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Linear gain of a free-electron laser with an electromagnetic wiggler
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The small-signal gain for an electromagnetically pumped free-electron laser is calculated for an

amplifier configuration which includes an axial-guide magnetic field. The large-amplitude elec-

tromagnetic wave acts like the magnetostatic wiggler in a conventional free-electron laser, and the

expression for the gain is shown to reduce to the well-known result in the limit of a magnetostatic

wiggler. Substantial enhancements in the gain are found when Qp-yp(a) +k Ut~), where Qp is the

axial gyrofrequency, yp is the relativistic factor for the electron beam, U~~ is the axial velocity of the

electron beam, and (~,k ) are the frequency and wave vector of the dectromagnetic wiggler,

I. INTRODUCTION

A great deal of attention has been focused on the two-
stage free-electron-laser (FEL) configuration in recent
years due to the potential for short-wavelength operation
using electron beams of relatively modest energy. In its
most general form, the first stage of the device is used to
generate a large-amplitude electromagnetic wave which is
employed as a second-stage electromagnetic wiggler. The
output wavelength for an ele:tromagnetic wiggler having
a wavelength A,„is given by

(1+P,) y,
where p, =u, ic (u, denotes the axial electron-beam veloci-
ty), and y, =(1—p, ) ' . This contrasts with the output
wavelength of an FEL using a magnetostatic wiggler of
the same period

(1+P,)P,y,
'

which produces radiation at approximately twice the
wavelength as that for an electromagnetic wiggler when

p, ( 1. A recent experiment using a backward wave oscil-
lator as a first stage in the generation of a large-amplitude
electromagnetic wave has demonstrated the feasibility of
the concept. ' Indeed, any convenient source of radiation
may be used in the first stage, and designs employing a
magnetostatically pumped FEL have been discussed for
this purpose. ' The advantage of such a configuration
over that of a single-stage magnetostatically pumped FEL
is that the output wavelength of the two-stage I'I"L scales
as

Our purpose in this work is to determine the small-
signal gain in the second stage of such a two-stage config-
uration for an amplifier configuration. In particular, we
are concerned with the effect of an axial magnetic field on
the interaction, since for many experiments involving in-
tense relativistic electron beams the axial-guide field is
necessary in order to confine the beam against the effects
of self-field. Theoretical studies of the gain for such con-
figurations have appeared in the literature; s however,
none of these treatments has included a self-consistent
treatment of the orbital coupling between the electromag-
netic wiggler and the axial-guide fields. Indeed, for mag-
netostatically pumped FEL's, the presence of an axial-
guide field has been shown to result in an orbital instabili-
ty in the electron trajectories as well as a negative-mass
type of instability in the beam space-charge waves.

The present work represents an extension of a previous
study of the electron trajectories in combined electromag-
netic wiggler and axial-guide field configurations, s which
is summarized in Sec. II. The nonlinear pendulum equa-
tion which describes particle trapping in the ponderomo-
tive potential formed by the beating of the large-
amplitude electromagnetic wiggler and the output radia-
tion field is also derived. Section III is devoted to the
derivation of the small-signal gain, and a summary and
discussion is given in Sec. IV.

II.. SINGLE-PARTICLE ORBITS

The configuration of interest consists of a uniform
axial-guide magnetic field, Boe„and a backwards-
propagating electromagnetic wave described by

8~ (zq t )=8~[ e~ cos( k~g +Qj t )

(1+P,)'P,y,
where A, denotes the period of the first-stage magnetos-
tatic wiggler.

+eysin(k z+co„t)j
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F (z, t}= 8 [ —e„sin(k z+co t)
k c

+eicos(k z+t0 t)],

where 8 denotes the amplitude of the wiggler magnetic
field, and (co,k ) describe the frequency and wave vec-
tor. Observe that the Poynting flux is directed anti-
parallel to the x axis for positive t0„, and that this repre-
sentation reduces to that of the static, one-.dimensional
magnetostatic wiggler in the limit of tu„-+0.

We shall find it convenient to work in the reference
frame rotating with the wiggler, and define the basis vec-
tors

ei ——e,cos(k z+tu~t)+e„sin(k~z+tu t),
e2 — e„sin(—k~z+ a)~t) +ey cos(klz+ to„t),

/
/

/

////
/

A class of constant energy, helical trajectories can be
found which are of the form

VP=U C~+U~~C3,

where (u„,u~~ ) are constants given by

Uw=
Q (~u +k~u())

(4)
k [Qo—yo(to +k u(()]

'

u
(~
+u~ = ( 1 —yo )c (5)

and Qo~—= ~e8o„/nic ~. The stability of this class of
helical trajectories can be readily determined by perturba-
tion of the I.orentz force equations, and it is found that
instability results whenever

0 (0,
where Q denotes the natural response frequency of the or-
bital velocity to the perturbation, and

z [Qo yo(~—

+kobu((

}1
VO

FIG. 1. Schematic illustration of the dispersion characteris-
tics of the backward-propagating electromagnetic wiggler.

uniform beam to~ and k„satisfy a dispersion equation of
the form

co~ —c k~—2 z ~b(~+ k~ull ) =0, (8)
yo(o) +k u(() —Qo

where cub =4tre nb/—ni denotes the be;un plasma frequency
(nb is the bulk density of the beam}. A schematic illustra-
tion of the wave modes described by Eq. (8) is shown in
Fig. 1. Solution for the orbital velocities, therefore, re-
quires simultaneous solution of Eqs. (4), (5), and (8).

In order to carry the analysis further, we must now
specify the particular wave mode of interest. As shown in
Fig. l, there are two relevant wave modes for positive
(co~,k~): an electromagnetic escape mode and an elec-
tromagnetic electron cyclotron wave supported by the

X Qo 1+
&

—yo(co~+ k~u~~ )
c (cd~+k~ )()u

Group I Or

o&yo&cow+
II Orbits:

~~+ kw&ll»

As expected, the equations characterizing the orbital velo-
city and the stability criterion reduce to the weH-known
results ' of the magnetostatic wiggler in the limit as
6)w ~0.

The solutions of Eqs. (4) and (5) are characterized by
two distinct classes of trajectories which, for convenience,
we refer to as group I [Qo & yo(oi~+ k„u~~ )] and group II
[Qo~ yo(co +k u~~ }].Note that for positive (co,k ), the
group I trajectories are always stable for a supraluminous
electromagnetic pump, while the group II trajectories are
stable for subluminous pumps. In the present case, as in
Ref. 8, we assume that the electromagnetic wiggler is sup-
ported by the beam. Hence, for a cold (monoenergetic),

0.5-
C

o~yokwc

FIG. 2. Graph of the axial velocity versus the axial-guide
field for Q~/yak~=0. 05, yo ——3.5, and uq jyo @k~=0.1.
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beam. The coupled orbit and dispersion equations are
solved numerically for each mode, and the solutions for
u~

~

/c versus Qp/ypck„are shown in Fig. 2 for
Q./y~k. =0.05, yo ——3.5, and ~b/yoi/zck. =o.l. The
solutions corresponding to the electromagnetic escape
mode are group I orbits which are stable since this mode
is supraluminous. In addition, an upper bound on the al-
lowed axial magnetic field occurs which, for the chosen
parameters, is given by Qo/pock„( 1.68. In contrast, the
solutions corresponding to the electromagnetic electron
cyclotron wave are group II orbits with Qp/ypck &0.94.
Since the waves are subluminous, these trajectories are
also stable.

We now expand the formulation to include the presence
of a small-amplitude plane electromagnetic wave propaga-
ting antiparallel to the large-amplitude electromagnetic
wiggler and parallel to both the axial-guide field and the
direction of electron flow, and write the vector potential
in the form

5 A =5A [e,cos(kz pit ) —csin—(kz —cot)],

5E= ——5A [e„sin(kz —cot)+ e~cos(kz —cot)],
c

58=k5A[e~cos(kz co—t) e—~sin(kz c—ot}] .
(12)

Q 5u2+ 5A
Ck~ C /OPEC

r

2
Uw

N 1—
2

—
kU(~ sing, (13)

1
5U2 = [Qo—yp(cogf +k U() )]5U i—

$0 0

1 (Q~+k U~)5ul
y

1 e
U (ol +k u~~)5@+ 5A(co —ku~~)cosp,

XO f(PIC

%'e solve these equations by perturbation about the heh-
cal equilibrium described previously, and write v=vo+5v
and y =yo+5y. As a result, to first order in 5A

1
5Ul = — Qo —1 p(ctP~+k~u)( )

VO

where 5A denotes the amplitude and (co,k) are the fre-
quency and wave vector. The response of the electron
beam to this field configuration is determined by the
Lorentz force equations

a)w
5ui = Q~ 1+ 5up

yo ckw c

(14)

and

V=— 1I —
z

vv (E +5E)
C

+—v X (Bp+8~+58)1

c
(10)

and

+ 5AU~ k —Co l sing,
e

$0mC

COw e Uw5y= —
2 Q„5uz+

&
5A to sing,

k c' "
mcus

(15)

(16)

z
v (E +5E),

where I is the unit dyadic, and

where p=(k +k~)z —(c0—ol„)t denotes the electron
phase relative to the ponderomotive potential formed by
the beating of the two waves. Differentiation of Eq. (14)
then yields

2 2
e 1 Uw

l +Q 5uq —— 5A sing Qo to 1—
dt ypmc yp [

C2 to~+k~u~~

—
ku~~ 1+P

~w+kwUII
—( co —kv

) (

)(co~ +k U
( (
+P )

co~co~+(k +kg )v~( (18)

Operation on Eq. (15}with the second-order differential
operator given in Eq. (17) then yields

d +0 5u3 ——
dt 2 5Ap Q (ol —t0 )%sing,

yoy

(19)

where p„—=u~/u~~. Observe that Q describes the natural
response frequency of the electrons to the perturbation,
and determines the stability of the helical trajectories. We
now assume that the electron phases with respect to the
ponderomotive wave are slowly varying (i.e., /=0) which
defines the electron resonance condition

I

upon imposition of the resonance condition [Eq. (18)],
where

2
kwU)I

co~+k~u~)
1+

6)w U(~

ck c

d e
5AP~(co —co~ )4 sinter .

fQ'()PtfC
(21)

Y(PwQp

1+ Qp —Pp(co +k Uii )
c (ol„+k u~~)

(20}

If the perturbed velocity arises on a slow time scale with
the ponderomotive wave and g « i

Q ~, then we obtain
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)'I = 3.5
Q~P'ock~ =9.65

aol, l)'o "ck~=8.1

to the square of the amplitude of the other mode and we

may assume the wiggler field to be constant as long as
68 ~~8 . In the low-gain regime, we may assume that
the wave vector k is constant and the amplitude M is a
slowly varying function of the axial position. The evolu-
tion of 5A is governed by Maxwell's equation

a2

az2
1 8 5A 4m J

c Bt

-2—

-4—

where the source current is given by" '

~~&~so 1
J, = — tp —P t, tp 8' tp z —z t, tp

02

Ql])'OCltl(„

FIG. 3. Graph of 4 versus the axial-guide field for
/gk =0.05, &p=3.5, and ~b/yo 'ck =O. I.

In Eq. (25}, to is the entry time of the electron (i.e., time
at which the electron crossed the z =0 plane), 8'(to) is
the distribution of entry times, u, o is the initial axial velo-
city, and p(t, to) and z(t, to) are the momentum and axial
position at time t of a particle which crossed the z =0
plane at time to. Observe that a monoenergetic beam is
assumed.

For the sake of simplicity, we assume that t0» Qo, cob

so that for the tenuous beam, low-gain regime we may
write the dispersion relation in the form

This approximation is valid as long as the system is not
too close to the transition to orbital instability at Q =0,
and is appropriate since the orbits for the system under
consideration are stable.

Equation (21) describes a nonlinear pendulum equation
for the ponderomotive phase. In order to see this, we note
that

(26)cu~ck .

Defining z, 1
r(z, to) =t, + dz'

u, (z', to)
'

the source current may be written as

J,=—enb tpS' tp t —v' z tp U~c)+ p()e3

1 d2 u

k +k~ dt to c0N dz
(22)

where we express the variation in the phase in terms of
the axial position rather than the time, since we are pri-
marily interested in an amplifier configuration. As a re-
sult,

dz (Q7 —co~} c
zP= 2 3 P 5a@sing, (23)

where 5a =e5A/me . Eq—uation (23) describes the axial
bunching of the electron hum in the ponderomotive'
wave. If we note that both u and 4 are enhanced near
the resonance at Qo-yo(to +k u~~) and that u~~

de-
creases, then it is evident that the ponderomotive potential
(and, hence, the axial bunching mechanism) may be
enhanced due to the presence of the axial-guide field. To
illustrate this, we plot 4 versus Oo/y~k in Fig. 3 for
parameters consistent vvith the orbits described by Fig. 2.

III. THE SMALL SIGNAL GAIN

The large-amplitude electromagnetic wiggler and the
small-amphtude wave are coupled by the presence of the
electron beam md, in general, either wave may grow or
decay. However, the gain of either wave is proportional

/=1(o+ f dz' k+k
uz z ~ o}

(30)

go[= —(co —to }to] is the initial phase, and the average is
over the initial phase

(8)=— f dfoW(go)0 . (31)

Note that Eq. (31) has been obtained by taking an average
over a beat (i.e., ponderomotive) wave period, subject to
the assumption that particles entering the interaction re-
gion within one beat-wave period execute identical trajec-
tories.

%e now assume that the electrons are untrapped by the
ponderomotive wave, and seek solutions to Eq. (23) of the
form P=go+b, kz+5$, where

Ak =k+k~— (32)

(28)
Substituting this form of the source current [Eq. (28)] into
Maxwell's equation, we find that

2

2k 5a = — (sing } (29)
dz ci c

where the ponderomotive phase is given by
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+b,kz cosgo] . (33)

defines the frequency mismatch. Solution to first order in

5$ is straightforward, and we find that

g= go+ b,kz

(co—ct)~ ) c
+ 2, p 5a@[singo —sin($0+hkz)

ypy((hk U
()

cob L k
2 Z

~0~II" tl

@ d sin8
d8 8

(37)

where 8=6,kL/2. Again, we observe that the small-
signal gain [Eq. (37)] reduces to the expression found in
the case of a magnetostatie wiggler. 'i The extrema occur
for 8=+1.3 at which d(sin8/8) d8=+0.54, correspond-
ing to frequencies

so that co~ 1—
C

2.6
w+kwU~( 1+ (38)

C (CO —CO~ )
(sing}= —

z z & p 5a@
2pppIIkk U

))

X [sin(hkz) —hkz cos( b kz) ] .

The small-signal gain over some length L is defined as

5a (z =L) 5a(z =—0)
5a(z =0)

(34)

Note that for 4&0( &0), maximum gain occurs for
8=1.3 ( —1.3); consequently, the effect of the axial-guide
field is to cause a relative phase shift between the group I
and group II (4 &0) classes of trajectories. In either case,
however, the maximum gain is given approximately by

(GL),„0.034 1+ p i 2 (k L)
c yoc k

subject to the requirement that GL, «1. Substitution of
Eq. (34) into Eq. (29) then yields

~b6L —
4 2k I 2 2 gk2rorIIUII

X J dz[sin(bkz) hkzcos(h—kz)],

which upon integration over z gives

(co„+k c)'
x I@I.

ck (co +k U&i)

(39)

The resonant enhancement in both U and 4 due to the
presence of the axial-guide field can result in substantial
enhancements in the gain. As an example, we observe
that in the absence of an axial-guide field p =0.052 and
4=1.0 for the parameters shown in Figs. 2 and 3. This
results in a gain of (Gi, ),„=3.69X10 (k L)~. In con-
trast, p~=0. 53 and 4=6.42 when Qo/yock~=1. 68 near
resonance. As a consequence, the gain is enhanced by
several orders of magnitude and we find
(GL, ),„=(2.48X10 )(k L) . A more detailed variation
of the maximum gain as a function of the axial-guide
field is shown in Fig. 4 in which we plot the maximum
gain [normalized to the value of (GL, ),„ for 8o ——0]
versus Qo/yock~.

IV. SUMMARY AND DISCUSSION

10'
CD

h4
~~

CO

6
gg 1O1

160

In summary, we have derived an expression for the
small-signal gain for an amplifier configuration which
consists of a large-amplitude electromagnetic wiggler field
and an axial-guide magnetic field. Based upon a perturba-
tion about a class of steady-state helical trajectories in the
combined axial-guide and electromagnetic wiggler fields, a
nonlinear pendulum equation has been derived which de-
scribes the axial bunching and trapping of electrons in the
ponderomotive potential formed by the beating of the
electromagnetic wiggler and the radiation field. It is im-
portant to observe, in this regard, that the natural
response frequency of the electrons to a perturbation is
given by 0 which scales as

Qo])'ock~

FIG. 4. Graph of the normalized gain versus the axia1-guide
fie1d for n~/y(}ck~ =0.05$ yo ——3.5j and orb/yo ck~ =0.1.

1 UwQ= [Q,—y, ( .+k.
,
~)]+O

70 C

For sufficiently large axial fields, therefore, Q can become
sufficiently small as to be comparable to the frequency of
the ponderomotive wave. In this regime, the ponderomo-
tive wave acts to drive the system near its natural frequen-
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cy of oscillation, and a resonant interaction occurs which
enhances both the ponderomotive potential and the gain.
This resonance is described by the function 4 [Eq. (20)]
which scales as Q . As a result, the expression for the
gain displays a singularity at Q =0, which coincides with
the transition to orbital instability [Eq. (6)]. However, we

have shown that the dispersion relation between the fre-

quency and wave vector of the backwards-propagating
electromagnetic wiggler [Eq. (8)] imposed by the dielectric
response of the beam results in orbital stabihty. Hence,
while the gain can be significantly enhanced, no singulari-

ty occurs within the context of the present model.
In contrast, Goldring and Friedland calculated the

gain under the assumption that the relation between the
frequency and wave vector was externally determined (i.e.,
by a waveguide structure). All dielectric effects of the
beun were neglected, and orbital instabilities were found
for group I (II) orbits for a subluminous (supraluminous)
wiggler. However, the expression obtained under this as-
sumption does not appear to be equivalent to that derived

herein [Eq. (37)] even if the condition in [Eq. (6)] were to
be relaxed. As given by Goldring and Friedland, the gain
exhibits singularities both at the transition to orbital insta-
bility (Q =0) and at the point at which du~~ jdyo ——0 for
the steady-state orbits. The singularity at the transition to
orbital instability occurs due to the resonant enhancement
in the ponderomotive potential discussed previously.
However, the singularity occurring at du~~/dyo=0 is
more difficult to understand and is not contained in Eq.
(37). Finally, it should be remarked that in the limit of a
magnetostatic wiggler du~~ ldyo ——0 occurs at precisely the
point at which the Q =0, and both gain expressions
reduce to the well-known result for the small-signal gain
in an idealized one-dimensional magnetostatic wiggler.

ACKNOWLEDGMENTS

This work was supported by the U.S. Office of Naval
Research.

'Permanent address: Harry Diamond Laboratories, U,S. &my
Laboratory Command, Department of the Army, Adelphi,
MD 20783-1197.

~Y. Carmel, V. L. Granatstein, and A. Gover, Phys. Rev. Lett.
51, 566 (1983).

2S. B. Segall, H. Takeda, S. Von Laven, and P. Diament, in
Free Electron -Generators of Coherent Radiation, Proceedings
of the Society of Photo-optical Instrumentation Engineers,
Bellingham, %A, 1984, edited by C. A. Brau, S. F. Jacobs,
and M. O. ScuOy (Soriety of Photo-Optical Instrumentation
Engineers, Bellingham, %A, 1984), p. 178.

3J. Pasour, P. Sprangle, C. M. Tang, and C. Kapetanakos, Nucl.
Instrum. Methods Phys. Res. A237, 154 (1984).

~P. Sprangle, V. L. Granatstein, and L. Baker, Phys. Rev. A I2,
1697 (1975).

5P. Sprangle and A. T. Drobot, J. Appl. Phys. 50, 2652 (1979).

L. Friedland, Phys. Fluids 23, 2376 (1980).
H. P. Freund and P. Sprangle, Phys. Rev. A 28, 1835 (1983).
H. P. Freund, R. A. Kehs, and V. L. Granatstein, IEEE J.

Quantum Electron. QF 21, 1080 {1985).
9A. Goldring and L. Friedland, Phys. Rev. A 32, 2879 (1985).
ioH. P. Freund and A. T. Drobot, Phys. Fluids 25, 736 (1982).
I S. H. Gold, R. H. Jackson, R. K. Parker, H. P. Freund, V. L.

Granatstein, P. C. Efthimion, M. Herndon, and A. K.
Kinkead, in Physics of Quantum E1ectronics, edited by S. F.
Jacobs, G. T. Moore„H. S. Pilloff, M. Sargent, M. O. Scully,
and R. Spitzer (Addison-Wesley, Reading, Mass. , 1982), Vol.
9, p. 741.

~2P. Sprangle, C. M. Tang, and W. Manheimer, Phys. Rev. A
21, 302 (1980).

~3H. P. Freund, P. Sprangle, D. Dillenburg, E. H. daJornada, B.
Liberman, Phys. Rev. A 24, 1965 (1981).


