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Nosissalization of resonance wave functions and the calculation of resonance widths
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%e show that the resonance wave function can be generally thought of as being unit normalized

under an appropriate analytic continuation procedure and that, so normalized, the resonance eigen-

functions obtained from a finite-basis-set calculation can be used to evaluate partial widths. Numer-

ical results are given for two model problems.

I. THEORY

There is a vast amount of literature associated with the
description of resonance wave functions. Much of this
literature has emphasized the similarities between reso-
nance states and bound states. This similarity is reflected
in the procedures used to characterize resonances, which
are often not those of traditional continuum theory.
Indeed, most of the so-called "direct" methods for com-
puting resonance positions and lifetimes, ' such as complex
scaling and other related methods, s rely heavily on the
computational techniques of conventional bound-state
theory.

The resonance energy sit —Ett iI /2—is g—enerally de-
fined as a pole of the S matrix on a second sheet of the
complex energy plane (or, for a single-channel problem,
the lower-half k plane with k=v'2E). In a variety of
methods employing complex basis functions, the reso-
nance energy is directly obtained as one of the complex
eigenvalues of an analytically continued finite-matrix ap-
proximation to the Hamiltonian. The imaginary part of
the resonance energy so obtained gives the total width or
inverse lifetime against decay of the resonance into all
open channels.

However, there is an alternate definition of the reso-
nance width as the modulus squared of a "golden-rule"
matrix element of the scattering potential between the res-
onance wave function and an unperturbed continuum
function, evaluated at the same energy. The partial
width for decay into asymptotic channel 4a, where a
stands collectively for all the quantum numbers required
to specify the final asymptotic state, is defined by

These partial widths do not, however, sum to the total
width, except in the case of a narrow resonance. For
broad resonances, the two definitions are not equivalent.

The locations of the complex poles of the S matrix do
not give any information about the partial widths. In two
recent studies, however, it was shown how the resonance
wave function %a, obtained either from a complex coordi-

nate or basis-set Siegert calculation, could be used to ob-
tain partial widths via Eq. (1}. The normalization of 4ii
in these studies was fixed by requiring the computed I, to
sum to the total width I obtained from the complex reso-
nance energy. We have noted, s however, that this identity
is only valid in the case of a narrow resonance. More re-
cent studies have pointed to the inconsistency of requir-
ing the partial widths to sum to the total width and allud-
ed to an ambiguity in the normalization of ql„. There
seems to be some confusion regarding this latter point.
Indeed, it has been asserted that the partial widths cannot
be evaluated directly from Eq. (1}because the resonance
wave function obtained from a finite-basis-set calculation
cannot be properly normalized. It is our purpose here to
show that this is not the case and that, just as for bound
states, the resonance wave functions obtained from a
complex-basis-set calculation should be normalized to uni-

ty. In other words, the complex-basis-set approach pro-
vides the correct analytic continuation of the normaliza-
tion integral.

As More and Gerjuoy have pointed out, the normaliza-
tion of the resonance wave function is fixed by its defini-
tion in terms of the residue of the Green's function at a
resonance pole,

~
%x ) ( %a

~

= lim (E ett )G(E), —
E-+cg

(2)

where the dual function (kent ~

is in general not simply
the complex conjugate of

~
%it ). For simplicity, consider

a single partial wave of a central potential scattering prob-
lem, although the results of this section are by no means
limited to potential scattering. The resonance wave func-
tion %x in Eq. (2} is not normalizable in the usual sense
that the integral

('pa i%'a ) = J qt tt(r)%tt(r)dr (3)

is finite, because the asymptotic form of the resonance
wave function is

1k' p
8

%(r) ~ A ~ao,
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G(E)=Go(E)+Go(E)VG(E),

taking the residue of both sides of this equation at ex as
in Eq. (2) gives the condition

Go( sa ) V%'ii ——%s . (8)

This is the well-known result that the kernel of the
Lippmann-Schwinger equation has a unit eigenvalue at
sa, because that energy is a discrete eigenvalue of the
Hamiltonian. " Equation (7) also yields

e„)&e,
I

= »m (Z —e, )[1—G,(E)V]-'G, (E

Taking the matrix element of this equation with 4„ from
the left-hand-side and %s from the right-hand side gives

=('Pa, lim (E—ea )[1—Go(E) V] 'Go(E)mls )
E

=('Pa [—dGO(&a)/«a Vl 'Go(&a)'Pa)

=('Pa [Go(&~)GO(&a) Vl 'Go«it}q'a) (10)

in a manner analogous to the derivation of Eq. (9.16) in
Ref. 11. Replacing %a in the last line of this equation
with Go(sa ) V+ii immix»ately gives the result

where kx is the resonance momentum and lies in the
lower-half k plane.

The point, however, is not whether or not the integral
in Eq. (3) can be assigned a finite value. There are any
number of ways to render the normalization integral fi-
nite, for example regularization (for central potential
scattering the radial functions satisfy 4 a ——4a },

(0'a, %'x)=lim f e "%a(r)+a(r)dr, (5)
c~O

or contour distortion

(4'a, %a}=f %a(re' )%a(re' )e' dr

with 8 & I
tan-'[Im(ka )/Re(ka )] I

Gyarmati and
Vertse' have shown that all of these methods give the
same result, namely the analytic continuation of the result
from Im(ka }&0 into the lower-half k plane where the
physical resonance momentum lies. Thus there is a
unique analytic continuation which assigns a finite value
to the integral in Eq. (3}.

The question here is, what is the result if ala from its
definition in Eq. (2) (in terms of the residue of the full
Green's function at a pole) is subjected to one of the ana-
lytic continuation procedures which renders the norma»-
zation integral finite? The answer is suggested by some
simple formal manipulations in which it is understood
that each matrix element, denoted by (f,g), is defined via
one of the valid analytic continuation procedures. First
we note that since G(E) satisfies

(12)

This representation is only valid in the cut Z plane (the
physical plane), excluding the positive real Z axis. To
find the complex poles of G(Z), Eq. (3) must be analyti-
cally continued from the physical onto the second
Riemann sheet. This can be done by either complex scal-
ing the coordinates in the Hamiltoniani or by using
complex-basis functions with a scalar defined as
above. ' In the latter case, the eigenvectors are normal-
1zed as

(P;,Pj)=f P,'(r)PJ(r)d r =5J . (13)

Note that for a purely radial problem P;=P,'. In either
case, the eigenvectors, including the resonance eigenvec-
tors, used to construct Eq. (12} must be taken to be unit
normalized. With the resonance wave function so nor-
malized, Eq. (1}can be applied directly to obtain the reso-
nance width.

The resonance eigenvalues are associated with isolated
poles of the analytically continued S matrix. The corre-
sponding eigenfunctions of the Hamiltonian, which for a
single-channel potential scattering problem behave asymp-

(ik& r )
totically as e /r with Imkii &0 and hence increase ex-
ponentially for real r~00, can nonetheless be unit nor-
malized by analytic continuation. Consider the following
example. For analytic potentials, one can obtain an ap-
proximation to a resonance eigenvalue by diagonalizing
the complex-scaled Hamiltonian H(re's) over a set of real
orthonormal functions [X;(r)j. The resonance eigenvec-
tor gc;X;(r) is an approximation to the true resonance
wave function evaluated at re' and will hence decrease
exponentially at large r as long as we choose
8~

~

tan '(Immi/Reka }
~

. However, we can also think
of the set (c; j as expansion coefficients of the exponen-
tially increasing resonance wave function evaluated at real
r, which is obtained by diagonalizing the real Hamiltoni-
an over the set of complex functions I

e' ' 'X;(re '
) j.

Both notions are valid since, for analytic potentials at
least,

f X;(r)H(re' )XJ(r)d r

f X;(« ' )H(r)XJ(re ' )d r . (14)

integral has the value +1. We argue here that normaliza-
tion to + 1 can be chosen without loss of generality, since
the same relations, Eqs. (8)—(11),hold for bound states.

Although this derivation obviously ignores some formal
details necessary to make it a rigorous proof, it can be
given further support by examining some successful nu-
merical procedures involving analytic continuation for
constructing the full Green's function and its matrix ele-
ments. Consider for a moment a finite-basis-set calcula-
tion employing real basis functions' and a real Hamil-
tonian. The matrix eigenvalues and eigenvectors of the
Hamiltonian (E;,P;) can be used to construct the follow-
ing approximation to the full Green's function in the
coordinate representation:

and shows that the analytically continued normalization If the set of functions IX;(r) j is orthonormal, then the
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complex set I
e' ' / 'X;(re '

)I is normalized as in Eq.
(13).

We prefer to think of using complex-basis functions
rather than complex scaled Hamiltomans since this pic-
ture can be generalized to allow the use of mixed sets of
real and complex basis states, normalized as in Eq. (13},
and can even be valid for nonanalytic potentials, ' such as
the square we11, as long as the analytically continued ma-
trix elements are well defined. In the following section,
we will illustrate the previous discussion by considering
two examples.

large r and diverges as indicated in Eq. (4) since
Im(kR ) = i—g W. e can nevertheless define its normaliza-
tion by analytic continuation from the upper-half k plane
using either regularization [Eq. (5)] or contour distortion
[Eq. (6}]. The reader can easily verify by either means
that +R, given in Eq. (22) from its definition in Eq. (2) in
terms of the residue of the Green's function, is unit nor-
malized.

The partial-width matrix element can be computed,
even for this single-channel problem, from its definition, '

y( k) = (2n k )'/ (Xo(kr), V+R },
where

A. One-term separable potential

' 1/2

kr
(24)

The first problem we treat here is one we have con-
sidered previously, scattering by a one-term separable po-
tential,

V= (g)A, (g~

where we choose

( r
~
g}=exp( gr)Ir . —

This problem has a simple analytic solution' which we
will discuss first, and can also be conveniently addressed
computationally by the method of complex basis func-
tions.

The T operator for this problem is

(17)

Only the s-wave free-particle wave function Xo(kr) ap-
pears in Eq. (23) because there is only s-wave scattering
for this potential.

In general the evaluation of Eq. (23) requires that we
employ one of the analytic continuation methods to pro-
vide the analytic continuation from the upper-half kR
plane. The result in this case can be obtained with or
without analytic continuation because of the special rela-
tion between the rate of increase of the resonance wave
function with r and the rate of decrease of the potential
[recall Im(kR ) = i g] W—e fi.nd

(2kk„g)' (k„+ig)y(k)= (25)g'+ k'

As we have shown previously the partial-width matrix
element gives the total width I from Im(eR) only in the
narrow resonance (Breit-Wigner) limit.

b(E}=(g ~
Go (E)

~ g}= (k+ig) (18) (26)

ik& r
e

X (22)

Thus O'R(r) is indeed proportional to exp(ikRr}/r for

and has a pole at eR ——kR/2 where the denominator of Eq.
(17) vanishes,

kR ——2(mA, /g)' —ig .

The resonance wave function can be evaluated from Eq.
(2) as the residue of the full Green's function

G+(E)=Go (E)+Go (E)T(E)Go (E),
evaluated at E=sR. Using Eq. (17) in Eq. (20) gives

I
'pR &

=[—kR I~'«R /2)1'"Go+ (kR I»
I 0 &

where 5'(k /2) denotes the derivative of Eq. (18) with
respect to k. Note that in Eq. (21) the Green's function is
the analytic continuation of Go+(kR/2) from the upper-
to the lower-half k plane. For the choice of

~ g) in Eq.
(16) the right-hand side of Eq. (21) can be evaluated
directly to give the particularly simple result

VR{r)=2[ kR I6'{k„/2)]'/—
(kR +g')

This problem can also be solved numerically using
complex-basis-function techniques. The results of such a
computation are illuminating because they show that the
unit-normalized resonance wave function from such a cal-
culation can be used to compute the partial-width matrix
elements y(k). Since only s-wave scattering occurs for
this potential, we can solve the problem completely by di-
agonalizing the s-wave Hamiltonian in a basis of complex
Laguerre functions of the form

e
—ie)3/2

P„(ae ', r)= pe
—ex@' l' /2

[(n + 1)(n +2)]'/3

XL„(ae ' r) . (27)

Note that these functions are orthonormal as they are
written —without any analytic continuation being required
to define the normalization integral in Eq. (13). All the
matrix elements of the Hamiltonian in this basis can be
evaluated with simple analytical formulas or reduced to
fmite hypergeometric series. This procedure yields an ap-
proximate resonance energy and the resulting finite-basis
approximation for %'&,

X—1

%',~(r)= g a„P„(ae ',r),
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also provides an approximation for the partial-width ma-
trix element,

X —1

y(k)=(2irk)'~ g a„(XO(kr), VQ„(ae ', r)) . (29)

No analytic continuation is required to evaluate the ma-
trix elements in Eq. (29).

Calculations are reported here for values of the poten-
tial parameters chosen as A, =0.01 and /=0. 1, and for
values of the basis-set parameters of a=1.0 and 8=20'.
In Fig. 1(a) the finite-basis approximation to the reso-
nance wave function from the complex-basis calculation
described above is compared with the exact wave function
from Eq. (22). These are both eigenfunctions of the real
Hamiltonian and the finite-basis-set approximation mim-
ics the exponential increase of the resonance wave func-
tion as r increases until the spatial extent of the basis is
Cxceeded.

Nonetheless, Eq. (29) provides a perfectly convergent
approximation for y(k) as is shown in Table I. The
reason for this somewhat paradoxical result is that inter-
changing the order of summation and integration in Eq.
(29) results in a series representation in which each term is
finite, and which, when it converges, must converge to the
same result obtained by analytic continuation of the in-

tegrand of the original integral. Although we report only
calculations on exponentially bounded potentials in this
paper, we expect that this procedure will be generally con-
vergent. Additionally we note that the results in Table I
illustrate the point that, for finite widths, 2 Im(e)) )

& I r(4) I'
Figure 1(b) shows the same wave functions appearing in

Fig. 1(a) but as functions of re'e. The resonance wave

5
10
15
20
25
30
35
40

Exact

0.618921 40
0.626 902 48
0.622 982 68
0.623 294 87
0.623 327 97
0.623 31808
0.623 318 38
0.623 318 56
0.623 31853

—0.080 777 63 i
—0.113 11640i
—0.112422 85 i
—0.11203909 i
—0.11209974i
—0.112 10112i
—0.112099 70i
—0.112099 81 i
—0.11209982i

0.192 340 76
0.223 173 65
0.220 204 97
0.218 672 87
0.21901395
0.219022 77
0.219011 19
0.219012 23
0.219012 39

function is exponentially decreasing for large r along this
ray in the complex plane.

So far we have discussed only results for y(k) evaluated
at the resonance momentum. The results of this section
also allow us to construct the partial-width matrix ele-
ments at other values of k. In particular, it is interesting
to study the approximation for the T matrix which is sug-
gested by its partition into resonant, Born, and back-
ground contributions. The T matrix is given by

(k
I
T

I
k& =(k V+ VG+(E)V

I
k&

and Eq. (2) immediately suggests that we write this as

(kIT(E)Ik&=(kI vIk&+

(30)

+«I «a, Vlk (31a)

TABLE I. Results for the separable potential problem from
calculations with X Lag uerre basis functions. Note that
I =2 Im(cq ) =0.224 19964. See text for values of parameters.

I

[
I TBorn+ Tres+ TBG ) (31b)

0
0 8 12

r (a.u. )

I

16 20X ~0 '

where the last term denotes the residual contribution of
the nonresonant parts of the Green's function. Since we
have a procedure for calculating the numerator of the res-
onance term in Eq. (31), we can compute that term and
use it to construct an approximation to the T matrix.
Note that the matrix elements in the numerator of Eq.
(31a) are energy dependent and differ from y(k) given in
Eq. (23) only by simple factors.

In Fig. 2 we compare the results for the cross section
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FIG. 1. (a) Convergence of basis representation of resonance
wave function in Eq. (28) with increasing basis size. +, exact
wave function from Eq. (22). (b) Same as (a), but with all wave
functions evaluated at re' .

E (a.u}

FIG. 2. Cross section (a.u. ) for separable potential problem
showing resonance feature. +, exact values; dotted line, Breit-
%igner formula; dashed line, T"', solid line, T' '.
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TASJ.E II. Results for model tao-channel problem as a function of basis-set size. The basis-set pa-
rameters [Eq. (27}]were a= 1.S, e= 1S'. N refers to the number of functions in each channel.

I =2Im(e, )

30
45
55
65
75
85
90

3.66564150
3.665 650 53
3.665 65049
3.665 65049
3.665 65049
3.665 65049
3.665 65049

0.019 117686
0.019 111783
0.019 111458
0.019 111458
0.019 111457
0.019 111457
0.019 111457

0.001 043 0
0.001 1063
0.001 1183
0.001 1164
0.001 1145
0.001 1138
0.001 1136

0.018787
0.018065
0.018 118
0.018067
0.018036
0.018026
0.018023

from three approximations for T with the exact results.
Those approximations are

T(() T (k)
y(k)2/Str k

(32)
k /2 —ea

T"'=Taom(»+ T~«)
and the Breit-Wigner formula

1 I'/2
Tsw

k4tr E—sa

(33)

(34)

The results in Fig. 2 show that, for this case, T' ' pro-
vides a remarkably accurate representation of the cross
section over a range of energies, while T'" gives no im-
provement over the Breit-Wigner formula. The fact that
we can construct these approximations using basis set
methods is important, because the off-shell dependence of
the T matrix features in a number of applications of
scattering theory.

V~p=k, lpr e ', a=1,2 . (3S)

For this study, we chose the target energies to be 0.0
and 0.1 a.u. and we took the potential strengths to be

S. Tw 0-channel Inc)tential scattering

We have studied a model tw~hannel problem, previ-
ously considered by Noro and Taylor, s which consists of
the s-wave scattering of a structureless particle by a ficti-
tious target which has only two internal states, labeled by
energies Et and Et The mat. rix elements of the interac-
tion potential are taken to be

—1.0 2.0
2.0 7.5 (36}

The properly normalized radial asymptotic states for this
problem are

2 1/24~(r)=, sin(k~r), k~= 2(E—E ) . (37)
(k.)'"

A complex symmetric matrix representation of the real
two-channel Hamiltonian was formed by using in each
channel N orthonormal complex-scaled I.aguerre func-
tions of the form given in Eq. (27}.

The required kinetic- and potential-energy matrix ele-
ments can all be computed either from analytic formulas
or stable recursion relations. We diagonalized the
2N &(2N matrix of the Hamiltonian for values of N up to
90 and for a range of 8 values. A stable resonance state
was found whose energy rapidly converges to the value
E=3.66S6S—i0.009 SSS with increasing N. The partial
widths were evaluated from the integrals

y~=g A~pg cg I 4~(r)re "Y„(r)dr, (38)

where the resonance wave function has been expanded as

e„=ggcgX„(r) .
P n

(39)

The results for the partial widths, I =
~ y ~, and res-

onance energy values are summarized in Tables II and III.
We note that the resonance energy, which is computed
from a variational principle, converges much more rapidly
with increasing basis size and is more stable with respect

TABLE III. Results for model two-channel problem as a function of basis-set scaling angle 8 for
fixed %=65. Other parameters as in Table II.

1

3

10
15
20
22
25

Eq (a.u.}

3.672 646 80
3.666 19756
3.665 702 32
3.665 650 61
3.66565049
3.665 65049
3.665 65049
3.665 650 50

I =2 Im{cq )

0.020204 507
Q.Q19 573 740
0.019 142082
0.019 111355
0.019 111458
0.019 111461
Q.Q19 111466
0.019111473

0.002 090 1

0.001 202 6
0.001 1280
0.001 1200
0.001 1164
0.001 1460
0.001 273 1

0.003 195 6

I yz I'

0.038 081
0.019803
0.018 291
0.018 126
0.018067
0.018 553
0.020687
0.053 902
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to changes in 8 than are the partial widths which are com-

puted from Eq. (1) and which are subject to first-order er-

rors in the resonance wave function.

III. DISCUSSION

We have shown that the proper normalization for the
resonance wave function, under the appropriate analytic
continuation, is unity, as it is for bound states. This ob-
servation allows the calculation of partial resonance
widths directly from any discrete basis-set approximation
to the resonance state using complex basis functions. The
width matrix element may also be evaluated off shell,
where the energy of the asymptotic state is not set equal
to sit. We have indicated one example where this allows
one to construct a better approximation to the energy
dependence of the cross so:tion than that given by the
usual Breit-Wigner approximation. There are also exam-
ples from molecular physics where the off-shell energy
dependence of the width function can be used to study
processes such as vibrational excitation by electron impact

and dissociative electron attachment.
The advantage of the present approach of using a prop-

erly normalized resonance wave function obtained from a
complex-basis-function calculation is that we have an ap-
proximation to the exact resonance wave function. We
avoid the introduction of projection operators and the cal-
culation of the energy shift needed to compute the reso-
nance energy when a real function is used to approximate
the resonance state. We have also avoided the introduc-
tion of any finite boundaries or inner channel radii in fix-
ing the norma1iiation of the resonance wave function.
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