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%e report the derivation of an analytical expression of the one-photon transition amplitude for
free-free transitions occurring in the course of the collision of fast electrons with a hydrogen atom,
in the presence of a laser. The calculation is performed within the framework of the conventional

time-dependent perturbation theory to lowest nonvanishing order. The projectile electron wave

function is approximated as a plane wave and the infinite sums running over the H-atom spectrum
are accounted for exactly by using a compact representation of the Coulomb Green's function. As

an illustration of the usefulness of our formalism, we discuss the occurrence of dips of two distinct

origins in the cross sections and compare the respective importances of absorption and stimulated

emiss1on.

I. INTRODUCTION

The process we shall consider here can be described as
follows: in the course of the collision of a fast electron
with a hydrogen atom, in the presence of a laser beam, the
electron-atom system can absorb or emit one photon.
This can be symbolically written as

e (E;,k; )+H(1 )s+y( tao)~ e(Ef,kf )+H(ls) . (1)

Here E; (Ef) and k; (kf) are the energies and wave vec-
tors of the incoming (outgoing) projectile electron;
+y(co, e) represents the absorption (+ ) or the stimulated
emission (—) of one laser photon with frequency co and
polarization e. E; and Ef are connected via the energy
conservation relation

Ef——E;+%co .

Recent reviews on the subject and on related processes
can be found in Refs. 1—5. At very high laser intensities
the dressing of the projectile and of the target becomes
important and one has to resort to nonperturbative ap-
proaches. 9 However, for the moderate intensities of
most of the available lasers, perturbation theory still pro-
vides a sensible description of the main features of the
process. Within this framework two approaches can be
contemplated, depending on the chosen description of the
compound system e -H. For instance, the process can be
described as a first-order radiative transition between
states of the continuous spectrum of the H ion.
However, if the projectile is fast enough, another, some-
what simpler approach, based on the Born approximation,
can be used. ' ' In this latter case, the process has to be
considered as of second order, the main difficulty encoun-
tered in the calculation arising then from the presence of
the infinite sum running over the whole hydrogenic spec-

trum. Within the context of the problem considered here,
it has been overcome in various ways, either by solving an
inhomogeneous differential equation, ' or by using a Stur-
mian expansion of the Coulomb Green's function. ' 's In
these works, however, the transition amplitude is ex-
pressed in terms of infinite series whose analytical proper-
ties are not easily understood. We report here the deriva-
tion of a closed-form analytical expression of the ampli-
tude, given in terms of Appell's hypergeometric functions
of two variables, obtained by using an integral representa-
tion of the Coulomb Green's function. ' The distinctive
advantage of deriving an analytical expression is that it is
an easy matter to investigate its behavior in limiting cases
of physical interest, such as the soft-photon or the small-
momentum-transfer limits or even to get its analytical
continuation towards the region of higher photon frequen-
cies, i.e., when other expansions are inadequate.

The organization of the paper is as follows: in Sec. II
we briefly present the formalism and delineate the various
levels of approximation used in the calculation. The
derivation of the final expression of the amplitude is out-
lined in Sec. III, in which the soft-photon (to~0) and the
small-momentum-transfer (4~0, 4=k; —kf ) limits are
also investigated. Numerical results are presented in Sec.
IV, in which we discuss the relative magnitudes of the dif-
ferent terms contributing to the total amplitude. We also
compare the transition rates of absorption and stimulated
emission for various values of the parameters governing
the collision dynamics. A brief discussion ends the paper
in Sec. V.

II. THEORY

As already mentioned, the relevant cross section for the
scattering of an electron by a hydrogen atom, with ab-
sorption (emission) of one photon from a single-mode
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laser field, can be defined into two different ways, depend-

ing on the chosen description of the process. If it is
described as a first-order radiative transition between

states belonging to the continuous spectrum of the H
ion, the differential cross section reads in atomic units"

dg jdQ(ki)=(a/2m)kiddo i
(r.e)i i i

(3)

This expression has the dimensions of (length), i.e., is a
transition probability, normalized to both the incoming
electron density and photon flux. In atomic units it is
given in terms of ao, where ao is the Bohr radius. Here a
is the fine-structure constant and (r e)i; is the dipole
transition matrix element betwo:n states of the continuous
spectrum of the H ion, with asymptotic wave numbers

k; and ki.
Another approach is to consider the H atom and the

projectile electron as independent and to treat perturba-
tively the Coulomb as well as the laser interactions. If, in
addition, the projectile is fast enough, its wave function
can be approximated by a plane wave and exchange ef-
fects can be neglected. Within this approximation the
process has to be described as second order, since two in-

teractions are responsible for the transition'

H, =( 1 /rid —1 jr i ); H, =Roe(a +a ) p .

--- --X----.

FIG. 1. Diagrams contributing to the one-photon free-free
transitions occurring in the course of an e —H-atom collision,
The diagrams denoted I and II are referred to as "direct" and
those denoted III and IV are referred to as "atomic" diagrams
in the text.

named "atomic" as they depict the interaction of the pho-
ton with the atomic electron.

When specialized to the case of a single-mode laser with
occupation number N &~1, the contribution of the photon
field reduces to a multiplicative factor common to each
amplitude entering the expression, Eq. (6), of the overall
transition matrix element Ty . It is then an easy matter
to sum over the free-wave projectile states, using in partic-
ular the known result

1 1 4m
k& —— k; = &[exp(ih ri) —1],

rii ri

where h=k; —k~. This allows us to express T~ in terms
of atomic matrix elements. Then, by substituting into the
expression of the transition probability, normalized to the
incoming electron density and photon fiux, one obtains
the following general formula for the differential cross
section:

do Sea ki
ice[(ls

~

e' 'Gc(Ei, co)r.e~ is)—

iver

10 ki g~ ei

+(1s
~

r eGc(Ei, +co)e' '~ ls)]

(1s i(e' '—1)i ls) . (8)

This formula, as it stands, is vahd for both emission and
absorption, the difference between these processes lying
only in the energy conservation relation, Eq. (2), which
governs the respective magnitudes of k;, ki, and b, . We
note that this form of the cross section should be
equivalent to the expression Eq. (3), within the limits of
validity of the Born approximation for describing the pro-

Here H, corresponds to the Coulomb interaction between
the projectile and the atom, ri being the position of the
p«jectile and ~is= I ri —r2

l
where ri is the position «

the atomic electron. H„ is the dipole interaction Hamil-
tonian where Ao is the amplitude of the vector otential
of the laser field with polarization e and a and a are the
usual photon annihilation and creation operators for the
coilsldered lilode.

The relevant second-order transition amplitude is of the
general form

Tf '= (y ~
(H +H )G (E0~)(H +H )

~
l ) (5)

where
~

i ) and
~
f) are the initial and final eigenstates of

the Hamiltonian operator Ho of the unperturbed, uncou-

pled system Ho Hat++el++f ~ Here Hat corresponds
to the hydrogen atom, H, &

is the kinetic energy operator
of the projectile electron (hereafter labeled with the index

1), Hy describes the laser field and Go(z)=(z Ho) ' is-
the resolvent operator associated with Ho. Among the
four possible combinations of the interaction Hamiltoni-
ans only two of them actually do contribute to the process
defined by the energy conservation relation Eq. (2) and
one gets

TI if ~H„GO(E;——)H,
~

')+if [H,GO(E;)H„(i ) .

(6)

As the interaction Hamiltonians H„and H, can both act
into the projectile or the atomic configuration space, this
leads to four amplitudes which are conveniently described
with the help of the diagrams displayed in Fig. 1.' For
the sake of future discussion, we shall refer to the contri-
butions of the diagrams I and II as "direct" since they
correspond to the interaction of the laser field with the
projectile and are usually the only ones taken into account
in lowest-order bremsstrahlung calculations. On the other
hand, the contributions of the diagrams III and IV will be
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jectile. Note also that in the first two terms, correspond-
ing respectively to the diagrams III and IV,
Gc(W)=(8' —H„) ' is the Coulomb Green's function.
The third term, which represents the contribution of the
diagrams I and II, reduces here to the ground-state atomic
form factor

cess. The computation of the terms containing the
Coulomb Green's function is described in the following
section.

III. CALCULATION

( ls
~

(e' '—1)
~
ls ) =16(d +4) ~—1 . (9)

We describe here the analytical calculation of atomic
matrix elements of the general form

We note, for the sake of future discussion, that the terin
—1 which appears on the left-hand side corresponds to
the mere contribution of the atomic nucleus to the pro-

M&,(d,e;0)=(ls
i
e'a'Gc(0)r @i Is) .

Our starting point will be the formula derived by I( lars-
feld, '7 for the closely related matrix element

M, (k,k';())= f dr J dr' —e & e '+'G~(rr'())e+i+' e —I"—
T

—lynx
du u ~~(1—2th +y2u )

[(p, +x)i+d2][(p'+x)z+ d'z]

Here x =v' —20 and

(p2 —x +d2)(p' —x2+d' )+4x d d'

[(p+«)'+ d'][(p'+x)'+ d']
[(p —x)'+ d'][(p' —«)'+ d']
[(p+x)'+d'][(p'+x)'+ d']

(1 lb)

(12a)

(12b)

Note that similar formulas have been derived by several authors in different contexts; see, for instance, Refs. 18 and 19.
The sought after matrix element Mi, (d,e;0) can easily be obtained from M& & (d, d', 0), via the following transfor-

mation:

Mi, (d,e;0)=—,lim ie, M„& (d, d';0)1 8 . . 8
1T p p a'-+0

where the dipole operator e r has been introduced as resulting from the operation

(13)

lim ie, e
A'-+0

(14)

One then gets

Mi, (d,e;0)=—

1

Mi, (d,eQ)= i 2«'(—d e), [(p+x) +d ] (p'+x) duu' '~ (I—2Pu+y2u ) 2

where P and y are obtained from the expressions Eqs. (12a) and (12b) of P and y by r7)lacing d'=0. Noting that the
remaining integral represents an Appell's hypergeometric function of two variables Fi, ' one has

, [(p, +x) +d ] (p'+x) F,(2—1/x;2, 2;3—I/x;u+, u )
~ „„p p

where u+ and u are the zeros of the denominator in the
integral Eq. (15):

Q
(p' —x)(p —x+i d)

(17)(p'+«)(p+«+id)
The action of the operators 8/Bp and 8/Bp' is obtained
from the known derivation formulas of the functions Fi.
Then, speciahzing to the case p=p'=I and after some
algebra, the following expression of the amplitude can be
obtained.

M„(d,e;0)=i2 (d.e)[A+B(+d)+B(—d)],

A = —,'(1—x ) '(d +4)

(1+x)(d +4)
(2x —1)[(1+x)'+d']

(18a)

(18b)
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sx'8(+4)=
(1+x)'[(1+x)'+b,']'(2x —1)(3x —1)

1+x+i6
X ' 1++~

XFi(3—1/x;3, 2;4—1/x;u+-, u+) . (18c)

A few remarks concerning this expression may be of in-
terest here. First, it can be shown that the preceding
Appell's functions of two variables contained in Eqs. (18)
can be expressed in fact as a finite sum of Gauss hyper-
geometric functions zFi. This may be readily shown from
the integral representation of the Fi functions. ' ' '

However, since the actual computation of the Fi func-
tions as they stand does not present any special difficulty,
we do not make explicit here their expression in terms of
2Fi functions as it is too comphcated to be reproduced
here. Another point that deserves to be mentioned is that,
given the numerous contiguity relations existing between
Fi functions whose parameters differ by an integer, the
expression Eq. (18) is not unique and many variants might
be derived.

We have found useful the compact form displayed here,
in particular from the computational standpoint: the nu-
merical calculation of these expressions has been per-
formed on a 512k Macintosh microcomputer. Our nu-
merical results have been independently checked on using
a more general code based on the use of a Sturmian repre-
sentation of the Coulomb Green's function.

Another nice feature of this expression is that given the
properties of the Fi functions, it clearly displays the oc-
currence of simple poles in the atomic amplitude

Since this term is preceded by the multiplicative factor iso

in the expression Eq. (8) of the total amplitude its contri-
bution becomes vanishingly small with respect to the
direct term. This point will be discussed in more details
in Sec. IV.

(ii) Small momentum transfer Th.e limit of small
momentum transfer is easily obtained via the approxima-
tion e' '—1 -ih. r, which corresponds to the Bethe-Born
approximation. The atomic amplitude Mi, (h, e;Q} then
reduces to the dipole second-order matrix element

Mi, (LL,e;Q}=i(is
~

b, rG&(Q)e r
~
ls } . (20)

The explicit form of this amplitude can be obtained from
the general expression Eqs. (18) by investigating the limit
5~0. One easily gets

Mi, (h, e;Q). These poles are associated with the values
x =1/n, n =2,3,4, . . . which correspond to laser fre-
quencies matching an atomic resonance co„=—,

' —1/2n
For values of the frequency close to these resonances, one
of the second-order atomic matrix elements will become
very large and mill dominate the other terms in the total
transition amplitude.

The limiting behavior of the amplitude can be investi-
gated in two cases of physical interest.

(i) Soft phot-on limit: co~0. In this limit one has
respectively: 0= ——,

' +m~ ——, and x~1 and the
lowest-order term of the expression Eqs. (18) reduces to

lim Mi, (h, eQ)= i(—h e)2 3(h +1 2)(b +4)
td~0

(19)

x —2
Mi, (d,e;Q)= i 2 (b, —e) 2 i+ i ~ zF, (1,—1 —1/x;3 —1/x;u)

4(1—x ) (1—x ) (1+x) (2x —1)
(21)

where u =(1—x)2/(1+x} . This result, or similar ones,
had been derived by several authors in different con-
texts 17,23—25

It is interesting to note that, within the framework of
the Bethe-Born approximation, the contribution of the
direct term Eq. (7) associated to the diagrams I and II,
Fig. 1, vanishes identically and the overall amplitude
reduces to the above atomic terms Eq. (21). If, in addi-
tion, one allows the frequency ~ to become small, one
easily shows that

lim Mi, (ik, e;Q)= ——', (ih e),
Cd ~0

which corresponds, as expected, to half the value of the
static dipole polarizability of the H atom in its ground
state.

These limits, as well as the general features of our re-

sults concerning the dependence of the differential cross
section on the parameters governing the collision dynam-
ics, are discussed in ihe next section.

IV. RESULTS AND DISCUSSION

As already noted by several authors, ' ' ' the
behavior of the cross section depends critically on the rel-
ative magnitudes of the direct (diagrams I and II) and
atomic terms (diagrams III and IV). The contributions of
those terms, in turn, depend on the parameters governing
the collision dynamics, i.e., the laser polarization and fre-
quency and the momenta of the incoming and outgoing
electron.

The laser polarization plays a purely geometrical role
which, as we sha11 see, can give rise to a strong asymmetry
between absorption and emission. On the other hand, the
energetics of the process depends prominently on the laser
frequency and on the magnitudes of the projectile inomen-
ta. Note that, as the validity of our approximate treat-
ment is restricted to relatively large values of the momen-
ta (or energies} of the electron, one is naturally led to
mainly discuss the infiuence of the laser frequency co on
the process. Within this context, one can distinguish two
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distinct regimes according to whether aI is small (soft-
photon approximation) or is of the same order of magni-
tude than characteristic atomic frequencies. The results
of the preceding section wiH provide us the clue for dis-
cussing the variations of the cross sections in respectively
the soft-photon and the vacuum-ultraviolet (vuv) or opti-
cal frequency ranges. We shall discuss afterward the limit
of small momentum transfer 5-+0 (Bethe-Born approxi-
mation) and extend the discussion to the general case in
which none of these simplifying assumptions holds. In
this regime, the angular variations as weH as the disper-
sion curves for the cross sections display several interest-
ing features such as deep minima, resulting either from
purely geometrical considerations or even from destruc-
tive interferences between the different amplitudes.

(i) Soft-photon limit: ro~O Wh. en inserting the corre-
sponding limiting form Eq. (19) of the atomic terms in
the expression of the overall transition amplitude Eq. {8},
one abserves that they become negligibly small with
respect to the direct term, associated to the diagrams III
and IU, which is dominant given its dependence in ro

This allows us to check that, in the soft-photon limit„ the
radiative cross section diverges and is proportional to the
elastic scattering one:

lim -Smakfni s(h e)2[16(62+4) 2 —I] b . (23)
m odQ
This result is a form of the I.ow theorem, o which precise-
ly states that the bremsstrahlung cross section diverges at
low frequencies and remains proportional to the elastic
scattering cross section.

The behavior of the differential cross section for one-

photon absorption in this range of frequencies is illustrat-
ed in Fig. 2, in which we display its angular dependence
for E; =5.0 and nI =0.01 a.u. One observes that, excepted
at very small scattering angle 8&3', corresponding to
small momentum transfer, the direct term is overwhelm-

ingly dominant. In this range, the value of the cross sec-

tion is given, with great accuracy, by the expression Eq.
(23}. The occurrence of the minima, which appear here at
very small scattering angle, is an almost general feature of
the absorption cross sections and will be commented on
below. Note also that, at wider angles, the cross sections
for stimulated emission and for absorption display the
same behavior, both processes being equiprobable in the
low-frequency domain.

(ii) Optical and uuu frequencies W. hen the laser fre-
quency increases the dominance of the direct term be-
comes less marked, except at large scattering angles. This
behavior is exemplified in Figs. 3 and 4, in which we
present the angular variations of the absorption cross sec-
tion for E; =5.0 and frequencies rII=0. 1, and co=0.35
a.u., respectively. &e have considered here the particular
geometry e) ~k; which simplifies to some extent the angu-
lar dependence without altering the generality of the dis-
cussion. In Fig. 4, for instance, we observe that the atom-
ic term is dominant at angles 8&25' and remains impor-
tant until 8=40'.

In those figures the differential cross sections display
two minima noted (a) and (b). Both kinds of minima cor-
respond to values of the scattering angle for which the
cross section is actually zero, nevertheless the origin af
these zeroes is different in each case.

One observes that the minima denoted {a) appear in fact
at angles such that the scalar product h e=0. Since this
product is common to the direct and atomic terms, they
both cancel as well as the overall amplitude. Note that
this feature is peculiar to the case af transitions between
rotationally symmetric s states. For the special geometry
chosen here (e'( ~k; ~

(2), the values of these angles are sim-

ply given by the relation 8=cos '(k;/kf) (note that this
condition should be modified in the case of more general
geemetries corresponding to different orientations of the
laser polarization ). This result allows us to predict the
occurrence of deep minima in the absorption cross sec-
tion, situation in sharp contrast with the case of emission
in which the conditian k;/kf &1 cannot be met. This
dissymmetry between absorption and emission will be dis-
cussed in more detail following.

On the other hand, the minima denoted (b) occur at an-

gles for which neither the atomic nor the direct ampli-

0
[

l

'I /

0 10 20 30
Scattering angle 8 (des)

FIG. 2. Variations of log~o(do, /dQ) ~ith the scattering an-

gle 8 for one-photon absorption. e~ ~k„E;=5.0 a.u. and
m=0, 01 a.u. Dashed line: contribution of the direct terms;
dot-dashed line: contribution of the atomic terms; solid line:
overall cross section. The occurrence of the minima denoted (a)
and (b) is discussed in the text.

4.
10 20 30

Sce't'tef Ills elis le I

(des�)

FIG. 3. Same as for Fig. 2, but with co =0.1 a.u.
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Scattering angle 8 (ring)

FIG. 4. Same as for Fig. 3, but with u =0.35 a.u.

I rs quency cu ( au. )

FIG. 6. Same as for Fig. 5, but with E;=20.0 a.u.

tudes vanish. One can show in fact that they cancel since,
for the set of parameters chosen here, they are of opposite
signs and that their magnitudes are varying in opposite
directions when the scattering angle, i.e., the momentum
transfer, increases. This can easily be understood, when

observing that at small values of the momentum transfer
6 the direct term is very small itself, see Eq. (9), and that
the situation is inversed for large values of b.

These minima are also observed in the dispersion curves
for the variations of the absorption cross section in terms
of the laser frequency. In addition, such curves exhibit
also the resonances occurring when the laser frequency
matches an atomic transition frequency. This behavior is
Illustrated in Figs. 5 and 6, in which we present the varia-
tions of the absorption cross section in terms of the laser
frequency, for a fixed scattering angle 8=10' and at ener-
gies of the incoming electron E; =5.0 and E; =20.0 a.u. ,
respectively. The geometry is the same as in the preced-
ing discussion. As the frequency increases, so does the
momentum transfer, and one observes that the direct term
decreases steadily, goes to zero when the condition d e=O
is fulfilled and then increases again toward an almost con-

stant value. This contrasts with the behavior of one of the
atomic terms which exhibits a resonant structure when
the laser frequency comes close to an atomic transition
frequency: this makes the atomic contribution become
dominant in a quite large domain in the neighborhood of
the resonance. We note also the presence of minima be-
tween two resonances: this behavior results of the fact
that the resonant atomic amplitude changes of sign in this
range and can compensate the direct term contribution.
%e note also, in the Fig. 6, that at higher incoming elec-
tron energies, E; =20.0 a.u. , the condition h.e=O cannot
be met in the frequency range displayed here (the
minimum would occur at co =0.63 a.u.). Accordingly, the
observed minima belong to the type (b), i.e., correspond to
destructive interference effects between the atomic and the
direct amplitudes.

(iii} Stimulated emission Uersus absorption The d. iffer-
ence between emission and absorption may become impor-
tant, principally in the vicinity of the minima discussed in
the preceding paragraph. This is illustrated in Fig. 7, in

Cgg

0.'I 0.2 0.3
10

(a}

30 50

frequency cu (a.u. )

FIG. 5. Variations of loglo(do. , /dQ) in terms of the laser
frequency or for one-photon absorption. ei ~k;, 8= IO', E; =S.O
a.u. Dashed line: contribution of the direct terms; dot-dashed
line: contribution of the atomic terms; solid line: overall cross
section.

Incoming electron energy (a.u.)

FIG. 7. Variations of loglo(do /d 0) in terms of the incoming
electron energy E; for one-photon absorption (solid line) and
stimulated emission (dot-dashed line); e~~k;, co=0.3S a.u. , and
0= 10'.
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which we present the dependence of the cross sections for
both processes in terms of the energy of the incoming
electron, at fixed frequency to=0.35 a.u. and scattering
angle 8=10. The orientation of the laser polarization is
the same as before. The main difference observed between
emission and absorption cross sections comes from the
presence or the absence of the two kinds of minima dis-
cussed above. In particular, as already mentioned, the
condition h e=0 cannot be fulfilled in the emission case,
for purely kinematical reasons. In the vicinity of the cor-
responding energy (E; =11.257 a.u.) stimulated emission
dominates absorption by several orders of magnitude.

The situation is a little bit more intricate in the vicinity
of the other minima, which are caused by a destructive in-
terference between the atomic and direct amplitudes. As
a matter of fact, the cancelations occur in both cases at
energies which, although close together, are distinct: this
leads to steep variations of the ratio of the cross sections.
This behavior is displayed in Fig. 8, in which we present
the variations of the ratio of the cross sections for emis-
sion and absorption in terms of the laser frequency, at a
given scattering angle and for two typical incoming elec-
tron energies. In the case E;=5 a.u. , one observes a
"kinematical" maximum, denoted (a), corresponding to
the vanishing of the absorption cross section, and a
feature, denoted (b), associated to the destructive interfer-
ences in the amplitudes. These latter features are the only
ones to survive at higher energies: this is already verified
for Et 20.0 a.u. ——

(iv) Small momentum transfer, Bethe-Born approxima-
tion Our r. esults clearly display the inadequacy of the
Bethe-Born approximation to describe the process con-
sidered here, since it amounts to neglect the direct term
which is often dominant, in particular at lower frequen-
cies. In addition to the small-angle —small-momentum-
transfer condition, the range of validity of this approxi-
mation is in fact reduced to the somewhat higher-
frequency regime in which the atomic contribution can
become resonant.

V. CONCLUSION

In this paper, we have presented the results of analyti-
cal and numerical calculations of the amplitudes and cross
sections for the free-free transitions occurring in the
course of the collisions of fast electrons with a hydrogen
atom, in the presence of a laser. The calculation has been
performed within the framework of the conventional per-
turbation theory to lowest nonvanishing order. Analytical
expressions of the transition amplitudes have been ob-
tained by using a compact representation of the Coulomb
Green's function, which allowed us to conveniently study
several limits of physical interest.

p
4IQ

5(

0.1 0.2 0.3 0.4

frequency o~ (a.u. )

FIG. 8. Variations of the ratio of the cross sections for
stiraulated emission and absorption (logarithmic scale) with the
laser frequency t0. e~ ~k;, 8=10'. Solid line: E; =5.0 a.u. ; dot-
dashed line: E;=20.0 a.u.

Among other results we predict the presence of deep
minima in the absorption cross sections. Some of these
minima are of purely kinematical origin and could be ob-
served under a rather large class of scattering geometries
and laser polarization orientations, for transitions between
s states. As they have no equivalent in the stimulated
emission case, this latter can be strongly favored with
respect to absorption. Another kind of minima, associat-
ed to destructive interferences between the so-called atom-
ic and direct amplitudes, can also occur in both the emis-
sion and absorption cases. Since they result from the can-
celation of two amplitudes which are evaluated at a
lowest-order approximation, their location cannot be as-
sessed with certainty. It is even possible that a higher-
order calculation would, at least partly, wash out these
minima. However we %1sh to stress here that our calcula-
tion is consistent within the order of approximation re
tained and that any refinement would present considerable
difficulties since it would require the computation of
second-order Born amplitudes.

More general calculations, including the excitation of
the atom and conducted along the same lines, except that
they rely on another, Sturmian, representation of the
Coulomb Green's function, will be published elsewhere. 2~
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