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Bistable behavior of pump, probe, and conjugate signals
through collinear intracavity nearly degenerate four-wave mixing
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Theoretical calculations regarding the collinear intracavity nearly degenerate four-wave mixing
are presented when a Fabry-Perot cavity is externally driven by a strong pump and probed by a
weak signal. The calculations are performed for two different limits: the mean-field and the small-

signal gain approximations. The results suggest the bistable behavior for all the three signals (pump,
probe, and conjugate) with several different shapes of the hysteresis loops. Furthermore, for certain
values of the parameters in the mean-field approximation, calculations show a resonance behavior of
probe and conjugate signals with respect to the incident pump intensity, with probe and conjugate
transmittance as high as 10 —10 in the case when the pump transmission does not exhibit bistabili-

ty. In the small-signal gain approximation, theory also demonstrates strong dependence of probe
amplification on the normalized detuning when it is smaller than the probe-cavity mistuning.

I. INTRODUCTION

The geometry of two counterpropagating optical beams
of the same frequency interacting in a nonlinear medium
is of great importance in nonlinear optics, and has been
used to explain several interesting phenomena such as op-
tical bistability, ' phase conjugation through degenerate
four-wave mixing (DFWM) and nearly degenerate four-
wave mixing (NDFWM), periodic and chaotic self-
pulsations, and so on. Phase conjugation through
DFWM has found applications in various fields such as
real-time holography, adaptive optics, and laser resona-
tors, and NDF'PfM can be used to construct a narrow op-
tical bandpass filter with very high Q and four-wave
parametric oscillators. ' DFWM and NDFWM can be
achieved in resonant absorbing systems ' as well as in
saturable amplifiers, ' with the advantage of obtaining
much higher conjugate reflectivities in amphfiers even
with low-intensity incident pump hams. In almost all
DFWM and NDFWM experiments, the conjugate and
pump beams are separated from each other by a noncol-
linear geometry. However, higher conversion efficien-
cies can be achieved by using a coihnear interaction,
since the interaction can take place along the whole length
of the nonlinear material. The beun separation in col-
linear geometry for DFtVM can be obtained by selecting
different polarizations for pump and probe beams, '

whereas in the case of NDFWM it is achieved automati-
cally since pump and probe beams have slightly different
frequencies to and to —5to, respectively, with the conjugate
beam generated at frequency ~+5'. Recently, Nakajima
and Frey have demonstrated collinear intracavity
NDF%'M in a Ga„All „As semiconductor laser oscilla-
tor, where they obtained conjugate reflectivities as high as
5000 with a high conversion efficiency of about 25%.
Theoretical calculations based on a two-level system ex-
plain their experimental results. "

When an externally driven nonlinear Fabry-Perot inter-
ferometer with bistable transmission is probed' through a
weak optical field, the nonlinear interaction among the
counterpropagating pump beams and the probe generates
the phase-conjugated bum in the noncolhnear geometry
through intracavity DFWM, where the conjugated refiec-
tivity also displays the bistability and hysteresis as the
driving field is varied in a continuous manner. The direct
observations of bistable behavior of all the three signals
(pump, probe, and conjugate) have been recently reported
using atomic sodium vapor' and Ga„A1~ „As semicon-
ductor laser amplifier' as the nonlinear media. In Ref.
14 a collinear (on-axis) geometry and NDFWM process
were used in the experiments, and conjugated reflectivities
larger than 500% with 35% efficiency were reported. In
the collinear intracavity NDF%M geometry, ' the high-
intensity pump beam of frequency to and the low-intensity
probe beam of frequency co —5to (5co &~to) are sent co-
propagating through the nonlinear medium kept inside a
Fabry-Perot cavity. The total electric field inside the cav-
ity is composed of forward and backward pump, probe,
and conjugate waves at frequencies to, co —5to, and to+5co,
respectively. There are reflected and transmitted outputs
at three frequencies, each of which may be independently
analyzed. In this paper, the theory is formulated to ex-
plain the bistable behavior of the three signals observed by
using this collinear intracavity NDF%M geometry,
shown in Fig. 1. The nonlinear response of the two-level
system used in this theory is calculated using the density-
matrix formalism, and propagation effects are included by
solving coupled-wave equations for all six waves. The
standing-wave effects arising from interference of the
counterpropagating waves are fully incorporated. The
propagation equations are, then, solved for two different
limits: the mean-field approximation where low absorp-
tion and high mirror reflectivities of the Fabry-Perot cavi-
ty are assuIDed, and the small-signal gain approximation
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Here, p,b denotes the transition dipole moment. Assum-

ing
~

E+(ro-+5~)
~
«

~
E(o]) ~, steady-state solutions]b to

these equations of motion can be found using perturbation
method correct to all orders in the amplitudes of the

pump waves at frequency co and to first order in the am-

plitudes of the weak fields at co+5'. Then, the polariza-
tions at three frequencies co, co+5co can be given by the
following expressions:

E& (au+5au)

E» (au+5au)

ET (au+bau)

P(a])=XE,
P(co+5co) =X]E++X&(E )',

(3a)

(3b)

FIG. 1. Geometry for collinear intracavity nearly degenerate
four-wave mixing. The Fabry-Perot cavity is externally driven

by a strong pump field and probed by a weak field colhnearly.

where pump intensities are assumed to be small compared
to the saturation intensity of a medium having gain (laser
amplif]er). In both these cases, the pump depletion is
neglected, assuming probe and conjugate signals to be
much smaller than the pump.

In Sec. II the expressions for the polarizations at three
frequencies o], co —5', and co+5'] are given, and in Sec.
III six coupled propagation equations for the six waves
(forward and backward pump, probe, and conjugate) are
derived. These equations are solved for two cases men-
tioned above for Fabry-Perot boundary conditions in Secs.
IV and V. Finally, Sec. VI is devoted to discussion and
conclusions.

II. NONLINEAR RESPONSE
OF A T%'0-LEVEL SYSTEM
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In this section, response of the atoms to a strong pump
field at frequency co and weak probe and conjugate fields
at frequencies o]—5' and o]+5o], respectively, is calculat-
ed using the density matrix formalism. The equations of
motion for the elements p,i of the density matrix have the
form'5
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where a and b denote, respectively, the ground and upper
atomic levels separated by energy fmo, T) and T2 are
longitudinal and transverse relaxation times, respectively;
and %=p„—p~b is the population difference between the
two levels a and b with No denoting the equilibrium pop-
ulation difference in the absence of the optical fields. The
matrix elements of the interaction energy V,b ( = Vb', ) are
given in the rotating-wave approximation by

1 6 —i
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2 1+ii +
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and
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III. THE WAVE EQUATIONS
WITH THE NONLINEAR POLARIZATION

» this section, propagation effects are considered by
treating the nonlinear polarizations as source terms in
Maxwell's equations for the three frequencies of interest.
Under the assumption of slowly varying envelopes of the
fields, the three propagation equations for the waves at
three frequencies for the steady-state conditions using par-
axial and plane-wave approximations are written as

2ik e'~ 2ik e '—~= — P(co),
dz dz

(6a)

The quantities ap and
~
E,

~

are the resonant absorption
coefficient and the saturation intensity of the two-level

system, respectively, and they are given by
ap (4nN——pp, scoTz)/Seri and

~
E,

~

=R /4p, s Ti Tz. In
the above expressions, c is the velocity of light in a vacu-
um, ri is the linear refractive index of the medium,
i =v' —1, and fi=h/2m is Planck's constant. Also, the
quantities b„b, , 6+, and 5i are defined by
5=(cop p))Ti, —b, =(cop co 5'—)Ti—, b, +=(cop —co

+5')Tz, and 5i 5coT——,

where the electric field amplitudes at three frequencies are
taken as E(co)=Aie' +Aze ' and E +(co+—5')
=Aie'" '+A2e ' *. The right-hand side of Eqs. (6)
have dc spatial components as well as high-frequency spa-
tial components due to the

~
E(co)/E, term. Only the

dc components are phase matched and, hence, of impor-
tance in coupled equations. Writing

A1

and

A2
I2 ——

S

~

E(co)/E,
~

is given by

E(a)) =Ii +I2+2(I iI2 )
' cos8,

where 8=2kz+qi —qz is the relative phase between the
forward and backward pump waves. Expanding X(E}and
XJ (j=1,2,3,4) in Eqs. (4) into their Fourier components,
and substituting Eqs. (3) into Eqs. (6), one obtains, after
equating the coefficients of e+-', e+-'k ', e+-' ', the fol-
lowing six equations for the field envelopes A; (cu ),
A+(co+5co), and A; (co —5m) (i =1,2):
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A i (0)=rA2(0) + t iEO,

A2(L)=rA, (L)e '

Ai (0)=rA2 (0),
A+(L. ) = rA+ (L)e"'"
A, (0)=rA2 (0)+tiEO

(10b)
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In these expressions ao ——ao/(1+i 5 ) and
ao ——cto/(I id—, +) T.he phase mismatch introduced due
to unequal frequencies of pump and probe is given by
bk =k+ —k =2(k —k ) =2(k+ —k }=2rl5colc. The
complete expressions for all coefficients a„, b„, c„, d„,
and e„(n =1,0, —1}are displayed in Appendix A. Equa-
tions (8) are to be solved with the following Fabry-Perot
boundary conditions:

2

Io —— ——rl Ip 1+ ( 1 —s)
Eo (1—R) Cm

E, 2 ~ Iq

C 6
+ q — (1—s)

Ip

(12)

where I~ =Ii+Iz, I, =Iz, s =[(1+b )/(1+6
+2I&)]', and q =(2m@ —2kL)/(1 —R)=ei/(1 —R).
Here, m is an integer. The parameter q is a measure of
cavity detuning. Mean-field approximation also requires
Hi

——(2mir —2kL)~0. The normalized transmitted inten-
sity I, can be expressed in terms of I~ by the relation
I,= I/rI

~
ET/E,

~

=(1—R)Ip/2.
Now, Eqs. (8c)—(Sfl can be solved under the same

mean-field approximation since in this case all the fields
inside the cavity can be taken independent of z. It may be
noticed that for Ii —Iz, bi —b i,——ci ——c i, di ——d i, and
ei ——e i (see Appendix I). The expressions for A+, (L)
and [Ai (L)]' can be easily obtained after simple but
lengthy algebraic calculations as follows:

bt, (EO )'
A+)(L) = (13a)

Ett rEO+ t2A z(0),——
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where tz —[il(1—R)]'
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IV. MEAN-FIELD APPROXIMATION

where r =v R, ti ——[(1—R)/rl]'; R is the reflectivity of
Fabry-Perot mirrors, Eo is the incident pump field at fre-
quency t0, and Eo is the incident probe at to —Ro. The
Fabry-Perot cavity is located between z=O and z =I., as
shown in Fig. 1. The refiected and transmitted fields
from the Fabry-Perot cavity at three frequencies are given
by

ati(EO )'
[Ai (L)]'=—

bc —ad

where
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2
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2

(14c)

d =(1—Re 'e' )+ [eo(1+Re 'e' )
2

+e, rv(e '+1)], (14d)

with v=(e' —1)/t'hkL. The expressions for Ai (0)
and [A2 (0)] can be obtained in a quite similar manner.
Then, the transmittance coefficients T+ and T for con-
jugate and probe beams can be written as

(15a)=(1—R)
&c —Mf

In this section, Eqs. (8) are solved under the incan-field
approximation by assuming aoL~O and R~l with
C~ =aoL /(1 —R) =constant. This well-known limit cor-
responds to the experimental case of a high-finesse
Fabry-Perot cavity filled with a low-absorption medium.
It can be seen that Eqs. (Sa) and (Sb) for the pump waves
do not depend upon the probe and conjugate ~aves since
pump depletion is neglected by assuming

~

E+(co+5co)~-
&&

~
E(co) ~. Equations (Sa) and (Sb) then can be solved

separately first. Under the mean-field approximation,
fields A, and Az can be taken indepesident of z, and
hence the right-hand side of Eqs. (Sa) and (Sb) can be tak-
en as constants. FoBowing the approach developed in
Ref. (17), the state equation for the pump is given by
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FIG, 2. Showing the bistable behavior of all the three signals

(pump, probe, and conjugate) for the case of mean-fie1d approxi-
mation. (a} I, vs Io for 6=0, q=0, aoI.=0.15, II=0.99, and
g=1. (b) T and T+ vs Io for h,kL=0.25, MT2 ——0.5 and
5~ ——0.5. Other parameters in (b) are the same as in (a).
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FIG. 3. Plots of T and T+ vs Io shying different shapes
for probe and conjugate beams. (a} 5=0; q=O, aaL=0. 15,
8=0.99, g=1, hkL=0. 25, RoT =0.5, and 5,=0.5; (b) b, =2,
q=2, aoI.=0.2, R=0.99, g=1, hkI =0.01, 5a&T2 ——0.5, and
5~ ——0.5; (c) 6=0, q=O, .aoL=0.15, 8=0.99, g=1, bkL=0.05,
Scan T2 ——0.7, and 5)——0.7.

Figure 2 shows the behavior of pump, probe, and conju-
gate signals when the incident driving intensity
Ic

~
Ecl&,

~

is varied in a continuous manner. Figure
2(a) shows the plot of I, versus Ic when q=0, 5=0,
acL=0.15, 8=0.99, and ri=1, whereas in Fig. 2(b) T
and T+ are plotted versus Ic for hkL=0. 25, 5cuT2 ——0.5,
and 5&

——0.5 with other parameters same as in Fig. 2(a). It
can be easily noticed that the turning points of bistability
in all the three signals occur at the same values of Ic. As
is well known, the pump signal shows bistable behavior
because the state equation permits up to three solutions
for the intracavity pump intensity for a given set of input
parameters where two of these three solutions are stable.
The bistability in probe and conjugate signals arises from
the dependence of the corresponding nonlinear polariza-
tion on the intracavity pump intensity. In this way, a
turning point of bistability in the pump signal should also
give a turning point in the probe and conjugate si.gnals,
occurring at the same input pump intensity. In Fig. 3

some more plots of probe and conjugate transmittance
T and T+ are shown for different values of parameters
involved. Figure 2(b) is repeated in Fig. 3(a) in order to
make a comparison of the different shapes of bistability.
The probe transmittance in Fig. 3(a) has a Z type of
shape, whereas the conjugate has the usual S-type
behavior. In Fig. 3(b) the probe displays a complicated
loop, whereas the conjugate shows S-type behavior with
the upper stable branch showing a decrease in conjugate
transmittance when Ic is increased. In Fig. 3(c), the probe
transmittance shows behavior somewhat similar to the Z
type, whereas the conjugate shows a complicated loop,
similar to the one obtained by Agrawal (see in Ref. 12).
12).

In Fig. 4 a new phenomenon is explained where a very
strong resonance behavior of probe and conjugate
transmittance is obtained for certain values of parameters
when the pump state equation (12}does not show bistabil-
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FIG. 4. Illustrating the resonance behavior of probe and conjugate beams with respect to Io. (a) I, vs Io for lb =0, q=0, aoL =0.1,
8=0.99, and g=l; (b) T and 7+ vs Io for h, kL =10,RoT2 ——10,and 5& ——10 . Other parameters in (b) are the same as in (a).
(c) I, vs Io for k=2, q=2, aoL=0.17, R=0.99, and I)=1;{d) T and T vs Io for hkL =10 3, 5coTz ——0.5, and 5~ ——0.5. Otherpa-
rameters in (d) are the same as in (c). Note that the horizontal scale is different in (c) and (d).

ity. For Figs. 4(a) and 4(b) the various parameters are
taken as follows: 5=0, q=0, aoL=0.1, and 8=0.99.
The pump does not show bistability. For bkL =10
5coTI=10, and 5, =10 the probe and conjugate
transmittance curves coincide and they exhibit strong res-
onance with respect to Io. Even stronger resonance with

extremely small width is obtained in Fig. 4(c) and 4(d),
where the parameters are EL=2, q=2, aoL=0. 17, and
R=0.99. Again, the parameters are such that the pump
does not show bistability. For le =10, 5c0TI ——0.5,
and 5t ——0.5 the probe and conjugate exhibit strong reso-
nance with respect to Ie. The probe and conjugate
transmittance as high as 10 in Fig. 4(b) and 10" in Fig.
4(d) show the possibility of achieving high values of T+
and T . The calculations were also performed to obtain
this type of resollance behavior when pump shows bista-
bility. It was found that T+ and T exhibit resonance
behavior with respect to Io. However, the width of the
resonance is quite large and the height very small com-
pared to that shown in Figs. 4(b) and 4(d). It may be no-
ticed that in Figs. 4(b) and 4(d}, b,kL is very small. This
shows that strong resonance with high values of T+ and
T may be associated with Fabry-Perot resonance along
with thc 1Iltcrplay of othcI' paraIIlctcrs. By llslng these
cavity resonances it may be possible to generate intense
short-duration pulses at probe and conjugate frequencies
even with long-duration input pump pulses. Moreover,
comparison of Figs. 4(a) and 4(b) with 4(c) and 4(d) sug-
gests that it could be possible to choose the pulse width by
adjusting some of the parameters. Indeed, this pulse

width is related to the variation of intracavity pump in-

tensity which strongly depends on the shape of the pump
transmittance curve. In Figs. 4(a) and 4(b) the resonance
occurs in the region where the transmitted intensity varies
quite slowly with the input pump intensity, and the pulse
width of probe and conjugate would be large. On the con-
trary the resonance in Figs. 4(a) and 4(d) occurs for an in-

cident pump intensity corresponding to a rapid increase in
the intracavity pump intensity, and the probe and conju-
gate pulse width would be very narrow. Indeed, probe
and conjugate resonances occur for a relative variation in

pump intensity smaller than 1%. In this case the pulse
width would probably be limited by the cavity or medium
response time.

V. SMALL-SIGNAL GAIN APPROXIMATION

In this section Eqs. (8) are solved when ao is negative
(gain medium) but below laser oscillation threshold (laser
amplifier) and for I~&&1. Contrary to the absorptive
case this low-pump-saturation condition aBows for strong
nonlinear interactions because as experimentally demon-
strated' energy transfer are favored by gain. As in the
previous case, equations (Sa) and (Sb} can be solved
separately first for forward and backward pump waves

A& and A2, and their solutions can be used in solving
Eqs. (Sc)—(Sfl. since in this case Iz && 1, the perturbation
method can be used to solve Eq. (8). The susceptibilities
7, g&, and 74 are now written as
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the boundary conditions (10a} and (10b) can be expressed
in the following form:

+ 2
-a+I,

t)Ep
(19a)

Io=~ I —&,I,'+C (1S)

where I, =(1/t))
~

Ez./E,
~

. The coefficients As, Bs„and
Cg are expressed in Appendix B. Using the same pertur-
bation technique„ the solution to equations (Sc)—(Sf) with
the boundary conditions (10c)—(10f) can be written in the
following form:

E: '
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+ 2
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~
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In writing Eq. (19d), the term rEO is neglected compared

FIG. 5. Showing the bistable behavior of all the three signals

(pump, probe, and conjugate) for the case of small-signal gain
approximation. (a) I, vs Io for rh, =0.1, q=0, aoL= —1.15,
+=0.3, and t)=3.45; (b) ( 8& /tIEO

~

', and
~
8+I/ttEo

~

vs

Io for hkI. =0.01, RoT2 ——0.05, and 5~ ——0.5. Other parameters
in (b) are the same as in (a).
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and X2 and XI are still given by Eqs. (4c) and (4d). The
quantities A, 8, and C in Eqs. (5) now reduce to
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showing different shapes for probe and conjugate beams for the
pump parameters as follows: 6=O. 1, q =0, aoL = —1.15,
8=0.3, and g=3.45. (a} Akl. =0.01, 5apT2 ——0.05, and 5&

——0.5;
(b) hkl. =0.25, 5coT2 ——0.25, and 5l ——0.5; (c) hkL =0.5,
RoT2 ——0.5, and 5&

——0.5; (d) Akl. =0.01, 5coTz ——0.01, and
5l ——0.01.
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PIG. 7. Plots showing probe amplification dependence on &oT2.
~
81 It,EO
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is plotted vs lo for 5coT2 ——(a) 0.0005; (b) 0.005; (c)
0 05; (d} 0.5. Other parameters are 6=0.1, q=0, aoL = —1.15, R =0.3, g =3.45, hkL =0 01, and 5., =0.5.

to t2A 2 (0) in Eq. (1 le), assuming that the initial probe is
small and that it is substantially amplified inside the cavi-
ty. The quantities 81, 81, 82+, and 82 appearing in
Eqs. (19) satisfy the following four simultaneous linear
algebraic equations:

& 11 tt12 & 13 & 14 1 / 1( 0 )

u21 u22 u23 24 (81 ) / 1(E0 )

82+/ti(E0 )'

.u41 u42 u43 44, (82 ) /t 1 (E0 )

[ao —i(h,k+ 4,ko)]L
e

feo —i (ddc +d,ko)]L/2
P'8

(20)

The coefficients a;1 (ij = 1,2,3,4) appearing in Eq (20) are.
displayed in Appendix C.

In Fig. 5 the behavior of pump, probe, and conjugate
signals is shown when I0 —

~
E0/E,

~

is varied continu-
ously. Figure 5(a) shows the plot of I, versus I0 when
5=0.1, q=O, ri=3.45, R=0.3, and a0L =a0L/(1+6 )
= —1.15. The choice of these parameters corresponds ap-
proximately to the operation of laser below about S%%ui of
the threshold for oscillation. In Fig. 5(b)

~
8+1/tiE0

~

and
~
8, ItiE0

~
are plotted versus I0 for hkL=0. 01,

5coT2 ——0.05, and 51——0.5. All the three plots show bi-
stable behavior with the turning points in all the three
plots occurring at the same values of I0. It may also be
noted that the values of I0 and I, in the plots are much
less compared to 1. This shows consistency with the as-

sumption I& &~1 made in the beginmng of this section.
In Fig. 6 several other plots are shown for probe and con-
jugate transmittance for a different set of parameters. All
these plots are obtained for the same values of pump pa-
rameters (5=0.1, q=O, a0L = —1.15, 2) =3.45, and
R=0.3). This figure explains that shapes of bistable
behavior of both probe and conjugate beams change for
the same shape of bistable behavior of pump beam when
hkL, 503T2, and 51 are changed. Probe beam has either
S-type, Z-type, or a loop-type behavior, whereas the con-
jugate beam has either S-type or a loop-type shape. In
Figs. 7 and 8 the probe and conjugate variations with I0
for different &uT2 are shown keeping all the other param-
eters the same. It can be seen that there is a strong depen-
dence of probe and conjugate amplification on 5toT2 when
&oT2 is less than hkL/a0L. This point is corroborated
by the fact that phase conjugation efficiency strongly de-
creases with large detuning'5coT2. The conjugate ampli-
fication saturation occurring at very small normalized de-
tuning 5cI3T2 is probably due to the cavity detuning
503T'2 b,kL/a0L which m——ust be added to 503T2 when
the interaction takes place in a Fabry-Perot cavity. " The
calculations were also performed by choosing the parame-
ters such that laser operation takes place below but nearer
to threshold (2%%uo and 1% below threshold) of oscillation.
Larger probe and conjugate amplifications were obtained
as laser operated nearer to threshold.

VI. DISCUSSION AND CONCI, USIONS

In this paper theoretical calculations were presented re-
garding the collinear NDFWM performed inside a non-
linear Fabry-Perot cavity. In this collinear NDF%M pro-
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0.005; (c) 0.05; (d) 0.5. Other parameters are the same as in Fig. 7. Note that horizontal scale is different in (c) and (d).

cess theoretical calculations are complex since the interac-
tion involves six waves, forward and backward pump,
probe, and conjugate, coupled through nonlinearity of the
medium. As the interaction occurs inside a Fabry-Perot
cavity, each wave is subject to boundary conditions which
are interconnected. Therefore, it seems rather difficult to
solve the six coupled equations without making any ap-
proximations, and hence approximations were applied to
simplify the problem. However, the two limits (mean
field and small-signal gain) considered in this paper are of
considerable interest theoretically as well as experimental-
ly, and hence the results presented in this paper definitely
explain some important aspects of collinear intracavity
NDF3VM process.

The theoretical calculations were carried out assuming
that a two-level atomic system was kept inside the Fabry-
Perot cavity and that the cavity was externally driven by
strong pump beam of frequency to and probed by a weak
beam of frequency to —&0. The nonlinear response of the
two-level system was calculated using the density matrix
formalism and propagation effects were considered by
solving coupled wave equations, obtained by substituting
nonlinear polarizations at three frequencies of interest into
Maxwell's equations, for two different hmits mentioned
above. The calculations involved a huge amount of alge-
braic manipulations which were necessary to solve this
problem in a Fabry-Perot cavity. Therefore, the numeri-
cal computations were also carried out by choosing the
common values of the parameters in mean field and
small-signal gain approximations to confirm that the cal-
culations did not contain any type of error in both these

cases. The common values of the parameters (5=2,
q=0, aoL =—0.04, 8=0.99, rl =3.45, hkL=0. 01,
5i ——0.1, 5' T2 ——0.01) were chosen in such a way that both
the approximations remained valid. Although the bistable
behavior in three signals cannot be obtained with the com-
mon set of values of the parameters in both the cases, ex-
actly the same plots were obtained for the two limits thus
confirming that theoretical calculations presented in this
paper contained no error.

The results obtained in each approximation suggest the
bistable behavior for all the three signals which, of course
is already observed experimentally. Moreover, the cal-
culations suggest that several different shapes of the hys-
teresis loops can be possible depending upon the system
parameters. Some of these shapes are similar to that ob-
tained by Agrawal and Flytzanis, and Agrawal in Ref. 12,
although their calculations were performed for the non-
collinear intracavity DFWM process using the mean-field
approximation. Moreover, it should be recalled that, due
to the direct dependence of their intensities on the pump
intensity inside the Fabry-Perot cavity, probe and conju-
gate exhibit bistability at exactly the same input pump in-
tensity as for pump bistability.

In the mean-field approximation, the results of present
work also demonstrate a possibility of an experimental ob-
servation of a new phenomenon, viz. , a very strong reso-
nance behavior of probe and conjugate transmittance with
respect to the incident pump intensity in the case when
pump docs not exhibit bistability. As discussed at the end
of Sec. IV, this type of cavity resonances may be utilized
to generate intense short-duration pulses at probe and con-
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jugate frequencies even when the pump pulses are of long
duration. However, it should be mentioned that the
present analysis considers the steady-state solutions of the
atomic and field variables. Therefore, in order to obtain
quantitative information regarding the generation of
short-duration pulses at probe and conjugate frequencies,
the dynamic aspects of the problem should be considered.
This dynamic behavior involves the relaxation time of the
nonlinear absorber and the lifetime of photons inside the
Fabry-Perot cavity. Therefore, if short duration pulses
are desired, the nonhnear medium should have a strong
absorption coefficient and short-duration response time.
Indeed, in this case the Fabry-Perot cavity should be thin
and sufficiently absorptive to give the fast nonlinear
response necessary for this kind of operation. With such
a setup it could be possible to generate high peak power
pulses of variable short duration only by adjusting the
pump-medium or pump-cavity detuning. The experi-
ments to obtain these compressed pulses at piobe or con-
jugate frequency could be performed by using thin
Fabry-Perot cavities constructed from quantum well

structures or composite materials.
The calculations performed by applying the small-

signal gain approximation show several interesting results:
bistable behavior in all the three signals, very large values

of reflected and transmitted conjugate signals obtained
with very low input powers, and increase in contrast of
bistable probe and conjugate signals compared to pump
bistability. These theoretical conclusions are corroborated
by the experimental observations of Nakajima and Frey. '

However, care should be taken while tuaking the direct
comparison of the experimental results of Ref. 14 with the
analysis presented in this paper for the small-signal gain
limit, as the experiments were performed using a semicon-
ductor laser amplifier which is not precisely a homogene-
ous broadened two-level system. In this case indeed am-

plifying transitions occur between conduction and valence
bands. Even then the theoretical calculations do explain
qualitatively all the features of the experimental results.
From an experimental point of view, these amplifying set-

ups could be more interesting than passive devices since it
could be possible to get very high conjugated reflectivities
with low-power input beams. This point has already been
confirmed by both calculations and experiments per-
formed when the amplifying Fabry-Perot cavity operates
above threshold. s" In the case of bistability it means
that practical setups could be built in order to obtain
high-contrast logic devices and high-gain differential am-
plifiers.

Let us stress in a final statement that as the probe and
conjugate intensities are directly connected to the pump
intensity inside the Fabry-Perot laser cavity the nearly de-
generate four-wave mixing technique may be useful for
the observation of any instability occurring inside a
Fabry-Perot laser cavity.

APPENDIX A

In this appendix, all the coefficients appearing in Eq.
(8) are displayed as follows:

ao =[(1+62+I~ )'—4I,I,]-'",

(2 —1 p (I)I2) [1 ao(1+~ +~p)]

Q2 +8,(6+H),
0

(A2)

(A3)

1+6
F 1 — +Bo H+J, (A4)

Ip

F

(A5)

d 1=8o

' 1/2
I2 (Ii -I2) —(q, +q, )J+ 6+H e
I1 Ip

(A6)

p F i(q& +q2)co= 1 F I e
Jp

I (I I )—
G H '(q(+qz)

(A8)

C 1
——81

I (I I )—1 ~ 1 2 6 8 I'(q&+q2)

I2 Ip

(A10)

e0 —— I+6, +81(6+H),
0

(A 1 1)

e1 ——e
E

1 — +81 H +J, (A12)
0

where

Ip ——I1+I2,
—1

0 QO

Bo———b, i —(& +1)—1+5
1+6

1 . + . 1+5
81————6+i (b, + i)——

1+a+'

1 b, +i b+ i—
1+5 ' 1+5+'

E =1+6 +Ip,
F=2(I,I,)'",

6+—i
1+3+

P D(( 2 D2) —1/2I
FCO —ED

H = — ——C,(C,' —a')-'"
FCO —ED

d=B H — Ge0 0 F + I
I I I—

1 ( 1 2) —l(q(+qz)
di Bp——
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E2
J =D '+F(FC() E—D)

FA

C2
(C2 D2) —I/2

0 —ae'=1 —Re e'~ —i 4,

APPENDIX 8

In this aPPendix, the coefficients Ag, Bs, and C() aP-

pearing in Eq. (18) are displayed as follows:

(B1)
(1—R)

ir

(1—R)

(83)

where

I I

[1—2R (cosq')e +R2e +]
(1—Re e'q )

b', —ag 2, 3R sin(b, koL)
(1+Re "q )

2(1+62)

—aoL idkoL aoL R 2 q
—idkoL

)Ii) ——1 —e e e +—e 'qe
2

—2at)L i dkoL

I g

o 2iq'(R &dkoL iq 1')

uo

1+5
a'= R 2aoL iq q

1 R
I+~ 2( I+& ) (1+5')

&oa
hko ——

1+5
aoL b,

2
—8),1+5

APPENDIX C

In this appendix, the coefficients (2;~ appearing in Eq.
(20) are displayed as follows:

(C 1)

a)2= [&P(1 Re — )+—AP(1 —R +Re —e )]re
i LNOI. —aoL at)L (a(+) idk)L /2—

(C2)

—(a —idk)L ag —ag —[a&—i(dk+dko))L, (ao —idk)L
P P je (C3)

—aoL, a3L (ao—idko)L a3L (aII' —idk)L/2
(2)q ——[RCPe (e —e DP(e ' R)]re— — (C4)

—aoL aoL idkoL (a(—I i dk)L /2—
a2, ——[AP(1 —R +Re —e )+&P(e (C5)

I'ao+ —i (,hk -hko) jL —aoL at)L (ao+ idk)L—a 22
——RBp(e —1)—AP[R(Re —e )+(1—R)e '

]—p), (C6)

(a3~idko)L ag a3L
)]

(ao idk)L/2—
P P

(a2 idk)L— — i dkoL ——ag —(a2 —i dk)L (a(+) —idk)L
P P (C8)

(a2 idk)L, aO—L — [a& i (dk —dkO—)]L, (aO —idk)L—
tRDP 1 P 7 (C9)

—aoL, —a3L (ao+idk())L, , a3L (ao —idk)L/2—
a 32

——jRC'e (e —e)RCp P 7 (C10)

(Cl 1)
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