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Electron-molecule scattering treated with the use of separable approximations
for the nonlocal part of the interaction: Static exchange calculations for e +Hq and e +N2
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D-6900 Heidelberg, West Germany
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%e have formulated and applied a method for solving the lo~-energy electron-molecule collision

problem. This method treats the scattering by the local and nonlocal parts of the interaction dif-

ferently. A differential equation method is used to obtain a solution of the set of coupled equations

which describe the scattering by the (nonspherical} local potential. The T-matrix expansion method

is used to account for the scattering by the nonlocal part of the interaction. The method is tested by

application to low-energy e -Hq and e -N2 scattering in the static exchange approximation.

I. INTRODUCTION U( r, r', E)= V(r)5(r —r')+ IV(r, r', E) (1.2)

The scattering by a local potential is considerably
simpler to treat numerically than the scattering by a non-
local interaction. The development of model potentials
treating the nonlocal exchange and correlation interaction
with a local approximation was therefore an important
step towards the solution of the elastic electron-molecule
scattering problem. ' However, although the exchange
correlation model potential may be parameter-free we
hesitate to call it an ab initio potential. An ab initio
theory must account for the nonlocal character of the in-
teraction. Basis-set approaches —e.g., the T-matrix ex-
pansion method, the Schwinger variational method, 7 the
R-matrix method, s and the Kohn method —are tools to
achieve this purpose. However, basis-set expansion
methods are fairly elaborate computationally if one wants
to achieve a high degree of accuracy. A convenient way
to solve the electron-molecule scattering problem is to
take advantage of the fact that part of the interaction is
local and to account for the local and nonlocal interac-
tions by different methods. This route was recently taken
by several investigators. '

Adopting a one-electron picture for the description of
the elastic scattering process in the fixed-nuclei limit, one
finds that the scattering is determined by the effective
Hamiltonian

H,g ——T+ U,

where T denotes the kinetic energy of the scattered elec-
tron and U denotes the optical potential. The optical po-
tential can be obtained by projecting the full potential on
the elastic channel. ' We prefer to take the alternative
route and identify, following Bell and Squires, ' the opti-
cal potential with the mass operator of the one-particle
Green's function. The mass operator can be evaluated by
using many-body perturbation theory. One of the advan-
tages of this approach is that target correlations are au-
tomatically included in a balanced way.

The optical potential U can be spht into a local and a
nonlocal term,

[to be precise, U(r, r') and IV(r, r') which appear in Eqs.
(1.2) and (1.4) denote the integral kernels of the interac-
tion operators U and W, respectively]. The local potential
V(r) is real, energy independent, and long ranged,
whereas the nonlocal potential IV is short ranged. It is,
however, in general energy dependent and becomes com-
plex above the first inelastic threshold. In the static ex-
change approximation —the simplest useful approxima-
tion to U—the local potential V becomes the static in-
teraction

QJ(r)pj(r')
IV(r, r') =—g

i
r —r'

[

(1.4)

In the above equations t(()J J denotes the set of doubly oc-
cupied self-consistent-field (SCF) orbitals, I Rk ] and I zkj
denote the sets of nuclear positions and charges, respec-
tively. Moreover, a closed-shell target molecule is. as-
sumed for simplicity and atomic units are used
throughout. Considering the exact optical potential, on
the other hand, one finds that the local potential V con-
tains the static interaction with the fully correlated (but
"frozen") target, as well as the long-range part of the po-
larization potential. The nonlocal potential IV now does
not only contain all exchange interactions, it also contains
the nonlocal part of that interaction which is due to the
virtual excitation of the target by the projectile. Practical-
ly applicable approximation schemes for computing the
optical potential on different levels of sophistication can
be found in the literature. ' ' Here we only note that
electron-molecule scattering calculations using optical po-
tentials based on many-body perturbation theory have
been performed with encouraging success by Klonover
and Kaldor, ' by Berman, %alter, and Cederbaum, and
by Berman, Miindel, and Domcke. ' Optical potentials
based on a Feshbach projection of the configuration-

V(r) =2+ fdr', —g, (13)
zk

r —r'
k r —Rk

and IV becomes the exchange interaction
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II. SCATTERING BY LOCAL NONSPHERICAL
POTENTIALS

A. Genera1 theory

In order to reduce the problem to the solution of a set
of ordinary differential equations we shall —— as usual—
expand the wave function and the Green's function into
partial maves24'25

' 1/2
2 1—gi A (~}~i~(r),

mk r I
{2.1)

interaction (CI) matrix have been used by Collins and
Schneider. ' '

The separation of the optical potential into a local and
a nonlocal term strongly suggests splitting also the
scattering calculation into two parts. The first step is
then to solve the scattering problem for the local and
long-ranged potential V. This can be very conveniently
achieved by adopting a numerical progation method, i.e.,
by solving the coupled differential equations (or the
equivalent integral equations ) by a finite-step method.
The residual scattering due to the nonlocal interaction W
can then be treated within the T-matrix expansion ap-
proach, because —due to the nonlocal and short-ranged
character of the interaction —W can quite well be
represented with the use of separable approximations.
However, in order to perform the second step via the two
potential formula one needs to know the Green"s function

6 =(E—T —V+irl)

for the scattering by the local potential. As discussed
below, the matrix elements of this Green's function can be
obtained by solving a set of "driven" Schrodinger equa-
tions.

The strategy of the method outlined above is largely
identical with the one of Rescigno and Orel. '2 Similar ap-
proaches are those of Schneider and Collins" and of
Smith, t.ucchese, and Mcl( oy." Our motivation was to
implement a method which is most suitable for ob inirio
calculations using sophisticated many-body optical poten-
tials. Here we discuss the method in the static exchange
approximation and check our results against benchmark
results in the literature.

The paper is organized as follows. In Sec. II we outline
our method to compute the wave function and Green's
function of the scattering by the local potential. In Sec.
III we briefly describe the second step, i.e., the inclusion
of the nonlocal interaction. In Sec. IV we discuss the re-
sults obtained by this method for low-energy electron
scattering by H2 and N2 in the static exchange approxima-
tion. Section V contains a summary, a brief discussion,
and suggestions for future work. Appendix A provides a
brief description of the numerical algorithm used to in-

tegrate the differential equations. Appendix B describes a
method to accelerate the convergence of the (local) wave
function with respect to the matching radius. We have
found that a simple first-order Born correction of the
asymptotic wave function improves this convergence quite
dramatically.

(2.2)

where 9 denotes the unit vector pointing into the direction
of r. We shall concentrate on the scattering from linear
molecules. In this case m is a good quantum number and
we may drop m from the equations in what follows. Next
we introduce the Schrodinger operator

8 2 I (I +1)
p2 p2

El' IP ) (2.3)

)rr(r)=2 JdYY, (Y)Y(rY)Yi (Y) (2.4)

for the particular value of m under discussion. The par-
tial wave functions 1{)i and ga satisfy the Schrodinger
equation

HQ=O (2.5}

H~(r, r') =15(r r')— (2.6)

subject to certain boundary conditions (BC). In order to
take account of these BC it is convenient to introduce the
regular and irregular solution matrices defined by

H$=0, (2.7a)

0u «) f'iu Ji{«»r~0
(2.7b)

HX=O,

XN(r) ~ 5ghi+(«),

(2.8a}

(2.8b)

where ji and hi+ denote the Riccati-Bessel and Hankel
functions, respectively. It is well known that the
Green's function can be expressed by these solutions as '

P(r}W 'X (r'}, r&r'
g(r, r')=-

X{r}(W—') (I(r(r'), r )r' (2.9)

where W denotes the Wronskian

W=—W(X,P) =Iris'' XYtp . — (2.10)

bi„(r)=rIdr Yi' (f)b„(rr) (2.12)

denotes the partial-wave expansion coefficient of the nth
basis function. The new functions gi„satisfy [cf. Eq.

The Wronskian is independent of r, since V is real and
symmetric. Equation (2.9) will serve to fix the BC; it is,
however, not a convenient tool to compute the Green's
function. For the latter purpose we shall use Eq. (2.6).
Recognizing that we do not really want to know the
Green's function G(r, r') but rather its matrix elements
with respect to some I. basis functions b„(r), we define

g&.(r) = g I«'g&&(r, r')bl „(r'), (2.11)
E'



34 ELECTRON-MOLECULE SCA j.-&ERING TREATED %ITH THE. . .

(2.6)] the driven equations

g Hu gI „(r)=bI„(r) .
1'

(2.13) (2.23)

This differential equation must be solved with the correct
BC. With the aid of Eq. (2.9) we find

using Simpson's rule. At the end of the calculation we
transform to the correct BC, yielding

gI„(r) ~ constXjI(kr),
r~O

gI„(r) ~ constXIII+(kr) .

(2.14)

(2.15)

6„=23„—2 g 8„IDI
It

q „I=(2k/~)'" +S„I.[W '{X-,y}],,

{2.24)

(2.25)

The desired matrix elements of the Green's function are
fmally given by

G„„=(n lG lm&=&zfdr&;„(rig, ~r). (2.16)

gin gin g Ill'+I'n
1'

A short calculation yields

D„=W '(X,P)W(X,g„) .

{2.18)

(2.19)

The Wronskians above have to be evaluated at an r which
is large enough to ensure that all inhomogeneities have
essentially vanished.

S. Numeriea1 procedure

The numerical scheme to determine the wave function
and Green's function goes as follows. At some small r,
we set the initial conditions to be

/II (r I ) =&IIjI(«i )

KI {ri)=&aJi(«i»
gI„(ri)=0,
g',„(r,)=0.

(2.20a)

(2.20b)

(2.21a)

(2.21b)

We then integrate (compare Appendix A) the set of cou-
pled equations (2.7a) and (2.13) out to some r2, large
enough to ensure that X takes it asymptotic form (2.8b} to
a sufficient degree of accuracy. Simultaneously with the
integration of the differential equation we perform the in-
tegrals

Rather than solving the differential equations (2.5) and
(2.6) as a boundary-value problem, one may solve them
with regular initial conditions at the origin and enforce
the correct asymptotic BC by a linear transformation ap-
plied to the solutions. This is discussed in any textbook
on scattering theory where it is shown that the properly
normalized physical solution matrix is

t//=(2k/7r)' tI) w '(X y) (2.17)

[Note: The Jost matrix is F=k 'W(X, p). ] Let gI„
denote some regular solution of the driven equation (2.13).
It is known that the general solution is the sum of gI„and
any regular solution of the homogeneous equation (2.5).
Hence the proper solution gi„can be written as

~g +nI+mi= —im«n~)
I

(2.27)

holds. These three requirements serve as a useful check
on the accuracy of the numerical calculation.

III. SCATTERING BY THE NONLOCAL POTENTIAL

The scattering by the nonlocal potential 8' will be
treated within the framework of the T-matrix expansion
method. ' We approximate the interaction W by the
truncated separable form

W g ~b„&W„(b
~

(3.1)

W„=&b„iWib. &

and find that the on-shell T matrix is given by

(3.2)

I~'"'= W(im, (t )W-'( —ReX,y} . (2.26)

Here E'"' denotes the K matrix for the scattering by the
local potential. The superscript L refers to local. The
symbol +ni denotes the overlap of the nth basis function
with that component of the physical wave function which
is a pure I state initially. All three matrices defined above
are needed for the second step, i.e., the inclusion of the
nonlocal interaction.

Before we conclude this section we have to mention two
technical modifications which we have ignored so far.
Firstly, it is well known that the solution matrices have
to be stabilized because their column vectors tend to be-
come linearly dependent due to the exponential growth in
the closed channels. Our stabilization procedure, which is
similar to the one used by Rescigno and Orel, is
described in Appendix A. The second remark concerns
the irregular (or Jost} solution X. One usually integrates
the regular solutions to such a large rz that the Riccati-
Hankel functions b+(kr) become a sufficiently good ap-
proximation to X. The final matching equations
(2.24}—(2.26)„however, can be performed at a consider-
ably smaller r2 if one computes an approximation to X by
perturbation theory. This Uery helpful simple modifica-
tion is discussed in Appendix B. Finally we remark that
both the Green's and the K matrix are symmetric. Fur-
thermore, the unitarity of the S matrix requires that

P2

&.I= g I «bI'n«)NII(r) (2.22)
N

TII = g 4 i(I—8'6) ~ W «O' -I
(NL) —1 (3.3)
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(the superscript NL referres to "nonlocal" }. This equation

can be written more symmetrically as

z ~""=etw(w —wG w)-'wq {3A)

S„.=&b„~b.& (3.6)

denotes the overlap matrix. Second, a large basis set con-
sisting of, say, Cartesian Gaussians has the tendency to
become linearly dependent. An almost linear dependence
manifests itself in a small eigenvalue of S and hence in
huge matrix elements of S '. This leads to numerical in-
stabilities. A solution to this problem is to replace S ' by
S in Eq. (3.5) where

S=(I—P)S-'(I —P) (3.7)

and where P denotes the projector on the one (or the few)
linear combinations of basis functions for which the

eigenvalue of S is almost vanishing. In practice, S is
evaluated by first diagonalizing S. We take the reciprocal
of all eigenvalues of S except those which are smaller than
some threshold e. The latter are set to zero. The matrix

S is finally obtained by transforming back with the aid of
the eigenvector matrix. The final step of the calculation
is to obtain the total S matrix (not to be confused with the
overlap matrix). The S matrices for the scattering by the
local and nonlocal potential are given by

S' '=(1+ iE'~')(1 —iE'~')

S'""'=I—2m T'~~',

and the total S matrix is just the product

(3.&)

(3.9)

{3.10)

of the two S matrices. The total E matrix is finally given

by

E= —i(S—1)(S+1) (3.11)

This completes the electron-molecule scattering calcula-
tion in the fixed-nuclei limit.

which has a form similar to the Schwinger variational ex-
pression for the T matrix. However, Eq. (3A), as it
stands, is not a variational expression. The variational
stability is only achieved if the operator products W4 and
WGW are done exactly, i.e., either numerically or with a
complete basis. Equation (3.4), however, suggests the in-
troduction of two basis sets. The smaller basis alled
the inversion basis is the one in which the operator W-

WGW is inverted. The larger basis —called quadrature
basis '2 —is used to perform the matrix products WV
and WGW. The inversion basis is usually a subset of the
quadrature basis. If both basis sets are equal, Eq. (3.4) be-
comes identical with Eq. (3.3).

Two technical remarks are necessary. First, Eq. (3.1),
(3.3), and {3.4) are valid only for an orthonormal basis.
For non-orthonormal basis sets Eq. (3.4) should read

T~NL~=q ts-'w(w —ws-'gs-'w)-'ws-'e
(3.5)

and evaluate Vi(r) at a certain number of grid points.
We have used A =40 (H2) or A, =98 (N2) and 600
(H2) or 1000 (Nx) grid points, respectively. For large r we
used the multipole expansion of the static potential. The
third step is to compute the matrix elements of the non-
local (i.e., exchange) potential W. The quadrature basis,
i.e., the basis in which W is expanded, can be chosen quite
independently of the SCF basis. The fourth step is to in-

TABLE I. Basis set for the e -82 scattering calculation. We
have used Cartesian Gaussians. The type s is a short-hand no-
tation for a p, function, etc. The functions are located either at
the atoms or at the center of the molecule. In the case of the X
symmetry we used all 27 functions as quadrature basis but re-
moved the three lowest eigenvalues from the overlap matrix [cf.
Eq. (3.7}]. The basis functions used to form the inversion basis
are indicated by an asterisk ( ). In the case of the X„symmetry
we simply took the first 13 functions to form both the quadra-
ture and the inversion basis.

1

2
3

5
6

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

26

Location

0.7003
0.7003
0.7003
0.7003
0.7003
0.7003
0.7003
0.7003
0.7003
0.7003
0.7003
0.7003
0.7003
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

Type Exponent

9.0
5.0
3.0'
1.7
1.0
0.6'
0.35
0.2'
3.5'
2.0'
1.2'
0.7'
0.4'
2.0
1.0
0.5
0.25
0.15
O.O9'
0.05
2.0
1.0
0.5
0.25
0.15
0.09'
0.05

IV. RESULTS

In order to demonstrate the feasibility and accuracy of
the present method we have performed scattering calcula-
tions for e +Hi and e +Ni on the static exchange
level. The first step is to perform an SCF calculation for
the target molecule. We have used the same SCF basis
sets as Watson et al. for Hi and as Berman and
Domcke~ for Nz. The second step is to expand the local
(i.e., static} potential

~max

V(r) = g &i(r)&~0(&) (4.1)
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TABLE III. Eigenphase sums of the e -82 scattering system in X symmetries. CRM: Ref. 31.
NBS: Ref. 33.

1.0
0.8
0.7
0.6
0.5
04
0.3
0.2
0.1

NBS

1.4352
1.7277
1.8583
2.0024
2.1612
2.3356
2.5229
2.7229
2.9302

1.5509
1.7509
1.8729
2.0114
2.1679
2.3399
2.4276
2,7246
2.9303

Present

1.5527
1.7504
1.8725
2.0116
2.1680
2.3407
2.5278
2.7260
2.9319

NBS

0.9310
0.8086
0.7239
0.5694
0.4032
0.2421
0.1204
0.0481
0.0128

0.9591
0.8361
0.7269
0.5797
0.4084
0.2459
0.1233
0.0493
0.0134

Present

0.9603
0.8371
0.7257
0.5748
0.4005
0.2383
0.1187
0.0480
0.0144

tegrate the wave function and the Green's function of the
local problem for all desired energies. Finally the fifth
step "alled the T'-matrix calculation in the following —is
to evaluate Eq. (3.5) and to compute the total E matrix.

It was found that the integration of the wave function
and Green's function of the local scattering problem
shows a stable and uniform convergence with respect to
both the number of coupled channels included and the
choice of the matching radius r2. The convergence of the
T-matrix calculation with respect to the size of the basis
set, , however, was found to be slow and nonuniform. A
quite small basis set is capable of accounting for the major
effects of the exchange scattering, e.g., with only four
functions one can reproduce the Em matrix elements and
the eigenphase sums of the e -Hi Xe scattering to
within 10'. To obtain very accurate data, however, one
needs a very large basis set and is then plagued with nu-
merical instabilities while solving Eq. (3.5). Taking the
quadrature basis and the inversion basis to be different
one finds that the convergence with respect to the inver-
sion basis is well behaved. The slow and erratic perfor-
mance of the convergence is apparently due to the quadra-
ture basis. Hence the instability of the T-matrix calcula-
tion is expected to disappear if one avoids the introduc-
tion of a quadrature basis (see Sec. V).

For e -H2 scattering on the static exchange level there
are very accurate data available. To compare with these
benchmark data we have chosen to use a fairly large
quadrature basis. This basis set is given in Table I. In
Tables II and III we compare the E-matrix elements and
eigenphase sums of the present calculation with those of
Collins, Robb, and Morrison (CRM} (Ref. 31},of Watson,
Lucchese, and McKoy (WLM} (Ref. 29) and (LWM} (Ref.
32}, and of Noble, Burke, and Salvini (NBS) (Ref. 33).
The target SCF orbital of the present calculation is the
same as the one used by WLM and LWIM whereas CRM
and NBS have used the Slater-type orbital given by Fraga
and Ransil. The iterative close-coupling calculation of
CRM and the iterative Schwinger calculation of LWM
are regarded as the most accurate data available for the
e -H2 scattering system. The agreement of the presently
calculated K-matrix elements and eigenphase sums with
these data is excellent. It is interesting to note that the
different representations of the target apparently infiuence
the scattering only marginally.

We now turn to the e -N2 scattering system. Table IV
gives the quadrature basis set. In Table V we compare
our eigenphase sums with those obtained by CRM (Ref.
31},by NBS (R-matrix calculation) (Ref. 33), by Weather-
ford, Onda, and Temkin (WOT) (noniterative partial dif-
ferential equation method} (Ref. 35}, and by Collins and

1

2
3

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Location

1.03465
1.03465
1.03465
1.03465
1.03465
1.03465
1.034 65
1.03465
1.034 6S
1.03465
1.03465
1.03465
1.03465
1.03465
1.034 65
1.034 65
0.0
0.0
0.0
0.0
0.0
0.0

Type

S,Z

S,Z

Exponent

20.0'
9.0
5.0*
3.0'
1.7'
1.0'
0.6
0.35
0.2'
0.12'
3.5'
2.0'
1.2'
O.7*
0.4'
0.25'
2.0
1.0*
0.5
0.25
0.15
0.09

TABLE IV. Basis set for the e -N& calculation in the X
symmetries. See caption of Table I for details. %e have used
the same basis set for both the X and the X„symmetry, except
for taking the last six functions of s type for the X and of p,
type for the X„symmetry. The quadrature basis consists of all
the 22 functions shown. In X„symmetry, however, the two
lowest eigenvalues of the overlap matrix are removed [cf. Eq.
(3.7}]. The 17 functions indicated by an asterisk ( ) form the in-

version basis. The basis set for the II symmetries is quite simi-
lar to the one for the X symmetries except for (i) deleting the
first function and (ii) replacing all s- and z-type functions by s-
and xz-type functions, respectively. For both 0 symmetries we
took a)l 21 functions to form both the quadrature and the inver-
sion basis.
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Schneider (CS) (linear algebraic approach). All investiga-
tors have used the target wave function of Cade, Sales,
and Wahl except for NBS, who have used Nesbet's tar-
get and the present calculation where the SCF basis of
Ref. 30 has been used. The eigenphase sums obtained by
the present approach again agree exce11ently with the
literature data. In Table VI we furthermore compare the
total cross sections of the present calculation with those
obtained by CRM and %'OT. The e -N2 eigenphase
sums of the present calculation are also shown in Figs. l

and 2. There the eigenphase sums are divided into their
static and their exchange contributions. One notices that
the exchange contribution is not small. The Hg eigen-
phase sum is of particular interest. There the static poten-
tial is almost completely shielded by the centrifugal bar-
rier. It needs the attractive exchange interaction to sur-
mount the barrier and to create the well-known shape res-
onance. Figure 3 shows the total cross sections of the
four symmetries discussed above and the contribution of
the hs symmetry. The solid line in Fig. 3 represents the

TABLE V. Eigenphase sums (modulo m) of the e -N2 scattering system. CRM: Ref. 31. NBS:
Ref. 33. %'OT: Ref. 35. CS: Results of Collins and Schneider published in Ref. 35.

E (Ry)
e -Nq2X+ eigenphase sum

NBS %OT Present

1.00
0.75
0.50
0.40
0.30
0.20
0.10
0.05
0.01
0.001

1.043
1.263
1.524
1.654
1.808
2.011
2.311
2.544
2.874
3.057

1.229
1.504
1.771
1.872
2.003
2.182
2.433
2.634
2.924

1.350

1.747

1.983

2.417

1.296

1.723

2.406

1.295
1.496
1.726
1.838
1.976
2.158
2.425
2.630
2.913
3.057

e-Nq2X~+ eigenphase sum

1.00
0.75
0.50
0.40
0.30
0.20
0.10
0.05
0.01
0.001

1.908
2.073
2.316
2.440
2.584
2.749
2.937
3.038
3.119

2.031
2.221
2.457
2.564
2.702
2.844
2.988
3.072
3.124

2.149

2.479

2.692

2.976

2.081
2.187
2.400
2.512
2.636
2.773
2.933
3.028
3.111
3.134

e -N2H„eigenphase sum

1.00
0.75
0.50
0.40
0.30
0.20
0.10
0.05
0.01

—0.694
—0.601
—0.455
—0.379
—0.290
—0.189
—0.075

—0.773
—0.578
—0.423
—0.369
—0.264
—0.155
—0.065

—0.269

—0.0705

—0.681
—G.590
—G.443
—0.367
—0.279
—0.177
—Q.069
—0.020
+ 0.003

e -N2H~ eigenphase sum

1.00
0.75
0.50
0.40
0.30
0.20
0.10
0.05
0.0j,

2.453
2.484
2.454
2.316
1.461
0.202
0.011

2.456
2.487
2.546
2.442
1.831
0.245
0.026

2.574

1.760

0.0105

2.462
2.498
2.442
2.370
1.639
0.215
0.011
O.OOS

—0.005
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TABLE VI. Crass sections cr~ (in atomic units) for the e -Nl scattering system. CRM: Rcf. 31.
%'QT: Ref. 35.

Present

1.00
0.75
0.50
0.40
0.40
0.20
0.10
0.05
0.01

11.04
15.87
25.13
31.12

50.60
66.67
77.20
84.35

12.51 12.42
16.78
24.33
29.98
35.12
43.10
52.56
57.19
60.27

11.90
13.24
13.42
12.71
11.23
8.69
4.81
2.48
0.76

X„
10.36

3.08

10.55
10.87
10.14
9.44
8.52
7.16
4.68
2.70
0.91

1.00
0.75
0.50
0.40
0.30
0.20
0.10

9.94
12.14
19.69
33.29
82.99
55.77
0.93

14.55

0.45

9.47
11.36
17.90
29.44
83.38
6.45
0.12

12.05
11.34
1043
8.00

3.82
1.20

IIg
11.24 11.56

10.85
8.92
7.55
5.68
3.27
0.84

3.0

?.0

10

0.2 0.4 k(a. u. ) 0.8

3 0

].0

0.2 0.4 k(a. u. ) 0.8

FIG. 1. Eigenphase sums of the e -N2 scattering system vs

initial momentum k. The so1id line represents the (tota1) eigen™
phase slllll [l.c., 5=(2i) tu(dctS)], thc dssllcd lillc fcplcsellts
the exchange cigcnphasc sum [i.c., 5 =(2i) 'ln(dctS'~')], and
the dotted line rcprcscnts the static cigcnphasc sum [i.c.,
5„=(2i) 'tn(dctS'"')]. Shown are 5 2n, 5, and Q —c—in X~
and 5—n, 5, aud Q —n in X„symmetry.

sum of the five contributions.
It is interesting to note that the instability problem of

the T-matrix approach discussed at length above—
heavily depends on the symmetry of the scattering pro-
cess. In the case of the c -H2 systems the instability
problem disappears if we go from the Xs to the X„sym-
metry. The X„results remain essentially unchanged when
we take into account only the first eight functions rather
than the first 13 functions of the basis given in Table I. A
similar trend was found in the calculations for N2. The
stability of the T-matrix calculation significantly in-
creases when one goes from the Xs to X„, Il„and Ils
symmetry. To illuminate this effect we mention that we
estimate the error in the exchange eigenphase sums to be
smaller than 0.06, 0.03, 0.02, and 0.015 rad for the Xs,
X„, II„, and Ils symmetries, respectively. The error in
the static eigenphase sums, on the other hand, is estimatml
to be smaller than (3X10 )(0.1+k) rad for all sym-
metries. ( k denotes the initial momentum in a.u.) The in-
crease in the stabihty of the T-matrix calculation is ap-
parently related to the buildup of the centrifugal barrier
which lesseiis the infiuence of the short-ranged exchange.
In particular the wave functions in the II symmetries
show a nodal line along the internuclear axis. Hence ihe
11 wave functions vanish where the exchange interaction
is strong, namely at the nuclei.

As a final remark we mention that the computation of
the wave function and Green's function for the static Nl
potential takes between 1 and 3 minutes CPU time on an
IBM 3081D. Computations performed at higher energies
require more angular momenta and hence consume more
computation time than those performed at lower energies.
The evaluation of Eq. (3.5), i.e., the T-matrix calculation,
takes only a few seconds.
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FIG. 2. Similar to Fig. 1, however, no multiples of m are sub-
stracied from the eigenphase sums.
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00
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FIG. 3. Total cross section (in atomic units) vs the initial
momentum. The contribution of the X symmetries are shown as
dashed lines and those of the II symmetries as dotted lines. The
contribution of the d~ symmetry is sho~n as a dashed-dotted
line. The contribution of the dt„symmetry was found to be
negligible. The sohd line represents the sum of the five contri-
butions.

V. DISCUSSION

The method which we have described above is similar
to the one of Rescigno and Orel. ' There are two major
differences. Firstly, Rescigno and Orel solve Volterra-
type integral equations whereas we solve differential
equations to obtain the wave function for the local scatter-
ing problem (see Appendix A). Similarly to the above cal-
culations they also use Cartesian Gaussians as inhomo-
geneities of the Schrodinger equation. However, they
transform to the correct BC and thereby extract the (full)
K matrix in one step whereas we first transform to the BC
of the local problem and then solve for the nonlocal
scattering by another matrix inversion. The advantage of
the explicit construction of (the matrix elements of) the
Green's function lies in the direct applicability of the
Feshbach rojection formalism for shape reso-
nances. ' ' This formalism allows for the computation
of the resonance width I and the level shift b, of some
predetermined discrete state. The quantities I' and b, are
important input data for calculating the vibrational exci-
tation of a molecule by electron impact in the neighbor-
hood of a shape resonance ' as well as for the treat-
ment of dissociative attachment. ' To implement the
Feshbach formalism for shape resonances one merely has
to replace the free Green's function by the one of the local
scattering problem and the full potential by its nonlocal
part and all the derivations of Refs. 21 and 30 remain
vahd. This in particular distinguishes the present ap-
proach from all those approaches which —like the R-
matrix method —do not construct a Green's function.

More generally we would like to mention that the expli-
cit separation of the scattering problem into two subprob-
lems is also of advantage computationally. The conver-
gence properties of both subproblems can be studied in-
dependently. In particular, because the T-matrix calcula-
tion is very fast, one can extensively investigate its conver-
gence using different subsets of the basis in which the
Green's function is expanded.

The scattering off the local potential is treated by a
close-coupling method. This method has been used in
electron-molecule scattering before, e.g., by Burke and co-
workers. ~ The single center expansion, which is used in
the close-coupling formalism, has sometimes been criti-
cized in the literature. Our experience is that the conver-
gence with respect to the angular momenta is very well
behaved (albeit not very fast). Moreover, the angular
momentum representation very conveniently allows us to
evaluate the wave function for large l and for large r by
the Born approximation. The former modification 3 has
not been implemented yet, the latter one, which is
described in detail in Appendix 8, was found to be very
helpful. It will be of great importance if the molecule
possesses a dipole moment.

A possible extension of the present method is the im-
plementation of a full Schwinger variational calculation.
The introduction of a quadrature basis can be avoided by
usmg
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as inhomogeneities [cf. Eqs. (2.12) and (2.16)]. Doing so
one computes (4)

~

IV
(

n ) and (,n
~

WGW
~
m ) rather

than (4) ~n) and (n ~6 ~m). Hence one can now per-
form an exact Schwinger variational calculation. The ad-

ditional work of evaluating Eq. (5.1) and expanding b„on
an r )&! grid will be compensated by the smaller number
of basis functions which are now necessary. However,
when going beyond the static exchange level, 8' becomes
energy dependent and Eq. (5.1) has to be evaluated for
each energy point. It then becomes questionable if there is

still a computational advantage. In any case, using the b„
as inhomogeneities one follows a similar route as recently
taken by Smith, t.ucchese, and McKoy. '

In concluding this article we want to emphasize again
that the two major advantages of the present approach to
the fixed-nuclei electron-molecule scattering lie in the
straightforward way to, firstly, use a full many-body opti-
cal potential rather than the static exchange one and,
secondly, to perform a Feshbach projection for shape res-
onances. Work along these lines is in progress.
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+0(h') .

To minimize roundoff errors, the solutions have to be
stabilized. ' Assume we want to stabilize the solutions
at some predetermined set of points [rjj. The regular
solution within the interval [rj,rj+)] is called (t)(j) and
similar for the other quantities. We replace equations
(2.22) and (2.23) by

I" .
2'~' =A'~ "+g f drb'r(rig '(„' "(r(,

j—1

T' ~

B(jI)=B(]-"+gI' d. b;„(r)y(ij, )(r),

(AS)

(A9)

where the integrals are performed by Simpson's rule and
define

tegration step requires two matrix multiplications, name-

ly, 6+y'+' and 6+y'+'. 6+y+ is not evaluated. In the
following integration step we use the already evaluated
quantity Goya

' rather than Goyo. In order to be able to
double the step size we keep three solution matrices (the
column vectors of which are the y's) and three derivative
matrices (the column vectors of which are 6 y) in core.
The error in the integration is of the order h . The
derivative yo which is needed to evaluate the Wronskians
at the end of the integration is obtained by the formula

r

1 2

Yo= y+ —y + (6+y+ —6 y —b +b }
2h

—
6 — —-- +

G)p(r)=5(j [k j(!+1)/r )—Vn—(r) . (A2)

We introduce the finite step size h, define the abbrevia-
tions

APPENDIX A

We want to numerically solve the differential equation

y "+Gy=b

where y denotes some column vector of the matrices P or

g, b denotes the coefficient vector of an inhomogeneity,
and 6 is defined by

T= [P(&—"(r, ))

g (j—1)(r )

At r =rj the stabilization performs as follows:

y j() y
(j—i ) T

y(j) y(j —l)T

—j() —
j(

—1)
y j()f

-(j) -(j—1) ~ (j)~

g(j) g [j)T

(A10}

(Al 1)

(A12)

(A13)

(A14)

(A15)

(A16)

y =y(r —h),

yo=y«»

y+ y(r +h), ——
(A3)

~(j)=i (&) B(j)f .—

APPENDIX 8

(A17)

and assume similar equations for 6 and b. The propaga-
tion of the solution is then performed by the equations

y+ =2yo —y +h 6oyo+h (b++10bo+b )/12,

(A4)

y+ =y+ —h (6+y+ —26()y()+6 y )/12, (A5}

This appendix is concerned with a perturbative evalua-
tion of the Jost solution X. The procedure described
below allows us to stop the integration of the coupled
equations at a considerably sinaller value of the matching
radius r as compared to the usual procedure of identifying
the Jost solution with the free solution h+.

We shall write the Jost solution X(r) as

—(2)
h 26 (

—(2)
y (i))/30 (A6) X(r) =h+(kr)A(r)+h (kr)B(r)

Equations (A4) and (A5) are known as the Stormer algo-
rithin, the modification (A6) is due to Baylis. Each in- X'(r)=kh+ (kr)A(r)+kh '(kr)B(r) . (B2)
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The matrices A and 8 are given by the integral equa-

tions
Va.(r)= g V„)1r (89)

A(r)=l —(2ik) ' f dr'h V(h+A+h 8)

8(r) =(2ik) ' f dr'h+ V(h+A+h 8) .
F

(83)

(84)

and recognize that the Riccati-Hankel functions can be
written as

Replacing V by A, V and writing A and 8 as

a=j.+ca("+Z'W(2)+ . .

h)-(kr) =Q)(+kr)exp[+i(kr i—n/2)],

where
85)

(810)

a =ut("+Z2S(2)+

one finds that the first-order corrections are given by

~())= —(21k)-' f dr'h Vh+-,
P

8("=(2ik) ' dr'h+ Vh+ .

(86) Ql(x)= g . .
'

( 2—ix)(i +j)!
, , j!(i—j)!

I
= g qj '( 2i—x)

j=0
(811)

We expand VN (r) in inverse powers
After a short calculation one finds that the first-order
corrections (87) and (88) can be written as

I I'

A&&"
——(2ik) 'i g g g V„l&q' 'q& '(2ikr) J( 2ikr) ~(—j +j'+n —1) 'r

n j=0j'=0
(812)

I (t'

BI~"=—(2ik) ( i)'+—e ' 'g g g Vaqj' 'qj '( 2ikr) J —J r "f(j+j'+n,kr),
n j=0j'=0

(813)

where Using similar arguments one can show that the exact
solution satisfies

f(Nkr)= f dxe *(1—x/kikr) (814) A TB=BTA (819)

The last integral can be evaluated very efficiently by
Gauss-Laguerre integration. ~

One may follow the route outlined above to obtain the
second-order correction. However, the evaluation of the
second-order corrections becomes very time consuming
because there are now four nested sums going from zero
to i or 1'. A very efficient way to improve the results is to
require that the Wronski relation and the symmetry of the
S matrix are obeyed to second order. The Wronskian
W(X', X) is easily evaluated,

because the S matrix has to be symmetric. To second or-
der this equation determines the antisymmetric part of
g(2)

TABLE VII. Convergence of the e -N2 Xg eigenphase sum

with respect to the matching radius r. Shown is the difference

between the asymptotic value 5"=2.601 3164 and the corrected
and uncorrected eigenphase sums (see text). X gives the number

of channels which are corrected according to Eqs. (B12) and

{813}.The remaining 21 —i)i channels are corrected via Eq.
(B23). The scattering energy is E=0.25 Ry.

1V(X' X)=2ik(A tA —8t8) . (815) r (a.u.) (gcorr g(N ) X 106 (guncorr gee ) X 106

(816)

or, to second order,

g(2)+(g(2))'r (g(l))tg(1) (g()))tg(1) (817)

Hence the Hermitian part A &', of the second-order
correction of A is very easy to obtain,

) [(g(l))tg(1) (g(1))tg(l)] (818)

Because the Wronskian is independent of r, the exact
solutloil sa tlsflles

7
8

10
12
15
20
25
30
40
SO

60
80

100
150
200

145.8
111.9
55.2
31.8
14.6
5.2
4.0
1.0
0.1

—0.5
—0.9
—0.4

0.0
0.1

0.0

24923
21796
17370
14348
11182
8142
6263
4963
3366
2403
1749
940
5S2
234
130

3

5

5

6
8

10
11
14
17
18
21
21
21
21
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) (g(2) g(2)T) ' (g(1)Tg(1) g())&g())) (820) Co

Im(A("+8"') =— drj'Vj
r

(821)

In the actual calculations we have approximated A' ' and
8' ' by AH' and 8& ', respectively.

The coefficients ql~
' can become very large ( & 10 ) for

large l (in particular if 1 ~ kr). When this happens, the
numerical stability is lost. Fortunately it turns out that
only the quantity

is of importance for correcting those channels which are
closed at the matching radius r. Since the Riccati-Bessel
function jt(kr) vanishes rapidly for kr ~1 one may extend
the integration (821) to zero. We then can solve the in-
tegral analytically and define

k
c„tt = j t(kr)r "j)(kr)dr =— P n —1)l ((1+1'+3 n)—/2)

I"((1—I'+n)/2)I ((1'—l +n)/2)I ((1+1'+n +1)/2)
' (822)

For the closed channels we therefore replace Eqs. (812)
and (813) by

(823)

The simple perturbative correction of the Jost solution
leads to a quite dramatic improvement of the convergence
with respect to the matching radius r To dem. onstrate
this improvement we have performed scattering calcula-
tions on the e -N2 system in Xs symmetry for varying

matching radii r Th. e scattering energy was E=0.25 Ry
and we have accounted for 21 coupled channels, i.e.,
lm =40. The second and third columns of Table VII
show the difference between 5" and the corrected
(X=A+A +h 8) and uncorrected (X=It+) eigenphase
sum, respectively. Here, 5" represents the eigenphase
sum to which we assume the results converge for r~ oo.
Using the perturbative correction one can stop the in-

tegration at a considerably smaller value of r The per. tur-
bative correction will be of particular importance if one
studies the scattering from polar molecules.
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