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Two-photon absorption cross sections for transitions from the 0('P) ground electronic state to the

3p 'P, 4p P, and the autoionizing 0+( D)3p' and 0+( P)3p" states have been calculated by explicit
evaluation of the perturbation-theory summation using matrix elements calculated from

configuration-interaction wave functions and sum rules to correct for truncation. The role of dif-

ferent contributions in the summation has been analyzed. For the 3p P state, a cross section of

+zoo '(J'~J) of (1.319+0.2) X 10 "cm" has been obtained, which is in excellent agreement with

the experimental value for the quantity QJoo{ '(J'~2)G{t}=(2.6620.80)X 10 ~' cm, given in the

companion paper, if the photon statistical factor, 6'~', is evaluated in the chaotic field limit

( G(2)

I. INTRODUCTION II. THEORY

While multiphoton ionization is a powerful and sensi-
tive technique for the detection of atoms and molecules,
its quantitative apphcation requires knowledge of absolute
cross sections. A recent set of experiments has been car-
ried out by Bamford, Jusinski, and Bischel to obtain ab-
solute cross sections for the two-photon resonant, three-
photon ionization of atomic oxygen. Rates for both two-
photon absorption and excited-state photoionization have
been obtained for the 3p P~ P transition. However,
these experiments pose significant challenges, requiring
determination of absolute ground-state and excited-state
number densities and accurate spatial and temporal char-
acterization of the laser pulse. Thus, it would be highly
desirable to compare experimental and theoretical deter-
minations of absolute cross sections.

Two perturbation-theory calculations of two-photon ex-
citation of the 0(3 P) state have been reported by Omid-
var and Pindzola. Omidvar used the method of explicit
summation over intermediate states while Pindzola
solved the equivalent inhomogeneous differential equa-
tion. While the results are in reasonable agreement with
each other, both authors invoked the frozen-core approxi-
mation and used Hartree-Fock (or for the high-lying lev-
els quantum-defect) wave functions.

Therefore, we have performed ab initio calculations of
two-photon absorption for the 3p iP~iP transition in
atomic oxygen for comparison with the recent experimen-
tal results. ' In this work, the perturbation-theory matrix
elements have been obtained by extensive configuration-
interaction calculations and no coupling restrictions have
been imposed. Cross sections for transitions to the 4p I'
as well as to the autoionizing states, 0+( D)3p' and
0+( P)3p", have also been obtained. In Sec. I the formu-
las that have been evaluated and the off-diagonal sum
rules described by Huo and Jaffe that have been used to
correct for truncation are presented. The configuration-
interaction calculations are briefly described and the re-
sults are presented and evaluated in the following sections.

There seems to be no question that the perturbation-
theory formulation of multiphoton absorption applies up
to quite strong photon intensities. Since the experiments
of Bamford et al. ,

' with which we will compare results,
deliberately are conducted far from the saturation region,
perturbation theory is clearly applicable. Derivations of
the perturbation-theory expressions have been clearly
given elsewhere. In this section, we briefly set out the
form evaluated in this work.

The rate for two-photon absorption W in sec ' may be
written in terms of a two-photon rate coefficient tr' ', in
cm" sec, and the square of the photon flux as

where I is the laser intensity in W/cm . This cross sec-
tion may be conveniently expressed as the product of a
linmhape-independent cross s~tion oo(2) in cm4, which de-
pends only on the properties of the absorbing species, the
line-shape function g(to) expressed in sec, and a photon
statistical factor G ', as

~(2} (2}
( )G(2)

The line-shape function and photon statistical factor,
which accounts for photon coherence effects in a mul-
timode laser, are discussed further in Sec. IV. Experimen-
tal results for two-photon absorption are often given in
terms of the quantity (z in cm /W which is related as

(3)

The fundamental quantity ao ' is obtained from pertur-
bation theory by the expression '

2
2

o()
' ——(2n. ) (i)ia)) P
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co is the photon energy, g denotes the initial state, f
denotes the final state, Eg and Ek denote the energies of
the initial and intermediate states, respectively, r =r ei,
and ei is the laser polarization. The evaluation of the
quantity P can be accomplished either by explicitly carry-
ing out the, in principle infinite, summation in Eq. (5)
over a suitably large number of intermediate states, e.g., as
described in Ref. 2, or by using a variational or variation-
perturbation method, which requires, instead, the solution
of a suitable inhomogeneous differential equation (e.g.,
Ref. 3). In either case, the quality of the result depends
on the quality of the wave functions used in the calcula-
tion, i.e, on the completeness of the atomic basis set and
the extent of electron correlation included.

Truncation of the perturbation theory sum is a major
source of error in these calculations. However, we have
used two off-diagonal sum rules introduced by Huo and
Jaffe, 4

Sfg(0)= g (2Ek —Eg —E~) (f I
r

I
k &(k

I

r~
I g & =0,

(7)
to check convergence. Furthermore, it can be shown that
even when the intermediate states are a finite set of ap-
proximate wave functions, the sum rules will hold for ap-
propriately chosen states. It is very reasonable to assume
that if Eqs. (6) and (7) are satisfied, the summation in Eq.
(S) will also converge. In fact, in the sum rules, the high-
lying states are weighted more heavily than in P, so that
the sum rules provide a stringent convergence test and en-
able us to approximately correct for the error due to lack
of convergence.

To explicitly evaluate the matrix elements in P, the ini-
tial and fmal states, indicated schematically as

I g & and
(f I, must be specified in a particular angular momen-
tum coupling scheme. Because we are using a
configuration-interaction code in linear symmetry, in this
work, we have found it convenient to describe the states in
terms of their L, ML, S, and Mg quantum numbers and
obtain the cross sections between J states by appropriate
angular momentum algebra. The sum rules are interpret-
ed, therefore, for LS coupled states. For linearly polar-
ized light, the appropriate operator is the z operator. %'e
then expect S ( —1)= (f I

r cos 8
I g &.

For the evaluation of the two-photon cross section,
there are only two unique quantities to be calculated.
Denoting the states as

I
LMI & since S and Mg are con-

served in the absorption, we define A (ML, ) as

&L'ML
I
r cos8

I LkML, & & LkML I
r cos8

I LMt. &

A(ML)=
k ELMS ELkMc +~

which is the quantity P evaluated for particular ML pro-
jections. The sum extends over intermediate states with
the same ML, . Note that A (1)=A ( —1).

All of the cross sections connecting individual J states
can be expressed in terms of A(0) and A(1) as derived in
the Appendix. Explicit formulas for initial and final

TABLE I. Cross sections in terms of A{0) and 3{1) for
P~ P transitions.

Jinitia]

9 [A {0)+23(1)]
—0
9 [A (0)—A (1)]
—0
i [ i A {0)'+i A {1)

+ A {0)A(1)]
6 [A {0)—A (1)]
~~ [A {0)—A (1)]'
,0 [A {0)—A (1)]

+ ~ 3{0)3{1)]
'Cross section op~ ——{2m) (e2/Ac) (%)) o'g~.

states of P symmetry are given in Table I. Writing the J
levels explicitly as oo '(J'~J), from Table I, some rela-
tionship are immediately obvious:

cro (2~):cro (2+-1):oo (1~2):cro (0'—2)

=2.222:1.667:1.000:0."~~ .

Furthermore, it can be shown in general for all initial and
final L states that the cross sections for transitions from a
particular initial J level summed over all final J levels are
independent of initial J. This has been observed previous-
ly for the P~ P transition in atomic oxygen. The
summed cross section may be written as

2
2

g cro '(J'+—J)=(2ir) (fico) g A (ML )

For the P~ I' transition, the quantity in brackets is
—,
'

A (0) + —', A (1) .

III. CALCULATIONS

The major computational effort in calculating the two-
photon absorption cross section lies in evaluating the di-
pole matrix elements in A(0) and A (1) [Eq. (8)]. In this



THEORETICAL CAI.CULATION OF T%0-PHOTON ABSORPTION. . .

TABLE II. Comparison of calculated matrix elements in atomic units with values derived from experimental lifetimes.

Transition

0+( S)3s S—P
0+{'S)3p 'P—0+( S)3s 'S
0+( S)4s S—P
0+( S)5s S—P

130.4
844.6
104.0
97.7

Expt. ~ (ns)'

1.8+0.2
34.7+3.7 '
4 +0.6
6 +09

17 +3

From
expt. ~

0.449
2.944
0.22
0.16
0.10'

(Mt, ——0 iz i ML ——0)
Calculated
n =5 basis

0.4576
3.0753
0.1673
0.0956

Calculated
n=4 basis

0.4591
3.0646
0.1680

0+( S)3d 'D —P
0+('S)4d 'D —'P
0+('S)5d 'D —'P
0+('D)3s'D —'P

102.6
97.2
94.9
98.9

9 J1.4
20+3.0
30+4.5

5+0.8

0.17
0.11
0.08
0.22

(ML ——1iz iM1. =1)
Calculated
n=5 basis

0.1402
0.0977
0.2224d

0.1411

Calculated
n=4 basis

0.1405
0.1224

0.2342

'Lifetime data from Ref. 9 except as noted.
bReferences 10—12.
'Reference 1.
Both states show substantial configuration mixing.

'Reference 13.

work, they have been obtained from large configuration-
interaction (CI) wave functions expanded in an atomic
basis set of Slater functions. The final basis set, which
consists of 9s, 7p, and 5d functions, explicitly includes
two Rydberg 3s and 3p functions and one Rydberg 3d, 4s,
4p, 4d, 5s, 5p, and 5d function. Denoted here n=5, it
was obtained from previous work on 02 with the addi-
tion of functions of principal quantum number 4 and 5.
Exponents, g, for these functions were taken from the
spectroscopic energies of the lowest appropriate Rydberg
state according to the quantum-defect-theory expressions
DEIL —0.5(n'), g—=l/n', where KEIR is the energy
difference from the ionization limit. A reasonable physi-
cal description of Rydberg states through n =5 is expect-
ed from calculations with this basis set. For comparison,
results of calculations with a smaller basis set (8s6p4d)
that included Rydberg functions only through n =4 and is
so designated are also presented.

The CI expansions included all single and double exci-
tations with respect to the 0( P) ground state, keeping the
Is orbital doubly occupied, resulting in 6788 configura-
tions for the ML ——0 (X) symmetry and 11535 for the

ML, ——1 (II) symmetry with the n =5 basis (4618 and 7820
configurations, respectively, for the smaller basis). Atom-
ic orbitals from a self-consistent field (SCF) calculation on
0+( S) were used.

For Rydberg states that could be explicitly identified
(i.e, up to n = 5 for calculations with the n =5 basis), spec-
troscopic energies were used in the energy denominators
in the evaluation of A(0) and A(1). For the higher virtual
states that do not correspond to real physical states but
contribute to the sum-rule convergence, calculated ener-
gies mere used.

In order to evaluate the reliability of the calculated ma-
trix elements, in Table II, we have compared a number of
matrix elements with those deduced from experimentally
determined lifetimes according to the relationships be-
tween lifetime, oscillator strength, and matrix elements
given by Eqs. (A3) and (A5b) of the Appendix. For the
3p P~ P two-photon transition, the most important in-
termediate state is the 3s 'S state. The calculated matrix
element connecting this state to the ground state shows a
discrepancy of only 2%. This amounts to a discrepancy
of 4% in the oscillator strength for the 130.4-nm reso-

TABLE III. Comparison of calculated matrix elements in atomic units for autoionizing transitions.

Transition Expt f'. (m, =l ~z (M, =1)
From Calculated

expt. f n=5 basis

0+( P}3s" P—P
0+( D)4s' D—P
0+( D)31' P—P
2s 2p P—3P

0+('D)5s "D—'P

87.8
81.7
81.1
79.2
77.5

0.0206
0.0062
0.0039
0.0234
0.0021

0.1283
0.0710
0.0723
0.1745
0.0400

0.4556 b

0.0772
0.1581
0.1389'
0.0379

'Reference 17. Data have been renormahzed as explained in the note added in proof in that reference.
Both states show substantial configuration mixing.
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TABLE IV. Sum-rule quantities A(0) and A(l) in atomic units for 3p I'~ P and 4p 'I'~ I' transi-
tion.

3p 'I'

S(0)
S(—1)
(r'cos'8}
A (ML)
uncorrected
A (ML)
corrected

—0.0804
—1.1989
—1.1890

9.4218

9 422'

—0.2273
—0.4780
—0.2957

1.9918

1.566

0.0940
—0.4815
—0.5838

3.5531

3.720

—0.1132
—0.1800
—0.1221

0.4856

0.342

'Discrepancy in S(—1) too small to correct meaningfully.

nance transition. The 3s 3S—3p P matrix element shows
a discrepancy of 5% leading to a deviation of 7% in the
product of matrix elements in the numerator of A (0) [Eq.
(8)]. Larger discrepancies are observed for the smaller
matrix elements. The comparison becomes difficult to
make when substantial configuration mixing is observed
in the calculations.

Results for both n=5 and n=4 basis sets are listed in
Table II. As expected, little difference is observed be-
tween them; addition of n= 5 functions allows matrix ele-
ments to be obtained for states of principal quantum num-
ber 5. Limited calculations were also performed with
larger basis sets designed to span the space of the dipole
operator as described in Ref. 4 and with larger CI expan-
sions to include additional correlation. For the resonance
transition, changes in matrix element of less than 4%
were observed in all cases. Matrix elements for autoioniz-
ing transitions are compared with those deduced from ex-
perimental oscillator strengths in Table III. Except for
problems due to configuration mixing, satisfactory agree-
ment is obtained considering the small magnitude of these
values.

IV. RESULTS

A. Intermediate quantities A(0) and A(1)

The 40 lowest roots of the CI expansion were obtained
for both Mr, ——0 and ML ——1 resulting in 24 and 22
dipole-connected intermediate states, respectively. All
values reported below have been summed over these
states. A detailed example of sum-rule convergence for
transitions to the lowest two states considered, the 3p P
and 4p P, is given in Table IV. The quantity S(0), Eq.
(6), should be equal to zero; S(—1), Eq. (7), should equal
(r cos 8},which is also given. The intermediate results
A(0) and A(1), Eq. (8), as obtained directly from the trun-
cated summation are denoted as uncorrected. "

In order to correct for the truncation error manifesting
itself as the deviation of S(—1) from (r cos 8},we have
added the difference between these quantities divided by
the energy denominator to the uncorrected A(Mi, ), as-
suming the energy Ek to be the energy of the highest state
in the truncated sum. Excellent convergence is achieved
for the 3p P A(0), no correction being necessary, and the
maximum correction for these two transitions is 30%. In

TABLE V. Dominant intermediate states.

Final state

0+( S)3p
0+( S)4p

0+( D)3p

0+( P)3p

0+( S)3s,4s, 3d
0+( S)4s, 5s, 3d, 4d, 5d

0+( S)5s
0+( D)3s, 4s, 3d

0+( D)4d, 5d
0+( P)3d

0+( S)3d,4d
0+( S)3d,4d, 5d
0+( D)3s
0+( S)5d
0+( D)3s, 4s, 3d
2s 2p
0+( D)5s, 3d, 4d
0+( I')3s, 4s
2s 2p

the remainder of the paper and in Tables V—X, we have
consistently used the corrected values. While the phase
between A(0) and A(1) is significant, the overall phase is
arbitrary.

The role of the different contributions to the summa-
tions may be analyzed as follows. The P oxygen-ion core
can exist in three states: S, which is the lowest in energy,
followed by the D and P. For linear polarization, the
ML ——0 projection of the P ground state is dipole con-
nected to the ( S)s,d, the ( D)s, d and the ( P)d Rydberg
states, which may potentially contribute to A(0). The
( S)d state and the s and d Rydberg states of the excited
cores may contribute to A(l). Note that the strong reso-
nance transition to the ( S)3s state does not contribute to
A(1).

The intermediate states which actually were calculated
to be most significant for all the transitions studied here
are reported in Table V. For the 3p P A(0), the contribu-
tion of the resonance state is strongly dominant while the
smaller contributions due to the 4s and 3d states are op-
posite in sign and nearly cancel. The concentration of os-
cillator strength in a single transition explains the excel-
lent sum-rule convergence obtained for the ML ——0 projec-
tion. The fact that the contributions from the only other
significant states cancel in A(0) and that A(0) is substan-
tially larger than A(1) means that for the two-photon
transition to the 3p P state, the single intermediate-state
approximation ' is anomalously successful.

For all transitions, the quantity P '= —,A (0)i+ —,A (1)',
which is proportional to the cross section from a single in-
itial J state summed over final J' states [Eq. (9)], is listed
in Table VI. Use of the spectroscopic energies for the in-
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TABLE VI. A{0), A(1), and P ' in atomic units.

Final state

0+{S)3p P 1.566
(1.992)

'P 2a, b

31.226
(32.237)

hP/P '

0.03

0+( S)4p P 3.720
(3.553)

0.342
(0.486)

4.691
(4.365)

0.07

0+( D)3p D 1.102
{1.242}

0.810
(1.028)

0.27

0+( D)3p' F 2.225
(2.499)

1.770
(1.965)

3.776
(4.656)

0.23

0+( D)3p' P 4.048
(4.410)

2.414
(3.067)

9.347
(12.754)

0.36

0+( P}3p" D 1.504
{1.628)

1.508
{1.767)

0.17

0+{2P)3p"3P 1.691
(2.454)

2.078
(2.301)

3,832
(5.537)

0.44

'Uncorrected values given below in parentheses.
P = 3A(0) + 3A(1) .

'hP is difference between corrected and uncorrected values.

termediate states rather than the calculated energies raises
P by -20% since the calculated energy differences tend
to be larger than the spectroscopic values. The percentage
change in P due to the truncation correction is also
given in Table VI. As expected, larger sum-rule correc-
tions (up to 44%) are required for the autoionizing transi-
tions which have important contributions from higher
states. The quantity P has also been calculated with the
smaller n =4 atomic basis set. Agreement with the results
of Table VI is excellent (within 10%) with the exception
of the 4p I' state, which has an important contribution
from a 5s level, and the highest autoionizing level. Furth-
ermore, although fewer intermediate states were summed
in the n=4 calculation, agreement in the corrected values
is significantly better than for the raw data, which sup-
ports the validity of the correction procedure.

' 1/2

g (hen =0)=2 1n2 1

EcoD

0.93944
ECTED

(10)

where the Doppler width may be written

B. Cross sections

In order to calculate cross sections that may be directly
compared with experimental observations, the line-shape
factor g (ro) and statistical factor G' ' in Eq. (2) need to be
specified. We will present cross sections assuming a laser
that is narrower than the Doppler width and is tuned to
the peak of the room-temperature Doppler profile. The
line-shape factor may be represented as a normalized
Gaussian distribution with a full width at half maximum
(FWHM) equal to the Doppler width. The peak value is
given by the expression

TABLE VII. Two-photon absorption cross sections for atomic oxygen summed over final J' assum-

ing a single-mode laser [calculated with line-shape factor of Eq. (10)j.

Final state

0+( S)3p P
0+( S)4p P
0+( D)3p' D
0+{D)3p' F
0+( D)3p'3P
0+( P)3p" D
0+( P)3p" P

%avelength

225.6
200.6
176.5
175.9
175.9
157.1
157.1

g cry~'(J'~J)
Jl

{10 cm )

1.319+0.2
0.251 +0.06
0.056+0.02
0.262+0.1

0.650+0.2
0.131+0.04
0.334+0.15

g tr J'~J
Jt

(10 46 cm4sec)

2.392+0.4
0.404+0.1

0.079+0.03
0.371+0.1

0.919+0.3
0.166+0.05
0.422%0.18

2.717+0.5
0.408+0.1

0.070+0.03
0.329+0.1

0.813+0.3
0.13120.04
0.333+0.15
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TABLE VIII. Fine-structure cross sections o J~ for two-photon absorption from 0( P) in units of 10 ' cm sec assuming
single-mode laser.

gtS final ~initial 4 P 0+( D)3p D 0+( D)3p F 0+( D)3p P 0+( P)3p D 0+( P)3p P

13.415

10.507

1.857

2.185
0.317

3.710

0.001

0.583
0.995

0.664

4.179

0.037

16.042
7.880

2.101
4.738

17.093

2.403
1.639

0.437
0.983
2.621

0.119
0.463
0.211

0.119
0.198
0.476

1.237
2.474
0.001

0.107
0.743
2.862

8.750
0.437

0.117
0.262
0.808

0.249
0.968
0.442

0.249
0.415
0.995

4.188
0.028

0.007
0.017
4.192

1/2

2v'2R ln2
C p

where 8 is the gas constant, T the temperature, p the
mass, and the frequency 2' corresponding to the transi-
tion energy has been used.

For a single-mode laser, i.e., a purely coherent state, the
photon statistical factor 6' '=1. However, many labora-
tory devices actually have a complicated multimode struc-
ture which would most nearly correspond to the in-
coherent or chaotic limit. In this case, as discussed, by
Lambropolous, photon bunching effects lead to 6' '=2.

Assuming a single-mode laser, 6' '=1 and the line-
shape factor of Eq. (10), the three common expressions for
two-photon absorption cross sections in Eqs. (2)—(4)
evaluated for transitions from the oxygen P ground state
to the 3p P, 4p P, and the autoionizing states, 0+( D)3p'
and 0+( P)3p" are listed in Table VII. The autoionizing
states have been assumed to have natural linewidths nar-
rower than the Doppler width. This is probably an excel-
lent assumption for the D and F states whose energy is
known precisely. However, since both the autoionizing P
states have not been observed spectroscopically, ' ' they
are likely to be broader. Using the estimate that when au-
toionization is allowed by symmetry, it can be several or-
ders of magnitude faster than dipole radiation, ' the au-
toionization linewidth could be an order of magnitude
larger than the Doppler width. This width would replace
the Doppler width in the denominator of Eq. (10) and the
tabulated values of o q

'
z and a would be reduced accord-

ingly.
The transition energy from the lowest ground-state

fine-structure level P2 to the average of the upper-state
fine-structure levels, which are much more closely spaced,
has been used; i.e., in Table VII, the upper states are as-
sumed degenerate in energy. Uncertainties have been es-
timated based primarily on the truncation error and on
the discrepancies in calculated matrix elements examined
in Tables II and III, although some cancellation of error
may be anticipated in the sum of a large number of ma-

TABLE IX. Relative cross sections for 3p 'P~'P transition.

I
J'final

0
1

2
0
1

2
0
1

2

Full sum

0.561

0.671
0.329
0.088
0.198
0.714

Single
intermediate

state

0.333

0.668

0.500
0.500
0.133
0.300
0.567

trix elements. No attempt has been made to estimate the
error due to omitting basis functions of principal quan-
tum number higher than 5 from the basis set. However,
even for the autoionizing transitions, the difference be-
tween the n =4 and n =5 basis results was less than or on
the order of the truncation error.

Cross sections between individual fine-structure levels
calculated from Eq. (A2), or explicitly for P~ P transi-
tions from Table I, are listed in Table VIII. Comparing
only the 'P final states, because of differences in the rela-
tive magnitudes of A(0) and A(1), fairly different distribu-
tions among the final-state fine-structure levels for transi-
tions from a given initial level are observed. This is car-
ried to the extreme in Table IX, where the calculated rela-
tive cross sections for the 3p iP~ P transition are com-
pared with those obtained assuming a single intermediate
state t A (1)=0]. As discussed above, although the
single-state value for gj, cd~ is smaller by less than
4%, the relative distributions show significant discrepan-
c)es.

The calculated value for the quantity
gz. oo '(J'~-J)6' ', reported in the companion experi-
mental paper for the 3P P~ P transition, is given in
Table X along with the results of previous calculations. ~ i
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This work
Experiment (Ref. 1)
Omidvar (Ref. 2)
Pindzola (Ref. 3)

Dipole velocity
Dipole length

2.638+0.4
2.66+0.80
2.174

2.054
1.524

In making this comparison, the photon statistical factor
6' '=2, appropriate for the chaotic field limit, has been
assumed. The present value of {2.638+0.4) X 10 ~ cm4 is
in remarkable agreement with the experimental value of
(2.66+0.80) X 10 cm . The present value is about 25%
larger than that of Omidvar and that of Pindzola obtained
with dipole-velocity matrix elements. Pindzola's dipole
length results, the form used in this work and by Omid-
var, are significantly smaller. Considering the uncertain-
ties inherent in the theoretical calculations, reasonable
agreement has been obtained. The main improvements in
the present work are the inclusion of electronic correlation
and the relaxation of the frozen-core approximation.

V. SUMMARY AND CONCLUSIONS

Two-photon absorption cross sections for seven transi-
tions in atomic oxygen have been calculated by explicitly
evaluating the perturbation-theory sum over dipole matrix
elements. Extensive CI calculations have been performed
to obtain these matrix elements and off-diagonal sum
rules have been evaluated to obtain a correction for the er-
ror due to truncation of the summation. Reasonable
agreement with the experimental determination of the ab-
solute cross section for the 3P 'P~'P transition has been
obtained.

TABLE X. Comparison of cross sections for 3p 3I'~ I' for
multimode laser (calculated with 6'~'=2).

)2)(Jt~}G)2)

(10 3' cm4)

While the effect of enlarging the atomic basis set in
these calculations could be further explored and higher
states in the summation could be approximately treated by
the quantum-defect-theory approximation, the main im-

provement to these calculations would most likely be
achieved by elirn. inating the explicit summation using the
variational method of Huo' that has been developed
within a CI framework.
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APPENDIX

The two-photon absorption cross section crJ ~ may be
written

~',"V'.-Z) =(2~)' ' (~)'r, „,,

where

1 (J'M'~z ~k&&k ~z
~
JM&

gJt~
k

(A 1)

and
~

k) is any complete set of states. Expanding in

~
LMI SMs & states

(zM) = ~(Ls)JM)

= y &LM, SM, ~ZM&~LM. SM, &,

where the quantity in brackets is the standard Clebsch-
Gordan coefficient, and noting that ML ——Mz, S=S',
Ms ——Ms, which requires M =M',

, g g(LM&S(M M, ) ~JM&(L, 'M—,S(M M, gM) g—(L'ML iz i
k)(k iz iLML)

+ M M~ k I.ML k + (A2)

The summation over k is the quantity A {ML } defined in
Eq. (8}. In deriving Eq. (A2) we have not considered
fine-structure splitting in energy. Equation (A2) has been
evaluated for P~ P transitions in Table L

Using Herzberg's definition of oscillator strength which
implies an average over initial M state and sum over final
M state, and Einstein's A coefficient, A =v ' where ~ is
the upper-state lifetime, the oscillator strength fj~ may
be written

pcA, gr 1
J 8ne gg &

final-state degeneracies. For atomic oxygen,

fz ~ 1.499 195X 10 ' ——k ( nin)
gz ~(sec}

(A3)

[(rM ~z ~ZM) ['= (F10~&'M)'2~E 2J'+ l

The matrix elements in (Al) and (A2} are related to the
oscillator strength by the expression

where p is the mass, and gq and gz are the initial- and and
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2= 3
) (L'ML

i
z

i LML ) i

(LM, lO~L M, )'
X 2 fJ'~ &

I. J S
I.'

1

(A5a)

where the curly brackets denote the conventional 6j sym-

boI, or equivalently

) (L M, fz )LM, ) f'
3 ZI. +1

(LMI 10
~

L 'Mz ) gfJ'~I

2AE 2L'+1 Jt

(A5b)

where hE is the energy difference between the initial and
final states, hE =bc/iL.
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