou-
pling coefficient, we get

CK= &2~~~2
2I I~ 1 ~ I 1

For a single dielectric interface (the case considered in
Ref. 8), this expression is the same as was given in the
reference. Although the equation was heuristically de-

rived in Ref. 8 by adding a delayed-feedback term to a
standard rate equation, we have formally justified it and
have extended it to the case of a lossy coupling. Conse-

quently, the delay-differential equation is equivalent to
the full set of multimode rate equations for the modes of
the composite cavity.

V. CONCLUSIONS

While it may desirable to analyze coupled systems in
terms of the fields in the individual cavities, grave prob-
lems are encountered if one attempts to use the modes of
the individual cavities and achieve quantitatively correct
equations. Either one is forced to use an integral repre-
sentation of the field in each cavity or use an incomplete
set of basis functions. Even in the latter case, the number
of longitudinal modes required for a given accuracy may
be undesirably large; such is almost certainly the case in
strongly coupled lasers.

An alternate treatment, which does not run into the

problems of coupled-mode theory, is to derive local-field
rate equations. Such a treatment can yield quite simple
expressions for the self- and cross-coupling coefficients.
The formalism relies on the development of a set of
frequency-dependent relations between the different field
amplitudes and the subsequent conversion of those rela-
tions into a set of first-order differential equations for the
fields. Since the fields from which the basic relations are
derived are based on the composite cavity modes, a local-
field theory possesses none of the difficulties of a theory
based upon individual cavity modes.

We treated the case of two longitudinally coupled laser
cavities and calculated the coupling coefficients between
the fields in the two cavities. We calculated the correc-
tions of Marcuse's heuristic formulas and showed that
they agreed with numerical calculations, while providing
simple analytic formulas for the self- and cross-coupling
coefficients.

We then showed how the formalism can be extended to
generally derive linear rate equations from approxima-
tions of I (0). As an example„we derived and justified
the previously heuristically derived delayed-differential
equation of Lang and Kobayashi and calculated the cou-
pling coefficient of the delayed term resulting from a gen-
eral coupling element.
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