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Quantum theory of the micromaser: Symmetry breaking via off-diagonal atomic injection
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We propose and analyze an experiment in which atoms in a coherent superposition of atomic
states are injected into a high-Q maser cavity. We show that the symmetry of the field in the cavity
is “broken” in the same way as results from a classical signal injected into a laser cavity. This bro-
ken symmetry can be detected by monitoring the atomic excitation of a probe atom.

I. INTRODUCTION

Recent experimental developments make it possible to
investigate the interaction of one single atom with the
electromagnetic field in a high-Q maser cavity.! We are
here interested in the effect of atomic coherence on such a
maser field. We consider therefore a beam of two-level
atoms prepared in a coherent superposition of both states
injected into the cavity. It is crucial, however, that all the
atoms have the same phase, otherwise the coherence ef-
fects will average out. We envision a double-cavity setup.
The atoms enter the first cavity in their upper state and
build up a coherent radiation field with an unknown but
specific phase angle. Alternatively, a coherent microwave
pump field can be used in the cavity. When the atoms
leave the cavity they are in a coherent superposition of
states (as determined by the first cavity interaction) and
are injected into the other cavity (cf. Fig. 1).

We show that the atoms will create a field with the
same phase angle that determines atomic coherence. Thus
the symmetry of the field with respect to phase angle is
“broken.” The same effect has been observed for a classi-
cal signal injected into a laser.>®> The coherence of the
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FIG. 1. Scheme of the proposed two-cavity setup. A

coherent pump field is either built up by the incoming atoms in
a first cavity or injected into a waveguide from an external
source.

atoms (or the classical signal, respectively) is transferred
to the field in the cavity. The phase angle of the coherent
atomic states superposition can be varied by changing the
phase of the pump field or the distance between the two
cavities. We show that the probability for the atoms leav-
ing the second cavity to be in the upper state depends on
the relative phase angle between incoming atoms and
field. Thus, when we measure the excitation probability
of the leaving atoms, we are probing the coherence of the
field as produced by the incoming (off-diagonal) atomic
beam.

The phase and amplitude of the single-atom maser field
can also be measured by the method described here. In
this experiment,! a beam of Rydberg atoms in the upper
laser level is injected into a high-Q maser cavity in order
to generate a maser field. For short periods of time, probe
atoms in a superposition of states are injected. This su-
perposition is produced by an external coherent mi-
crowave field before they enter the cavity. The analysis of
the excitation probability of these probe atoms (when they
leave the cavity) provides the necessary information for
this phase and amplitude determination.

It should be mentioned that the technique discussed
here is analogous to the Ramsey two-field method invent-
ed in connection with high-resolution radio-frequency
spectroscopy.*

The amplitude and phase measurement of the field in
the single-atom maser is also interesting since sub-
Poissonian statistics and squeezing can be anticipated.>®
The investigation of such nonclassical fields is of consid-
erable current interest.

II. ATOMIC BEAM PREPARATION

To create a beam of two-level atoms in a phase-locked
coherent superposition of states, we first inject the atoms
into a high-Q cavity. If all the atoms are in their upper
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state when injected, they generate a coherent field in the
cavity. Also, it is sufficient to let the atoms pass a wave
guide with a classical microwave signal. The phase of the
field will be impressed upon the atoms that leave the cavi-
ty in a superposition of upper state | a) and lower state
| b). Their state vector is

|¥)=apla)+Bo|b), (1)

where the phase difference of ay and B, corresponds to
the phase of the field and is the same for all atoms.

The time of flight between the two cavities shall be
denoted by #;. The atomic density operator in the interac-
tion picture will be after the time ¢,

iHto/H —iHty/H
P

PA(I())=€ A(O)e

=|ag|?|a)a |+ |Bo|?|b){b |
+a038eim°|a)(b | +a(§Boe_m°|b)(a [

(2)
where o is the frequency between the atomic levels. The
velocity spread of the atoms in the beam has to be small
enough to ensure wAf << 1, i.e.,

9Pn,m ]
at atoms

Av/v < 1/(wty) . (3)

If this condition is fulfilled, the velocity spread does not
destroy the atomic coherence. This limit results in an
upper bound for #(, but as long we stay below this bound,
to can be varied to obtain a different phase angle.

III. INFLUENCE OF THE ATOMIC COHERENCE
ON THE FIELD

When we assume that the energy of the atomic transi-
tion matches with the frequency of the cavity mode under
consideration, the Hamiltonian is’

H=%ﬁwo,+ﬁwa*a +hg(a+a+a_aT) (4)

with the usual definition of the Pauli spin matrices o, and
o0+=0,%io,, and the coupling constant g.

If r is the rate of atomic injection, we can calculate the
change of the field in the cavity due to the atoms in the
well-known way.® If the field density matrix is denoted
by pr= 3, mPnm|n){(m| in the number representa-
tion, we have

=r(ppm{ | ao|*[cos(grV'n +1)cos(grV'm +1)—1]+ | By | Y[cos(grV'n Jcos(grVm ) —1]}

+Pn_1,m—1] a0 | *sin(gTVn )sin(g@TVm ) +py 4 1.m 41 | Bo| *sin(g7V'n + 1)sin(g7Vm +1)

+ia0/35eim°[p,,,,,, +1c08(g™Vn + Dsin(grVm +1)—p, _{ msin(grV'n )cos(grv'm )]

+iagBoe L ppm_1c08(g TV )sin(gTV'm ) —pp 11 msin(gTVn + 1cosgrv'm +1)]) (5)

where T is the time an atom spends in the cavity.

We now assume that | B, | is small compared to | a,| and expand the sin and cos functions to the second order in the

argument. We then obtain

9Pn,m ]
at atoms

=_%r 'aOIZgZTZ(n'{'1"'"’"*'l)pn,m"i"rlaolzgz'rzL nmpp_1,m-—1

— 57 | Bo| 8 (n +mpym+7 | Bo| 8V (n + 1)(m + Dpy 4 1m 41

+ 3 | ao | * 7 [(m + 1+ (n + 12 46(n + 1)(m +1))ppgm— <7 | @0 | *7*[(n +m)VEm Jppy _1.m 1

+iaﬂﬁgeiw‘0rg7( Vm +1Pn,m+l—1/;'-pn—l,m)+ia630e -iwtorg'r( \ mpym—_1—VvVn +1pn+1,m) . (6)

Note that in addition to the usual diagonal coupling between the matrix elements of pr (Ref. 8) we have a coupling paral-

lel to rows and columns (cf. Fig. 2).

Equation (6) can be rewritten using creation and annihilation operators for the field. In the interaction picture, we ob-

tain the following result:
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pr
ot

atoms

+578%7%r | ag| Xaa taa J'pp +pFaaT

. i —T) .
—iagBye " "rgrla" pr]+ial e

—ia(ty—71)

=—1r|ao|8*Aaa’pp+praa’ —2a"pra)— 57 | By| g*a"apr +pra’a —2appa’)

aa*+6aafppaaf—4a*aa Tppa —4a Tppaa ta)
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The interaction with the heat bath is described by the following master equation:’

IpF
at

bath

= —3ynylaa'pr+praa’—2a"pra)— y(n, + 1)a'app+ppa’a —2apra’) T

where n, is the number of thermal photons in the resonator and y the coupling constant. Therefore the total time

derivative of the field density matrix is

Spr
ot

;| %P
PF= ot

atoms bath

=+ A(aa'pp+praat—2a'ppa)—+Cla'tapp+prata —2appat)

++B(aat

with

A=r|ag|’g*P+yn ,
B=%r 'a0'2g474 ’
C=r|B|g* P +y(ny+1),

and

iolty—T1)
s=agBye  ° gTr.

This result is the well-known maser equation, where A4 is
the gain coefficient, B the saturation coefficient, and C
the loss coefficient, to which we have added the commu-
tator due to the coherence of the incoming atoms. The
same commutator term is obtained when an injected clas-
sical signal is considered. The symmetry-breaking nature
of this term is seen best in the a representation. In this
representation, Eq. (8) reads’

; ) 92
P(a, . L ol YA 1
(a,a*;t) 5(4 —-C) 3 (aP)+ ’Aaaaa*P
+%B—Q—(aa*aP)+is§£+c.c. , 9)
da da

where pp= f P(a)|a){a|d%.
The steady-state solution of this Fokker-Planck equa-
tion has been found to be®

P(a,a*;t)=Nexp +4-0|a|*~+5B|a|*

4
A

(10)

+ é(s *a—sa*) l

aa TpF +praa taa’ +6aa Tppaa ' _4a'aa Tp,.-a —4a Tppaa ta)—i[sa’+s *a,pr] (8)

I

with a normalization constant N.

In the steady state, P(a) does no longer depend on |« |
alone but also on the angle 0, i.e., the symmetry with
respect to the angle is broken. The effect can be seen
from Fig. 3 where the exponent of P(a) is plotted. Bro-
ken symmetry is synonymous with field coherence, and

(a)

(b)

FIG. 2. (a) Density matrix of laser with coupling of the ma-
trix elements parallel to the main diagonal. (b) Density matrix
of laser when coherent atoms are injected. The coherence in-
duces additional coupling parallel to rows and columns.
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FIG. 3. Negative exponent G(|a|,0) of the field distribu-
tion function P(a) without injection of coherent atoms (a) and
when coherent atoms with phase 6, are injected (b).

we may say that the coherence of the field in the first cav-
ity is transferred to the second cavity via the atomic
beam.

IV. PROBING THE PHASE OF MASER II

We next consider probing the phase of the field in the
second cavity via the excitation probability of the outgo-
ing atoms. The density operator of the combined system
of an atom entering the cavity and the field is given by

p= fP(a)( lag|?|a,a){a,a|
+ | Bol 2| bya)(b,a| +agBse’” |a,a) (b
+adBe | ba)(a,a|)d . (11)

J

2035

The time development for the combined states | a,a) and
| b,a) can be expressed in the following way, using the
interaction picture again, where U(7) is the time-
development operator,

U(r)|a,a)
_ < 2m(_1)m tym
_m2=0(g‘r) Zm (aa")™|a,a)
. i (gf)z’"+1‘(—:l)—”'—-(afa)'"aflb a)
0 (2m + 1) ’
(12a)
and
U(r)|b,a)
_ - zm("—l)m T _\m
> (g7) 2m)! (@a'a)™ | b,a)

(aa")y"a la,a) .
(12b)

Inserting these expressions into the equation for
p(r)=U(r)pU 1\(p) and tracing over the field states we ob-
tain

palT)= fP(a)(a] U(rpU'(r) |a)d?a . (13)

The probability w, for the atom to be in the excited state
can be extracted from this equation,

$ (=0 — 1"
W, = fP(a) laolZEO(gT)ZI(Z_mmzzo(gT)Zmia’;))_!_(aI(aaT)I+mla>

(—1)

2 < 241
1Bl 2 e oy

m=0

e iwtg—n) &y (—1)
+iagBge Igo(gr) ST

—io(ty—T) < 1) &
— iagBee ' )2 (gT)ZI—‘((le)') 3 (gr)m+!
1=0 :

m=0

i (gr)?m+1

(=~

m(a [(@’a)+m+1| )

[ m
S glrm (=D" ., |(@a®y*+m|a)a*

m=

2m)!

(=n~

m(al(aaT)l+mla)a da . (14)

Note that additional factors a* and a in the cross term, respectively, resulting from unpaired operators a *and q, give an
explicit dependence on the phase angle. The matrix elements {a | (aa Tk |a) and (a|(a Ta)k | @) can be calculated by the

recursion relations
(a] (a'a)k la)=|a|Xa| (aat)k-! |a)
and

k

]

(a](aaf)kla)=l+]a§2é

i=1

(a|(@aahi~'|a).

If |a|>1, however, we can neglect the effects of spontaneous emission, and we get («a| (aat)* |a)
~(a|(@'a)f|a)~ | @ | %, thus obtaining the classical expression
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© 2T
Wy = fo fo P(a){ | ap|*cos¥gr|a|)+ | Bo| *sin*(gT|a])
+2 | ap||Bo | sin(gT| a | )cos(gT|a| )sin[0—d+aw(T—1y)]}dO|a|d |a] , (15)

where we have defined §=arga and ¢ =arg(ay8;). Pla)
depends on the angle 6 in the same way. Therefore the in-
tegral over the cross term does not vanish. Because of

;—.(s‘a—sa* )=Im(g7r | ao||Bol|e |

X expii[w(to—T)—0+6]})
=—|ag||BolgTr|a|

Xsin[0—¢ +aw(T—1ty)], (16)

we obtain an integral of the form
2T in(6— 2w .
. sin(0—60)e™ "~ ®do= [ sinde*"do=(x) .
(17a)

If the phase of the pump field or the distance between the
two cavities is changed and the phase of the atoms is now
65, then the cross term yields

x sin(6—6)

2
. sin(6—6p)e d6=cos(0—6p)f (x) . (17b)
Thus we have obtained a dependence on the phase of the
atoms relative to the field which can be detected by the

measurement of the atomic excitation probability.

V. FLUCTUATIONS OF THE ANGLE VARIABLE

When we carry out the measurement of the excitation
probability according to Sec. IV, we do not only probe the
coherence of the field in the second cavity. In addition,
we obtain information about the fluctuation of the phase
angle. From Egs. (15) and (17b) we expect the excitation
probability of the outgoing atoms to be an oscillatory
function of the phase difference 6,— 6 as defined in (17).
When we assume that the ensemble average for |ag|,
|Bol|, and 7 can be carried out independently from the
average over the field variables, we obtain

wy=|ag|*(cos’ (g7 |a|))+ | By| HsinXgr|a|))
+2 | a||Bo| (sin(g7|a| )cos(gT|a | )sind)
X cos(0y— 6p)
={+&cos(6y—6p) . (18)
The amplitude of the oscillation £ in (18) can be mea-
sured by varying the phase angle for the incoming atoms

as well as the constant contribution {. The latter can be
rewritten

E=|ag| 2= (|ag|®— | Bo|>)(sin¥gr|a|)), (18a)

and the expectation value (sin’(g7|a|)) can be extract-
ed. Since we have assumed g7|a | <1, we also can calcu-
late from this an approximate value for (|ea|) and
A=(|al|?) as well.

If 7 is sufficiently large, the field distribution P(a) will
be strongly peaked around ( |a | )~(#)!/%, and the aver-
ages over |a| and the angle @ can be carried out
separately. We then get for the amplitude of the oscilla-
tion

E~2|ay||Bo| {sin(gT|a|)cos(gr|a|)){sinb) .

(18b)
When we use the approximation
(sin(gr|a | )cos(gT|a|))
~{(sin®(g7|a|))[1—(sing7|a|))]}/*, (18c)

we get (sin@) from (18a) and (18b). The angular distribu-
tion which we get from (10) is peaked at 6=37/2 (or at
6=1/2, since the sign cannot be determined by measur-
ing the amplitude). Therefore we have

—(sin@) =(cos(0—37/2))=~1—5{(0—37/2)?) ,
(19a)

if the fluctuations around the maximum value are not too
large. When we insert cos@ instead of sinf in (17a), we
immediately obtain

(cosB) = (sin(0—3m/2))~(0—-37/2)=0, (19b)

i.e., the standard deviation for the phase angle can be ob-
tained from (19a),

AG=[{(0—3m/2)*)]'2. (20)

Model calculations using the distribution (10) show that
(18b) is generally a good approximation. In Eq. (18c),
however, the right-hand side is larger than the left-hand
side which results in an artificial broadening of the mea-
sured angular distribution. Nevertheless, this error can be
tolerated when A6 is not too small.

It is obvious from Eq. (17) that the width of the angular
distribution strongly depends on the value of |s|. If
|s1| =0, the maximum of the |a| distribution is at
(7)'/2=[(4 —C)/B]'/? and there is no symmetry break-
ing. For |s | >0, the maximum of the |a| distribution
is shifted to higher values of |a|. This effect is consider-
able for large values of |s |, and one should be able to
detect it via (sinX(g7|a|)) from Eq. (18a). The angular
distribution has a width which varies like
(]s]{]a]))~'2 When the magnitude of |s| is es-
timated the velocity spread of the atomic beam has to be
taken into account. It can reduce {exp[iw(t;—7)]) to a
factor smaller than unity, so that the width A6 is large
enough to be detected.
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VI. CONCLUSION

It is the purpose of this work to show that coherence
can be transferred to a field in a cavity via atoms in a
coherent superposition of states. If the excitation proba-
bility for the outgoing atoms is measured for different
phase angles of the atoms relative to the field, the coher-
ence of the field can be detected.

Phase locking of the incoming atoms is achieved by a
cavity with a coherent field which the atoms traverse first.
The phase angle of the atoms depends on the phase of the
pump field and the distance between the two cavities.

Both phases can be altered, where the external pump field
has an easier experimental access. Thus all the tools for a
direct measurement of the transfer of coherence via an
atomic beam are provided.

ACKNOWLEDGMENTS

This work was supported in part by the Air Force Of-
fice of Scientific Research. One of us (J.K.) wants to
thank the Deutsche Forschungsgemeinschaft for financial
support.

ID. Meschede, H. Walther, and G. Miiller, Phys. Rev. Lett. 54,
551 (1985).

2W. W. Chow, M. O. Scully, and E. W. Van Stryland, Opt.
Commun. 15, 6 (1975).

3V. DeGiorgio and M. O. Scully, Phys. Rev. A 2, 1170 (1970).

4N. F. Ramsey, Molecular Beams (Oxford University Press,
London, 1956), Chap. V.

5P. Meystre and M. S. Zubairy, Phys. Lett. 89A, 390 (1982).

6P. Filipowicz, J. Javanainen, and P. Meystre, Opt. Commun.

58, 327 (1986).

7E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89 (1963).

8M. Sargent, III, M. O. Scully, and W. E. Lamb, Jr., Laser
Physics (Addison-Wesley, Reading, Mass., 1974).

9H. Haken, Light and Matter I, Vol. 25 of Handbuch der
Physik, edited by L. Genzel (Springer-Verlag, Berlin, 1970);
W. H. Louisell, Quantum Statistical Properties of Radiation
(Wiley, New York, 1973).



