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Semiempirical polarization potentials mth several cutoff functions are investigated for positron-

and electron-atom interactions. A disposable parameter, an effective radius, in each cutoff function

is adjusted so as to reproduce we11-established reference values (scattering lengths and binding ener-

gies) in calculations. Striking regularities in fitted parameter values are found despite the very wide

variety of cutoff functions examined. The parameter exhibits a strong dependence upon spin and

angular momentum in the electronic systems, which is rationalized in terms of the Pauli exclusion

principle. Simple semiempirical relations between the effective radii for positronic systems and

those for the corresponding electronic systems are proposed, which enable one to find the parameter
value for an electron by fitting a positron calculation to a reference value, or vice versa. In other

words„ the number of adjustable parameters is reduced to a single effective radius for each target re-

gardless of the projectile.

I. INTRODUCTION

Positron and electron scattering from atoms is one of
the simplest and most fundamental problems in atomic
physics. It continuously attracts both experimentalists
and theorists, and it provides indispensable information
on many subjects. Although several ab initio calculations
have been made for atomic hydrogen and helium and for
molecular hydrogen targets, it is practically impossible to
solve exactly even low-energy single-channel scattering of
e+- from atoms much larger than helium. The difficulty
arises mainly from polarization effects; that is, distortion
or rearrangement of electronic configurations of the target
atom by the incident charged particle. If the problem is
approached from the point of view of polarization poten-
tials, a consideration of higher excited states is required.
To describe this nonlocal polarization potential, several
functional forms have been derived for hydrogenic atoms
in the context of the adiabatic approximation in first-
order perturbation theory. The topic has been reviewed

by Drachman and Temkin, ' Callaway, and recently
Peach.

Since semiempirical polarization potentials were first
used in electron-scattering calculations by Holtsmark" and
positron-scattering calculations by Massey and Moussa'
using the Buckingham potential, ' many others have
shown that the intricate polarization effects for atoms and
molecules can be described fairly adequately by a simple
function with a well-known long-range term and a short-
range cutoff function. The inclusion of the correct long-
range term is essential in scattering problems. The cutoff
function, although its importance has been less em-
phasized, determines the short-range behavior of the po-
larization effect on which in many occasions the accuracy
of calculations entirely depends.

Since the short-range behavior is expected to be dif-
ferent depending on the systems considered, a cutoff func-
tion usually contains a parameter to be adjusted so as to
reproduce a well-established property in a calculation, or
to be estimated from some reasonable relations. For ex-

ample, a parameter in the Buckingham potential has been
originally set to be the radius of each subshell and later
adjusted to give the correct polarization potential at the
origin. A parameter in a very simple cutoff function re-
cently proposed by one of the present authors has been es-
timated from regularities observed in the relationship be-
two:n the ionization potential of the target atom and its
scattering length.

For positronic scattering, opposite signs in the static
potential and the absence of the exchange potential pro-
vide an excellent means to evaluate model polarization po-
tentials for electron scattering. '0 It has been noted, how-
ever, that the best polarization potential for a positronic
system is not necessarily the best for a corresponding elec-
tronic system. " The influence of a difference of the in-
cident charge has been demonstrated in a variational per-
turbation calculation. ' Recently, this difference has been
discussed in detail for positron scattering from molecular
hydrogen. ' Another explanation has been given from the
difference in the dynamic terms since an electron ac-
celerates in the core region while a positron decelerates. '

Since, in our opinion, additional systematic investiga-
tions are needed to elucidate the difference between posi-
tron and electron interactions with atoms, we have tested
35 trial polarization potentials for two positronic and four
electronic systems in many different bound and scattering
states are listed in Table I.' We have found some
simple systematic relationships between positronic and
electronic potential parameters. This provides a means
for calculating cross sections, binding energies, etc., for
positronic systems providing the potential parameters for
the corresponding electronic systems are known, or vice
versa.

II. MODEI.

A. Scattering or orbital equations

The Schrodinger equation for the electronic or positron-
ic orbital or scattering wave function P interacting with
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hydrogen or helium atom is, in atomic units,

[—,' V—+qV,(r)+5s iE+ V~(r) s—]P(r)=0,
calculation.

The wave function P is expanded in terms of spherical
harmomcs as

where q is the charge of the incident particle, V, is the
static potential,

P(r)= g r' 'f, (r)&, (e,q) .
1=0

(2) The radial part of the Schrodinger equation (1) for the 1th
partial wave function fi is then given by

and J; is the Coulomb potential for the ith electronic or-
bital of the isolated target atom having atomic number Z.
The positive sign in front of the Kronecker delta in Eq.
(1) is for singlet systems, and the negative sign is for
doublet and triplet systems. K is the exchange operator
which is absent for a positronic system, V~ is the polari-
zation potential, and s is the eigenvalue for the binding-
energy calculation or the incident energy for the scattering with

1 d 21d+—
2 dry r dr

21
+qV, (r)

r 2

+5@ iX+ Vp(r) s f—i(r) =0,

&fi=Fi(r)= yo(r) (eo—s)51or f q'o(x)fi(x)x dx+r "f to(x)fi(x)x""dx+r f to(x)fi(x)dx21+1 0 0

Here, so is the ground-state energy of the isolated target atom (so & 0) and yo is the unperturbed Hartree-Pock atomic or-
bital of the target taken from Ref. 21. The integrals in Eq. (5) can be eliminated by differentiation:

r

d2
2

to 1 to
2

to 21 f'o+ + — r+1
dr to r to go r q'o

F~(r) =4myofi(r), (6)

with the boundary conditions

Fi(0)=0,
(6a)

Fi(0)= yo(0) f [5(o(zo—s)x +1]yo(x)f((x)dx .
21+1

Systems

e+-H Scattering

Reference values

Scattering length
a, = —2. 1036ao'

TABLE I. Systems and the reference values chosen for
evaluation of model polarization potentials.

The 5io term ensures the orthogonality of the scattering
wave to the target orbital. Equation (6), together with Eq.
(4), are solved simultaneously by numerical integration,
using the routines DIFFsYs. Iterations are required to
obtain the self-consistency in the second boundary condi-
tion. Frequently, four iterations are sufficient, and five-
figure accuracy in the eigenvalue or phase shift is
achieved without complications for any of the trial polari-
zation potentials used. This procedure amounts to using
the exact static exchange potential for all the electronic
systems studied here.

8. Polarization potentials

e+-He

e -He

e -He+

e -Li+

Singlet
scattering
Singlet
bound
Triplet
scattering

Scattering

Doublet
scattering

's, 'p,
3g 3p

s, p, D

Scattering length

a, =5.965ao
Binding energy
e, = —0.0277 17a.u.'
Scattering length
as =1 7686aob

Scattering length
a, = -0.472ao'

Scattering length
a, = 1.1835ao'

Atomic energy
levels

Atomic energy
levels

'Reference 14.
bReference 15.
'Reference 16.
"Reference 17.
'Reference 18.
fReferences 19 and 20.

The well-known asymptotic form of the polarization
potential V in Eq. (1) has the leading term aq/2r and—P 6the next important term —(a~ —6p, )/2r, where aq and

a~ are the dipole and quadrupole polarixabilities, respec-
tively, and pi the first nonadiabatic correction term. pi is
known for several atoms and tends to cancel the quad-
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rupole polarization potential. For the atomic hydrogen
target, an additional energy-dependent contribution is
found in an r term. Since the contribution from the
r term is less important, we use only the dipole term
and expect the cutoff function to represent all other con-
tributions. The dipole polarizabilities of hydrogen and
He+ are known from elementary theory. We use the ac-
curate values 1.383ao for helium s and 0.1894aii for
Li+ 27

Our model polarization potential is thus
T '~

ad 1 r
& (&)=— — w— (7)

2 4

The cutoff function w is either from the litera-
ture or is taken to be

w(f) =(1—e~e ~)

1.00

0.60—

0.25—

0.00—

RADIAL DISTANCE (+ U.)

where m is either 1, 2, of 4 and e„is the truncated ex-
ponential function:

FIG. 1. A representative cutoff function, showering hoar rp,
the effective target radius, is defined so as to make the two
shaded areas equaL [The actual cutoff shown above is that
given by Eq. (8) with m =2 and n =8.]

&n=
~=0 '

(9)

p in the cutoff function is the adjustable parameter. Since
it strongly depends on the values of n and m, a new pa-
rameter, an effective radius ru, which is insensitive to n
and m values, is useful. We take ru to be the equivalence
point in the cutoff function, i.e.,

h

f m
—" dr=f 1 —w

—" dr, (10)
p rp p

which works out to be

potential gives the well-known correct long-range
behavior of the dipole term. From the short-range
behavior of the cutoff function, it is necessary for n to be
greater than or equal to 4 for m = 1, 2 for m =2, and 1

for m =4 in order to have a finite polarization potential
at the origin. In the present work, n is varied from 4 to
14 for m =1, from 2 to 14 for m =2, and from 2 to 4 for
m =4. The other common cutoff functions tested in this
work are the following. From Buckingham, s s'2s

w(g)=g /(g +1)', ra= 4mp. —
(n+1)p for m =1,

ru ——(1.0952n+1.8556)p for m =2,
(1 2597n +. 2.3502)p for m =4

(11) From Bethe and Reeh2'zs s'

w(g) = 1 ——,
' e 2~(1+2/+6/i+ —", g's+ —', g )

——', e &(1+)'), ro ——2.5365p .

From Callaway and Temkin, '

w(f)=1 e+(1+2/—+2/'+ ', g'+ ', g +—,', f')—, —
25

ro —9P

From Takayanagi and Geltman, '

(~) g if g(1,
1 oth~vise, (13)

From Lane and Geltmann,

w($)=1 —e, ru ——0.9277p .

From Taylor, %ang, and Yaris,

for the cutoffs given by Eq. (8). The cutoff functions gen-
erally have the shape shown in Fig. 1, and Eq. (10) is
equivalent to selecting ru so that the areas of the two
shaded regions are equal.

The cutoff function defined by Eq. (8) was previously
used in the dipole polarization potential with m =1 and
n =5 and in a quadrupole polarization potential with
m =1 and n =7 by Laurenzi, ' and in a polarization po-
tential with m =1 and n =4 and 5 by UaHron et al.
The cutoff functions derived from a semiempirical
analysis of the optical potential ' are numerically very
close to our cutoff function with m =2 and n =3. A
similar cutoff function is also used to model nonadiabtic
effects in positron-atom collisions.

The cutoff functions given by Eq. (8) have the follow-
ing short- and long-range behaviors:

lim w(g) =
0 n+1!

(12)
w(g) =[1—e ~(1+/+ —,

'
g' + —,

' f )], ru ——4.8340p .
lim w(g)=1 .
f~ce

The second property ensures that the model polarization

From Gianturco and Thompson,

w(x) =(1—e ~), ru ———,0 p .
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TABLE II. The effective radii in various trial polarization potentials given by Eqs. (7) and (8), which reproduce the reference

values listed in Table I. The effective radius is related to the cutoff parameter p by Eq. (10}. The ratios of H are calculated from the

average of the taro r p values.

Types of
cutoff

functions

e+-H
scatt.

Tp

Effective
e -H

singlet
scatt.

rp'

Hydrogen target
radii
e -H e -H

singlet triplet
bound scatt.

S fp Pp/f p Pp /rp

e+-He
scatt.

p+

Helium target
Effective radii

e -He
doublet
scatt.

rpa Tp /fp

Buckingham
Bethe-Reeh

Calla~ay-Temkin
Takayanagi-Geltman

Lane-Geltman
Rang- Taylor- Yaris
Gianturo-Thompson

n=4
n =5
n=6
n =7
n=8
n=9
n =10
n =11
n =12
n =13
n =14

m=2 n=2
n=3
n=4
n =5
n=6
n=7
n=8
n=9
n =10
n =11
n =12
n =13
n =14

m=4 n=2
n =3
n=4

3.207
2.141
2.164
1.914
1.896
2.105
2.244

2.188
2.117
2.070
2.036
2.010
1.991
1.975
1.962
1.952
1.943
1.935
1.837

2.224
2.092
2.024
1.983
1.957
1.939
1.926
1.918
1.912
1.907
1.902
1.900
1.899
1.837

2.013
1.961
1.939

4.208
2.384
2.475
1.944
1.864
2.298
2.595

2.529
2.342
2.226
2.147
2.0S9
2.045
2.011
1.984
1.960
1.942
1.926
1.731

2.504
2.240
2.107
2.028
1.955
1.941
1.916
1.896
1.882
1.870
1.860
1.854
1.846
1.731

2.089
1.984
1.934

4.163
2.394
2.475
1.966
1.S91
2.306
2.590

2.525
2.348
2.238
2.162
2.108
2.066
2.033
2.006
1.985
1.967
1.952
1.764

2.507
2.253
2.125
2.049
2.000
1.965
1.941
1.922
1.902
1.897
1.889
1.881
1.875
1.764

2.104
2.007
1.960

5.770
4.591
4.642
4.502
4.347
4.554
4.677

4.650
4.584
4.515
4.455
4.400
4.344
4.292
4.234
4.199
4.137
4.103
3.161

4.746
4.529
4.390
4.277
4.188
4.110
4.040
3.981
3.924
3.875
3.830
3.790
3.754
3.161

4.340
4.206
4.126

1.306
1.116
1.144
1.021
0.990
1.094
1.155

1.155
1.107
1.078
1.058
1.044
1.032
1.024
1.071
1.010
1.006
1.002
0.979

1.126
1.074
1.04S
1.028
1.015
1.008
1.001
0.995
0.991
0.987
0.985
0.982
0.979
0.979

1.041
1.050
1.004

1.378
1.921
1.875
2.302
2.315
1.979
1.804

1.840
1.955
2.034
2.068
2.097
2.113
2.123
2.127
2.129
2.117
2.116
1.809

1.894
2.016
2.075
2.098
2.107
2.104
2.095
2.085
2.071
2.058
2.044
2.030
2.018
1.809

2.072
2.107
2.119

2.252
1.562
1.575
1.415
1.404
1.542
1.627

1.591

1.517

1.480

1.456

1.440

1.430
1.364

1.621
1.535
1.489
1.461
1.445
1.432
1.424
1.418
1.413
1.411
1.409
1.407
1.406
1.364

1.480
1.447
1.432

4.109
2.569
2.686
2.481
2.386
2.490
2.705

2.730

2.362

2.341

2.346
2.433

2.669
2.438
2.356
2.328
2.322
2.326
2.332
2.340
2.348
2.358
2.365
2.371
2.379
2.433

2.326
2.309
2.325

1.817
1.644
1.705
1.753
1.700
1.617
1.663

1.716

1.611

1.596

1.607

1.625

1.641
1.784

1.647
1.589
1.582
1.593
1.608
1.624
1.638
1.650
1.661
1.671
1.679
1.685
1.692
1.784

1.571
1.596
1,623

III. RESULTS AND DISCUSSIONS

A. Relationships among various effective ra&Bi

The reference values used in our work to determine
the parameter p are listed in Table I. Values of the effec-
tive radius ro, which is related to p by Eq. (10), are adjust-
ed to reproduce these values and are listed in Table II for
the e+--H and e+--He systems for various polarization po-
tentials. The Bethe-tech and Callaway-Temkin potentials
were originally derived for one-electron targets, and have
no adjustable parameters in their cutoff functions. We
have used only the dipole terms of their potentials, and re-
placed r by r/p in their cutoff functions. n = ao indicate

that a step function is used for the cutoff function.
We find the following regularities: The adjusted effec-

tive radius for the electron triplet scattering from atomic
hydrogen (ro ) is approximately 2 times larger than that
for singlet scattering (ro) and that for the bound state for
all polarization potential studied, except the Buckingham
potential; and the effective radius for the positron scatter-
ing (r0+ ) is about the same as ra. Although the difference
is insignificant, we take ro as an average value of those
for singlet scattering and bound states. The extend of
these regularities is shown by the last two columns under
"Hydrogen target" in Table II. Generally, the polariza-
tion potential given by Eq. (8) with a larger n value gives
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TABLE III. Effective radii in the cutoff function [Eq. (8)]
arith m =2 and n =8 which reproduce the best atomic He ener-

gy levels listed as reference values. The D states are insensitive
to the effective radius.

TABLE IV. Effective radii in the cutoff function [Eq. (8)J

~ith m =2 and n =8 which reproduce the best atomic Li ener-

gy levels listed as reference values. The D states are less sensi-

tive to the effective radius.

States

3g

Electronic
configuration

1s
1s2s
ls3s
1s4s

1s2p
1 $3p
1s4p

1s2s
1s3s
ls4s

Reference
values (a.u. )

—0.903 570
—0.145 981
—0.061290
—0.033 609

—0.123 849
—0.055 164
—0.031 092

—0.175239
—0.068 708
—0.036 534

Effective
radii

of He+ (ao)

0.879
0.810
0.796
0.782

1.396
1.332
1.260

1.795
1.675
1.515

States
Electronic

configuration

1$~2$

1$3$
I s24s

1s'2p
1$ 3p
1s24p

1s23d
1s24d

Reference
values (a.u. )

—0.198 142
—0.074 182
—0.038 615

—0.130235
—0.057 236
—0.031 975

—0.055 606
—0.031 274

Effective
radii of
Li+ (ao)

1.227
1.184
1.180

1.177
1.166
1.157

—1.9
—1.8

3p 1s2p
1s3p
1s4p

—0.133 176
—0.058 101
—0.032 347

1.491
1.446
1.392

better phase shifts for positronic systems, while the polari-
zation potential with a smaller n value produces better
phase shifts for electronic systems and a smaller differ-
ence in the effective radii for singlet scattering and bound
states.

For the helium target, the effective radii which produce
the best scattering lengths for electron and positran
scattering are also listed in Table II. The last column
shows the ratios of the effective radii for electron scatter-
ing from a hehum atom, ro, to those for positron scatter-
ing off helium, ro, the regularity of this ratio, regardless
of the cutoff functions, is apparent.

The atomic helium energy levels are calculated as the
electron binding energies to the He+ core. Only the re-
sults from the cutoff function with m =2 and n =8 are
presented in Table III, since the results are very much the
same for all other cutoff functions studied. This choice of
cutoff function is made because the square root of cutoff
function is needed in the future (for the calculation of po-
sitronium formation cross sections), which means we want
m =2; and because the ro/ra+ ratio (Table II) is closest to
unity far n =8. Table III shows the best effective radius
for each electronic configuration using this cutoff. The
reference energy levels are taken from the experimental
values tabulated by Moore, ' and the ionization potentials
are taken from Ref. 20. As seen from the table, similar
electronic configurations seem to have similar effective ra-
dii, although they become slightly smaller for the higher
excited states. A comparison of the effective radii for the
'S states vnth those for the S states tells again that the ro
ratios of the triplet over the singlet states are around 2.
The singlet and triplet I' states give rise to similar ro
values somewhere between those for the singlet and the
triplet 5 states. %e have also calculated singlet and trip-
let D states. They are, however, not sensitive to the effec-
tive radius.

Similarly, that atomic lithium energy levels are calcu-
lated as electronic binding to the Li+ core. The effective

radii which reproduce the experimentally determined en-

ergy levels' ' are listed in Table IV. Although the same
tendency is observed in the effective radii, the ro values
for doublet P states are very close to those for doublet S
states. ro values for doublet D states have less signifi-
cance since D states are only slightly affected by the po-
larization potential. In our calculations, the change of ro
from 1.6 to 1.0 generates only 0.01' difference in energy
from the reference values.

0.05

gj 0.00-

Co
X

-0.05-
X

-0.10

-0.15—
0

Effective radius
ra~0 879 for 'S

rod).795 for 3S

re~i.4 for P

r I
i

Y 1 I I 1 t

2 3
RADIAL DISTANCE (8.0.)

FIG. 2. The polarization potentials using the cutoff function
given by Eq. (8) with m =2 and n =8, which produce the best
atomic hehum energy levels for singlet and triplet S states and
for P states. (See Table III.)

B. The difference between electron and positron
polarization potentials

The difference in the polarization potentials which give
the best results for electronic and positronic systems has
been noticed for some time, as mentioned in Sec. I. In ad-
dition to the difference created by a positively or negative-
ly charged particle, the opposite sign in the exchange po-
tential for singlet and triplet states for the e -H systems
makes a difference in the dynamic term. Rceently,
Campeanu has also adapted the above idea to explain
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0.10

0.05—

Co

0.00
T
Co 0.02—
LLI
Co 000-

-0.02—X

p -0.04LI

2.5—
U

CO

l
4.5—

0.5-
0.0 0,2 0.4 0.6 0.S
ELECTRON MOMENTUM k (a.u.)

FIG. 3. The s-, p-, and d-partial-wave phase shifts of an
electron scattering from s hydrogen atom (single state). Best
values sre taken from Ref. 15 for s-wave, from Ref. 44 for p-
wsve, and from Ref. 45 for d-wave phase shifts. PW1 denotes
that effective radii for electronic systems are obtained from the
corresponding positronic effective radius using the relations

given in Table V, and PW2, vice versa. PW1 and PW2 are plot-
ted as a single curve because they are indistinguishable on the
scale shown.

different ro values in the Takayanagi-Geltman polariza-
tion potential used for positron- and electron-helium
scattering calculations. His ro /re+ ratio, 1.5, differs from
our ratio by 14%, and is probably due to the exchange ap-
proximation employed in his calculations and to the dif-
ferent reference value chosen.

As shown in Fig. 2, the difference in polarization po-
tentials for electron-He+ interactions is, however, much
larger than one would expect from assuming that the om-
itted dynamic term (P~) can be compensated for by omit-
ting the quadrupole polarization potential (a~).'3 The
short-range importance of these terms is evident. Our
preliminary investigation in using the cutoff functions
proposed by Wang et cl. shows that the inclusion of a
quadrupole term makes the total polarization potentiai
only about 6% deeper at the minimum point and has
practically no effect at r larger than 4ae for e+-He
scattering. Thus we would like to consider the differences
from another point of view.

It is clear from Fig. 2 that the main difference between
electron-core interactions in the singlet and triplet states
arises from the Pauli exclusion effect. In the triplet state
an incident electron cannot penetrate into the core region,
causing a large effective radius in the polarization poten-
tial. On the other hand, for the singlet state, an incident
electron can penetrate without violating the exclusion
principle. Since there is no exclusion in positronic sys-

0.15

0.10—
g$

0.05—
Co

0.00—

0.4—x
LU
Co

0.2—x
L,
hl 0.0 I I

f t I 1

i

t; 1

e -H Atoll {triplet}

3.0—

2.5—

~ 0.04-'U
cj

0.02—

0.00I-
x
Co

0.2—
Cfl

X
CL

0.0-LI

3.0--

U
2.5—

CL
2.0—

I
CO

S WSVS

PW 2 rc ~2.332((~0).2.099((~0)
~ WILLIAMS 1979

t I 1 ) I
I

0.0 0.2 0.4 0.6 0.8 1.0

ELECTRON MOMENTUM k (a.u.)
FIG. 5. The s-, p-, and d-partial-wave phase shifts of an

electron scattering from a helium atom. Best theoretical values
are taken from Ref. 18. The best experimentally determined
partial-wave phase shifts taken from Ref. 46 are also shown.
The values of the effective radius are calculated from the rela-
tions given in Table V.

CL
2.0—

I
CO

1.5
0.0 0.2 0.4 0.6 0.8
ELECTRON MOMENTUM k (a.u.)

FIG. 4. The s-, p-, and d-partial-wave phase shifts of an

electron scattering from s hydrogen atom (triple state). Best
values are taken from Ref. 15 for s-wave, from Ref. 44 for p-
wave, and from Ref. 45 for d-wave phase shifts. Values of the
effective radius are calculated from the relations given in Table
V. PW1 and PW2 are plotted as a single curve because they are
indistinguishable on the scale shown.
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0.1

0.0
- p wave

0.1—

0.08
d w

0.02—
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0.01—
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0.00
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~ 0.04-

L. 0.02—
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FIG. 6. The s-, p-, and d-partial-wave phase shifts of a posi-
tron scattering from a hydrogen atom. Best values sre taken
from Ref. 47 for s-wave, from Ref. 48 for p-wave, and from
Ref. 45 for d-wave phase shifts. PW1 and PW2 are plotted as s
single curve because they are indistinguishable in the scale
shown.
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FIG. 7. The s-, p-, and af-partial-wave phase shifts of a posi-
tron scattering from a helium atom. Best values are taken from
Ref. 17 for s-wave and from Ref. 49 for p-wave phase shifts.
Best values for d-wave phase-shifts are read from Fig. 11 (Ref.
50) in Ref. 51.

rp 2rp =2rp+ (14)

The doublet systems considered here have tao electrons
in the target. Adding an outer electron gives three elec-
trons, from which three pairs can be chosen. Since the
particles are indistinguishable, the pairs must be also.
One of these has parallel spina (necessarily triplet) and
two, opposite (half singlet and half triplet}. Thus the
singlet:triplet character of the pairs is 1:2, and we might
sensibly take the effective doublet radius to be the weight-
ed mean,

tems, we also expect a similar effective radius to that for
the corresponding sin let electronic system. ro 's are
indeed very close to ro's, although small differences are
observed (sixth column of Table II} which may account
for the difference in the dynamic terms as explained pre-
viously. As already noted, the effective radius for the
triplet state, ro, is close to twice that for the correspond-
ing singlet and positronic states (seventh column of Table
II}. Thus, for one-electron targets, we propose the param-
etrization

S Trp+2rp
rp ——

3
= 3rp

which is very close to the values tabulated in the last
column in Table II.

The results of the atomic energy-level calculations are
listed in Tables III and IV. We have no positronic refer-
ence values for He+ and Li+ from which to determine
r+, but we see from the 'S and 3S results in Table III that
ro is indeed twice ro. That is, Eq. (14) evidently works
for He+ as for H, so ra+is thus determined. With some
confidence, therefore, we find ra+ far Li+ fram Eq. (1S}
with ro from the S results of Table IV.

We propose that the effective radius of one- and two-
electron targets for non-S states be three halves of the cor-
responding ra+. This gives ro= 1.1 for both 2P and D
states. The agreement (see Table IV) is good for the 2P

states but not for the D states. However, the D energies
of Li are very insensitive to the effective radius, and ,ro-
gives quite reasonable d-wave phase shifts in electron-
hydrogen and -helium scattering calculations, as seen

TABLE V. Proposed relationships between effective radii in model polarization potentials for posi-
tronic and electronic systems.

Angular
momentum

e+-H and e+-He
systems Singlet

3 +
2 Po

e -H and e -He systems
Doublet
S T

po +2po g +
To =

3
= TPO

3 +
2 P'O

Triplet

7'o =27 O =2PO+

3 +
T P'O
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FIG. 8. Total cross sections (e~}and momentum-transfer cross sections (o ) of an electron elastically scattered from a hydrogen
atom. The contributions from the singlet and triplet states are shown as crq and aq, respectively. Best values are calculated from s-,
p-, and d-wave phase shifts (Refs. 15, 44, and 45}. (See Pigs. 3 and 4}. The contributions from higher (1&3} partial waves are es-

timated froxn the Born approximation with the equations given in Ref. 18.
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FIG. 9. Total cross sections (o~) and momentum-transfer cross sections (o ) of an electron elastically scattered from a helium
atom. Best values are calculated from s-, p-, and d-wave phase shifts (Ref. 18). (See Fig. 5). Total and momentum-transfer cross
sections calculated fmm the polarized orbital method (Ref. 13) and the model potential method (HCO model) (Ref. 52) are also
shown. Experimental values are taken from Ref. 53—59.
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FIG. 10. Total cross sections of a positron elastically scattered from a hydrogen atom. Calculated momentum-transfer cross sec-
tions (not shown to avoid excessive cluttering of the graph) are also very close to low energies, and deviate slightly at near the posi-
tronium formation threshold. Best values are calculated from s- (Ref. 47), p- (Ref. 48), and d-wave (Ref. 45) phase shifts (see Fig. 2).
Results from other theoretical calculations are also shown (Refs. 11 and 60—64). The values of Chan et al. are calculated from s-
(Ref. 61), p- (Ref. 62), and d-wave (Ref. 63) phase shifts. The values of Drachman are calculated from s-, p- (Ref. 11), and d-wave
(Ref. 64) phase shifts.
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FIG. 11. Total cross sections of a positron elastically scattered from a helium atom. Both momentum-transfer cross sections cal-
culated from the PW1 and P%'2 methods (not shown) are very close to the best theoretical values. The best values are calculated from
s- (Ref. 17), p- (Ref. 49), and d-wave (Ref. 50) phase shifts. (See Fig. 6.) Those values are very close to the total cross sections shown
jn Ref. 65. Other theoretical results, of Mcaachran et al. (Ref. 66) and Amusia et al. (Ref. 67), are also shown. Experimental values
are taken from Refs. 68—71.
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FIG. 12. Differential cross sections {DCS's) of a positron elastically scattered from a hydrogen atom {left, present work; right, best
values). The cutoff function arith m =2 and n =8 and ro+ =1.926 is used. The Hashed curve and the X represent the locus of the
differential cross-section minima and the critical point. Best values are calculated from s-, p-, and d-wave phase shifts from Refs. 47,
48, and 45, respectively.

from Figs. 3—5. For positronic systems, previous calcula-
tions~ have shown that the same effective radius produces
good results in s-, p-, and d-wave phase-shift calculations.
We have also confirmed this by using various trial polari-
zation potentials for positron-scattering calculations from
both hydrogen and helium, as seen from Figs. 6 and 7.

The relations which we have found between the effec-
tive radii for positronic and electronic systems are sum-
marized in Table V. By using these relations we have cal-
culated partial-wave phase shifts (as shown in Figs. 3—7}
and total and momentum-transfer cross sections of posi-
tron and electron elastic scatterings from atomic hydrogen
and helium. The symbol PW1 in the figures indicates

that the effective radii for electronic systems are obtained
from the corresponding positronic effective radius using
the relations in Table V, and PW2, vice versa. Our elastic
total cross sections and momentum-transfer crass sections
are compared with the between theoretical values and re-
cent experimental values' ' ' '9' ' in Figs. 8—11.
The contributions from the higher (I)3} partial waves
are t~&en into account using the Born approximatian with
the equations given in Ref. 18. Total crees sections calcu-
lated from the PW1 and PW2 methods are in excellent
agreetnent with the best values are shown in Figs. 8—11,
although our calculation does not reproduce the very shal-
low Ramsauer minimum in positron-hydrogen scattering.

FIG. l.3. Differential cross sections of a positron elastically scattered from a helium atom {left, present cwork; right, best values).
The cutoff function mth m =2 and n =8 and ro ——1.424 is used. The dashed curve and the &( represent the locus of the differential
cross-section minima and the critical point. Best values are calculated from s-, p-, and d-~ave phase shifts from Refs. 17, 49, and 50,
respectively.
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Since electron scattering is less sensitive to the polariza-
tion potential than positron scattering, ' PW1 always
gives better agreement than PW2 if an accurate positronic
reference value is available. Since far more is known
about electron scattering, PW2 may be a useful method
with which to investigate the corresponding positronic
systems.

Differential cross sections are calculated from the s-,
p-, and d-wave phase shifts of the PW1 method. Since
contributions from the higher ~artial waves is significant,
as demonstrated by Williams, they are included using
the modified effective range formula of O' Malley, Spruch,
and Rosenberg 3 and the closed form of Thompson.
Our results of the differential cross sections for the elec-
tronic systems are in very good agromient with the best
theoretical results. The results for the positronic systems
are shown in Figs. 12 and 13. Differential cross-section
measurements for positron-hydrogen and -helium have
not been yet reported. Our results again show excellent
agreement with the best values at low energies. Near the
Ps formation threshold, our differential cross sections for
the positronic systems exhibit a noticeable difference from
the best results at small scattering angles, as expected
from the lack of the Ps formation channel in our calcula-
tions.

Recently, Wahedra et al. reported an interesting
demonstration on minima (critical points) in the differen-
tial cross sections of a positron scattering from Ar, Kr,
and Xe. Their simple approximation gives critical angle
being 2arctanv2=109. 5'. As shown in Fig. 14, we
found, for positron-hydrogen scattering, that the critical
angle (8„)is 105.0'+0.25', the critical incident momen-
tum (k„)is (0.450+0.013)ao ', and the critical differen-
tial cross section (I„)is (3.7X10 )ao', and for helium,8„=100.0'+0.25', k„=(0.350+0.013)a0, and
I„=(3.8X10 )ao. These values are similar to those ob-
tained by Wadehra ei al. s for Ar, Kr, and Xe using
phase shifts from polarized orbital calculations. Since
the contributions from the higher partial waves are less
significant for small target atoms, the critical angles for
hydrogen and helium are closer to 109.5' than those for
Ar, Kr, and Xe.

)O0

2.'
(2
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00:
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IK
LLI

O )O-S

~ ~

~ ~

~ ~
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~ ~
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e+-He: 8=100.00%%%0%0&e%&a&e

potentials of different types. Despite the wide variety and
large number of systems and polarization potential inves-
tigated, striking regularities are found among effective
target radii. These give rise to universal relationships for
the targets considered, and suggest the possibility that one
may apply knowledge of well-known systems in accurate
calculations on poorly known systems. This notion is sub-
mitted to test calculations and is found to be reliable in all
cases studied.

It should be emphasized that the calculations reported
here are not only accurate but also very simple. The labor
required for one of our scattering or bound-state calcula-
tions with a given polarization potential is a tiny fraction
of that required for an ab initio calculation of similar ac-
curacy. Indeed, the numerical work required for one cal-
culation is a small fraction of that required for several
widely quoted ab initio calculations.

Calculations have been done on the targets neon and ar-
gon to see whether the universality of the relationships be-
tween effective target radii discovered here holds up for
other targets. Calculations are also under way in which
polarization potentials are used for the lowest inelastic
process, which, for all targets mentioned here, is posi-
tronium formation.

1 t I } I ' I I

0 30 S0 90 120 150 180 0 0.2 0.4 O.S 0 8
SCATTER(NG ANGLE 8 (dog) MOMENTUM k (a.u. )

FIG. 14. Differential cross sections of positrons scattered
from hydrogen and helium atoms as a function of the scattering
angle at their critical energies {left) and as a function of the in-
cident momentum at their critical angles (right).
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