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Electron-loss cross sections for hydrogenlike ions with atomic number Zi (2 &Zl &7) and with

velocity u (0.3uo & u/Zl &6uo, uo is the Bohr velocity) are investigated in collisions with N2, 0&, Ne,
and Ar targets using the unitarized impact-parameter method. In order to describe the form factors
of these targets, we use the modified Moliere electron distributions where the parameters appearing
in the Moliere potential are slightly modified to fit the form factors obtained from Hartree-Fock
wave functions in the small momentum-transfer region. Then we find the electron-loss cross sec-
tions samitive to those parameters at high velocities. The scaling relations, characterized by the re-

duced cross section o (=Z~ 0) versus the reduced velocity u (=u/Zl), are presented, where
m =2.8 for Nq and 02, 2.6 for Ne, and 2.4 for Ar. Here the molecular effect in N2 and O~ targets
and the polarization of target electron clouds due to a projectile are both neglected. These scalings
yield good agreement with the reported data, particularly when u & 1.

I. INTRODUCTION

Charge states of energetic ions passing through matter
have been an important problem in studies of ion-
beam —material interactions and plasma-wall interactions,
etc., in order to investigate both target- and projectile-
excitation proc4mses and related phenomena. For example,
energy loss and energy straggling of incident ions depend
on the net charge' and, if the ions are partially stripped,
also depend on the spatial electron distribution of the
bound electrons in them. Recently, stopping powers,
energy stragglings, and the charge-fluctuation contribu-
tion to energy stragghng have been studied for ion beams
with several charge states allowed in matter, where the
size effect of partially stripped ions and the charge frac-
tions are included. '

In principle, charge states of impinging iona are deter-
mined by the cross sections for charge-changing processes,
i.e., electron capture from a target and electron loss of a
moving particle. " As for the study of the electron-lms
process, several theories are available so far. When we
consider the cases where the interaction Hamiltonian is
sufficiently small and the projectile velocity is sufficiently
large compared with the orbital velocity of the excited
electron, the first Born approximation (FBA}can be suc-
cessfully applied to the investigation of electron-loss and
-excitation processes. Particularly, in plasmaphysics and
astrophysics the FBA has been often used with success in
studying such processes for impurity ions and light ions
colliding with H and He targets. ' ' There the widely
used closure expression and a scaling law for electron loss
are available. However, the FBA breaks down for ions
colhding with heavy target atoms especially around the
velocity u-Ziuo (Z& is the atomic number of a Projec-
tile} where the electron-loss cross section becomes max-
imum and the FBA theory usually yields larger cross sec-
tions. On the other hand, based on the free colhsion ap-
proximation, Bohr' presented the formula for an

electron-loss cross section for an ion with velocity u col-
liding with a heavy target atom with atomic number Z2,
where the cross section is proportional to Zi and u

for u»ut, (ut, is the orbital velocity of the ejected elec-
tron). In spite of its simple form, this result is at least in

qualitative agrtement with data. Bohr's formula shows a
velocity dependence different from the asymptotic veloci-

ty dependence of the FBA theory.
In order to improve the FBA especially around

u-Ziuo for high-Z2 targets and to obtain more satisfac-
tory agreement over a wider velocity range than the Bohr
formula, the unitarized impact-parameter method is
used. ' This method includes interaction matrix elements
to infinite order under some approximations, as will be
mentioned in the text. According to this theory, the
electron-loss and -excitation cross sections for a He+ ion
are found to depend only weakly on Z2 in the regime
Z2 & 10 at the velocities considered. In addition, the ener-

gy dependences of the electron-loss cross sections for
several gaseous targets are in good agreement with the re-

ported data over wide impact-energy ranges.
The aim of this paper is to investigate the electron-loss

process for hydrogenlike ions both with Z, ranging from
2 to 7 and u (0.3uo (u/Zi (6uo} as a direct extension of
Ref. 16. Furthermore, scaling relations in the electron-
loss cross section are proposed, which are different from
the FBA prediction. In Sec. II our procedure is briefly re-
viewed, and in Sec. III numerical results and discussion
are presented. We use atomic units throughout this paper
unless otherwise stated.

II. PROCEDURE

Since the theoretical background has been given previ-
ously, ' only a brief description is presented. We assume
that a projectile with velocity U moves along a straight-
line trajectory with impact parameter b. Here a projectile
is hydrogenlike and, therefore, has only one electron,
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+1/( r) —r2i+R (
}, (2.1}

where the position vectors r&, r2J (j=1,2, . . . , Zz), and
R refer to a projectile's electron, target electrons, and a
projectile nucleus relative to nucleus of a target atom.
The time dependence of V&„,(t) is introduced through
R=b+vt. In obtaining the transition amplitudes to final
states, the following approximations are adopted: (1) drop
the chronological ordering operator in evaluating the
time-ordered multiple integrals of the interaction Hamil-
tonian and (2) fix either the bra or the ket vector to the
ground-state bra or ket vector of each matrix element of
the interaction Hamiltonian in any order terms.

Under the above conditions, the transition probability
9'„k(b) for the process that both a target atom and a pro-
jectile are excited to the excited state k of the atom and n
of the projectile (

~
n;k ) ), respectively, from the ground

states denoted by 0 (
~
0;0) ) is obtained' as

P„k(b)=[P„k(b)/P, (b)]sin [P,(b)'~ ], (2.2)

and the survival probability 9'00(b) of the ground state is

while a target atom is allowed to have many electrons.
We treat the motion of a projectile classically and that of
electrons quantum mechanically. The interaction Hamil-
tonian of our system is written as

V;„,(t) = —Z2/
~
R+r~

~

+ y( —Z|/I R—rz, I

velocity range u &0.6uo so that thee are all neglected.
This is the third approximation for us.

As is understood immediately from (2.4), the
projectile-ionization and -excitation probabilities are con-
tributed both from the target-inelastic (k+0) and from
the target-elastic (k=O) processes. Instead of estimating
directly the quantities P„o(b) and P„k(b) in (2.4), let us
consider the integrals of them over b:

o,i ——f db 2n.bP„O(b),

cr;„,) g—— f db 2mbP„k(b),
k(~0)

(2.7)

where er,i and o;„,i are equal to the cross sections within
the framework of the FBA, and therefore, they are rough-
ly proportional to Zq and Z2, respectively. This relation
obtained from the FBA is expected to be valid in the rela-
tion between P„o(b}and P„k(b) themselves. It can be con-
cluded, therefore, that P„o(b) is more dominant than

+k~+0~ P„k(b). According to this consideration, all
P„k(b)'s (k&0) can be neglected as long as heavy (high-
Zq) target atoms are treated. Thus we neglect the target-
inelastic contribution to the electron-loss cross section in
comparison with the target-elastic one. This is the fourth
approximation for us.

At this stage, the projectile-ionization is contributed
only from the target-elastic process, in other words, it is
caused by the average potential field provided by a target
atom. Here this average potential is approximately
described by the Moliere potential

%00(b) =cos [P,(b)'~'],

P, (b) = g P„I,(b),

(2.3)
VM(r) = —(Z2/r) y a;exp( —P;r/aTF),

i =1.,F-0.8853Z, ~~3,
(2.g)

n, k

P„k(b)= f dt(n;k
i

V(t) iO;0)
(2.4)

The operator V(t) has vanishing diagonal matrix elements
because it is derived from the interaction Hamiltonian

V;„,(t) in (2.1) by means of a unitary transformation of
subtracting its diagonal part V;„,z(t) from V;„,(t) itself.
The explicit form is

where the parameters are given by (a|,a2, a3}
=(0.10,0.55,0.35) and (P&,P2, P3) =(6.0,1.20,0.30), and a TF
is the Thomas-Fermi (TF) screening length. Using
Poisson's equation, the spatial electron distribution p(r) in
an atom is immediately obtained. By applying the
Fourier transform to p(r), the elastic form factor p(q) can
be found in the form

V(t) =exp[iy(r)][ V(„,(t) —V(„, (t))exp[ —iy(r)]

and the matrix elements of y(t) are given as

(2.5) 3

p(q) =Z2 g a;/[1+(aTFq/P;)2] . (2.9)

( n;k
~
y(t) i

n', k')

f «'(~ k IV;.t(&') ln k)+s.k& ~..4a,
The Moliere potential V~(r) has the following Fourier
component:

(2.6) VM(q) = —(4~/e')[Z2 —p(q)1. (2.10)

where c„k denotes the energy of the state
~

n;k). The
matrix element (n;k

i V;„,(r') ~
n;k ) is composed of three

energy-level-shift terms at the position R(t'): two of
them are the level shift of a projectile state n due to both
a target nucleus and the electron distribution of a target
state k, and the last term is that of a target state k due to
a projectile nucleus. These terms become important at
lower impact velocities. Later, we restrict ourselves to the P (0r)=(n. a)~'~ exp( r/a), a&

——Z~
'—. (2.11)

This term actually appears in P„o(b), as will be seen later.
To classify projectile-ionization and -excitation process-

es, the subscript of P„o(b) is changed to P~ „(b) for ioni-
zation, and P,„,„(b) for excitations to the nth state. The
initial wave function is the hydrogenic ls wave function
for both processes:
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P„(r)=(Zm. ) ~ exp(i~. r) . (2.12)

Using the above wave functions and integrating the

The final-state wave function for ionization is assumixl to
be a plane wave for simplicity with a wave vector ir:

square of the absolute value of the transition matrix ele-
ment over the wave vector a, the expression of P;,„(b) is
obtained. In order to investigate a scaling problem in the
electron-loss cross section, the formula is written in the
following reduced form:

2'Z'
P 0„(b)'= f darky f ding g h~ f dqyqyJ~(qyb)q

where

[Z ( )]
(A 8 ) A

8

2
A Pl

(A —8) (A —8)
(2.13)

A =1+q~+~~+(q, —~,), 8=2q~~~ .
(2.14)

In (2.13), J~(q„b) denotes the Bessel function of mth order, and h =1 for m=0 and 2 for m a positive integer. The
subscripts z and y in (2.13) and (2.14) indicate the direction of motion of a projectile and the direction perpendicular to
the z direction, respectively. Moreover, the reduced velocity u, the reduced impact parameter b, and the reduced
Thomas-Fermi screening length a TF are, respectively, defined by

u=u/Zi b=Zib and aTF=ZiaTF (2.15)

(2.16)

with

( n, n i,nz
~
exp(iq r)

~
1,0,0)

=2 n q[nq i{n& —nz)—][(n —1)+n q —i2nq]"1 '[(n —1)+n q +i2nq] ' /[(n+1) +n q ]",
(2, 17)

On the other hand, when we calculate the excitation matrix element for a transition to
~

n, n, , nz ) from ~1,0,0) in the
parabolic coordinate system, P,„,„(b) has the following form:

4.Z2 n —1 2

P„,,„(b)= g f dqyqy Jo(qyb)q [Zz —p(q)](n, ni, nz
~
exp(iq r)

~
1,0,0)

n& (or n2)

where

(-2+-~2)1/2e= e&

q,' = —(e'i' —eIi')/u,

eg'= —( —,
'

)n (n =2,3,. . . ) .

(2.18)

P;,„(b)=(Z2/Ziu )F;,„(b,u, aTF),

P,„,„(b) =(Zz/Z, u )F,„,„(b,u, aTF),
(2.19)

In the above equations, n is a principal quantum number,
and other quantum numbers n, and n z ( n i or
nz ——0, 1,2, . . . , n —1) are related to n through the equa-
tion ni+nz+ l=n The enerlIy . level of a state n of the
projectile is denoted by s'„~ . In (2.13) and (2.16),
q [Zz —p(q )] corresponds to a Fourier component
Vsi(q) in (2.10) except for a numerical factor.

The quantities P; (b) and P,„,„(b) are rewritten in
simple forms:

cr; „=Zi f db 2mb&;, „(b),

o,„,„=Zi f db 2mb&, „,„(b),
where

(2.20)

where functions F~,„(b,u, aTF) and F,„,„(b,u, aTF) denote
the residual parts of P;,„(b) and P,„,„(b), respectively,
except for the leading factor Zz/Ziu . Such expressions
have an important physical meaning in that the ionization
and the excitation probabilities in the first-order theory
for a hydrogenlike projectile with atomic number Zz and
velocity u, which collides with an atom with atomic num-
ber Z2 and the screening length aTF at impact parameter
b, are identical to those multiplied by a factor Zz/Z i for
a hydrogen atom with the reduced velocity U, which col-
lides with a "statistical" hydrogen atom with the reduced
screening length aTF at the reduced impact parameter b.
In our unitarized impact parameter formalism, the
projectile-ionization and -excitation cross sections are ob-
tained by
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9';,„(b)=[P;,„(b)/P, (b)]sin [P,(b)' ],
9',„,„(b)=[P,„,„(6)/P,(b) j»n'[P, (b)' '], (2.21)

o H= db 2nbF;,„.(b, v, aTF ),
0

(2.22)

where eH denotes the reduced electron loss cross section
for a hydrogen atom with velocity v colliding with an
atom with Z2 ——1 and with the screening length aTF.
When oH depends very weakly on aTF, the loss cross-
section curves plotted for (Ziv /Z2)cr;, „vs v will be
scaled well. The asymptotic forms of the target-elastic
contribution o,'„and the target-inelastic one o,"„" for
U ~~1 are

(2.23)

form of a';,"'„'
appeases in ~th~~ pap

Either from (2.23) or from the detailed expressions, cr,",„is
much more dominant than o';,"'„'. lt is, therefore, relevant
to scale the loss cross section not by (Ziv /Z2)cr but by
(Ziv /Zz)cr. In our case, to find a scaling on projectile-
target combinations, the reduced screening length aTF is
considered here. Except for a numerical factor, aTF is
determined by Zz ' Zi(=c). Then we can draw a con-
clusion that if aT„ is kept constant for sets of projectile-
target combinations [e.g., (Z„Zz)=(2,2),(4,16),. . . be-

long to one set, and (2,3),(4,24),. . . belong to another set],
P;,„(b) behave like -(Z2 /c v )F;,„(b,v, c) or
-(Zi/c v )F;,„(b,v, c), and P,„,„(b), behaves in a way
similar to P;,„(b). Therefore, we obtain

cr,'0„-(Zz /c v ) db 2nbFi, „(b,v, c)
0

(2.24)

-(Zi/cev ) db 2nbF;,„(b,v, c) .
0

On the other hand, for the case of P, (b) & 1, P; (b),
and P,„,„(b) increase greatly in the small b region, with
both quantities exceeding unity. Due to the unitarity,
however, it is impossible for H;,„(b) and H,„,„(b) to
exceed unity. This fact brings a weaker Zz dependence of
the loss cross sections than the first-order theory does.
This result is attributed to the cancellation of a factor
Zz/Ziv in the amplitude of H;,„(b) and H,„,„(b),
which enters only in the argument of sine functions. If
we notice this remarkable feature, we can also expect a
weaker Zi dependence as well. From (2.20), we can easily
realize that the projectile-ionization and -excitation cross
sections are scaled as

+ion=Z1+Ions +cxc,n =Z1+exc, n (2.25}

P, (b)=P;.„(b)+ g P.„,,„(b) .
n=2

If the condition P, (b) «1 is satisfied (usually in the
case where v ~~1), H;,„(b) and H,„,„(b) can be replaced

by P;,„(b) and P,„,„(b), respectively. Then the ioniza-
tion cross section cr';O„contributed from the target-elastic
process 1s given by

It is observed that Z2 and U do not appear explicitly in
(2.25) and are included implicitly in o;,„or rr,„,„S.ince
ion and exc, n depend on Z& also through aTF, we do not
expect in general the scaling with respect to Z& is simple
like (2.25). Nevertheless, the relation o;,„~Z i o;,„
(2.4& m &2.8) turns out to be actually valid in the range
v & 1 for hydrogenlike projectiles in collisions with several
targets treated later.
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FIG. 1. Form factors of N and Ar atoms calculated from
Hartree-Fock (HF) electron distribution {———), the Moliere
electron distribution (MED) (—-—), and the modified MED
( aud —--—). The parameters (p&, p2, p3) for the curves
denoted by Moliere, Moliere 1, and Moliere 2 are (6.0,1.20,0.30),
{6.0,1.20,0.35), and (6.0,1.20,0.40), respectively. The arrows in-
dicate the scale of the vertical axis.

III. NUMERICAL RESULTS AND DISCUSSIONS

In our previous calculation' of the electron-loss cross
sections for a He+ ion, the numerical results yield good
agreement with the experimental data as a whole. For
several targets, however, we found appreciable differences
especially in the high impact-velocity region U &4U0. %e
assume these differences will be caused by the rather
crude approximation of p(q) in (2.9} to the real form fac-
tor. In general, at high impact velocities, the momentum
transfer in the z direction (the direction of motion of a
projectile}, i.e., q„becomes small, and accordingly, a
small momentum transfer (q) mainly contributes to the
loss cross section. We should, therefore, describe more
precisely the form factors there. As a standard of the real
form factors, we take the Hartree-Pock form factors.
Then our prescription is to modify the parameters in the
Moliere electron distribution (MED} in order to fit them
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FIG. 2. Electron-loss cross sections for He+, Li'+, Be+,
8 +, C'+, and N + ions colliding with a N atom. The dotted
line indicates the calculation for a He+ ion using the Moliere
electron distribution (MED), and the solid lines indicate those
for the above six hydrogenlike ions using the modified MED
denoted by Molie. re 2 in Fig. 1. The numbers near the curves
denote the atomic number of the ions. The experimental data
are obtained for a He+ ion {0,Ref. 19; Q, Ref. 20; 0, Ref. 21;
X, Ref. 22), for a Lii+ ion (k, Ref. 21; g, Ref. 23},for a B~+

ion (0, Ref. 21), and for a N6+ ion ( )&, Ref. 21).

FIG. 3. Electron-loss cross sections for He+, Li +, Be+,
8 +, C +, and N + ions colliding with an Ar atom. The dotted
line indicates the calculation for a He+ ion using the MED, and
solid lines indicate those for the above six hydrogenlike ions us-
ing the modified MED denoted by Moliere 1 in Fig. 1. The ex-
perimental data are same as in Fig. 2 except for a He+ ion ( V,
Ref. 24). The numbers near the curves denote the atomic num-
ber of the ions.

especially in a small q region. In Fig. 1 the form factors
p(q)'s are illustrated for N and Ar targets using the
Hartree-Fock, " the Moliere, and the modified Moliere
electron distributions, where the modified parameters are
obtained as (Pi,P2,P3) =(6.0,1.20,0.40) for N and
(6.0,1.20,0.35) for Ar. The other parameters a; (i=1,2,3)
are not changed in this case. From the figure such modi-
fication actually improves p(q) in a small q region, while
in a large q region no conspicuous differences can be
found.

Figures 2 and 3 show the electron-loss cross sections for
hydrogenlike projectiles colliding with N and Ar targets,
respectively. Calculation was performed for He+, Li +,
Be +, B +, C +, and N + ions with specific energy rang-
ing from —10 to 3600 keV/amu. The dotted lines indi-
cate the results from the original Moliere form factors of
target atoms for a He+ ion and the solid lines do the re-
sults from the modified Moliere form factors. Except for
a He+ ion, there are not so many experimental data for
other ions. Nevertheless, a comparison of theoretical
curves obtained by the modification with data shows good
agreement as a whole. In P~,„(b) and P,„,„(b), the infor-
mation of targets enters in terms of the charge distribu-
tion in the Fourier space, i.e., Zi —p(q). In the limit of
q =0, Z2 —p(q) is equal to zero since we treat neutral tar-
get atoms. Therefore, the improvement of Zi —p(q) in a
small q region yields a significant influence on the in-
tegral over q» appearing in (2.13) and (2.16). Except for
this region, a relative difference in Z2 —p(q) between the

MED and the modified MED is very small since
Zi —p(q) itself is considerably large. Moreover at high
and low impact velocities, small and large q, values in
(2.14) dominantly contribute to the loss cross section.
Judging from the above consideration, the modified MED
improves greatly the loss cross section at high velocities,
while it has almost no affect at low velocities.

In Figs. 4—7 the calculated electron loss cross sections
for He+, Li +, Be +, B +, C +, and N + ions with the re-
duced velocity u ranging from -0.3ue to 6uo in collisions
with N, 0, Ne, and Ar targets are shown together with
the reported data. ' The modified MED's for 0 and
Ne are described by (Pi, Pz, P3)= (6.0,1.20,0.50) and
(6.0, 1.20,0.60), respectively. Here we have expressed the
scaled cross section o;,„ in the form of o;,„=Zi o;,„as a
function of the reduced velocity u=u/Zi. Then we ob-
tain m=2. 8 for N and 0, 2.6 for Ne, and 2.4 for Ar.
These power indices are determined by considering the
cross sections in the lower reduced velocity range v (1.
With increasing Z2 number, the Z& dependence of the
scale factor of o;,„becomes weak. At a glance we can
easily notice that the reduced peak velocities u~ s at which
o;,„'s get maximum for the above ions (2 (Z, & 7) are lo-
cated at about 2 not at 1. The latter reduced velocity, i.e.,
u= 1, corresponds to u» predicted froin the FBA theory.
In addition, u» value is shifted a bit toward the higher
velocity side with increasing Z&. As far as the velocity
dependence is concerned, the (reduced) loss cross sections
behaves like v in the range of 0.3vo (v (vo, and also
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V (=V/Z1)

2.8FIG. 4. The scaled loss cross section 0 (=Z~' 0) vs
/Z ) f H + Li+ 8e+ 8+, C+, and N+ ions collid-

for aing with a N target. The experimental data are obtained or a
+ '

( R f. 19 6 Ref. 20; $, Ref. 21; g, Ref. 22), for a
ef. 21)Li'+ ion (L, Ref. 21; '7, Ref. 23), for» + ion (0, Ref.

and for a N6+ ion (0, Ref. 21).

FIG. 5. The scaled loss cross section 0 (=ZI o) vs u

f H+ L'+ 8 + 8+ C+, andN+ionscollid-(=U/Zi) fof He, 1, e
ing with an targe .0 ta t The experimental data are obtained or a
He+ ion (O, Ref. 19; k, Ref. 22).

1
' for 2u & u & 6uo. The latter rough estimate is

consistent with Bohr formula. At much higher velocities,
one can naturally expect that ihe loss cross sections have

t 1 dependence of u from the theoretical
a licable.point of view, since the first-order theories are app ica e.

Compared with the FBA, another feature is that in our
h th loss cross sections have broader peaks as a

f thefunction of velocity. This is due to the reduction o e
loss cross section around the peak velocity predicted from
the first-order theory by means of estimating the higher-
order interaction terms as well as the first one. Our
evaluation method of higher-order matrix elements is in-
terpreted as a modification of the existence probability o
the initial state. This remodification was made by intro-
ducing excitation channels as well as ionization channels

b b'1 ty except for the oscillating factor
means the relative transition probability for a given reac-
tion to the total transition probability for all reactions in
the framework of Born approximation at each impact pa-
rameter. Then the bound electron in the initial state is

also allowed to be excited in the discrete states. The
present treatment is necessary for the reduced ve ocity

1 I much higher velocity ranges, the excita-
ith thetion probabilities can be neglected in comparison wit e

cessfully. We should note here that the relativistic effect
is not included in our calculation.

An important effect of highly charged projectiles on
target atoms is to polarize the electron cloud, which has
not been taken into account in the paper. Qualitatively,
this polarization effect decreases the electric potential
f ld u b a target atom so that the projectile en-

d. Incounters a slightly weakened effective potential fiel . n
this sense, our theoretical estimate of the loss cross sec-

f hi hl charged projectiles would have to give
smaller values especially at low impact velocities. A
quantitative treatment of the polarization, however, is a
future task of ours.

In summary, on the basis of the previously presented
method, we have studied the projectile-ionization eros
sections for hydrogenlike ions with atomic number rang-
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Zl =Ne

I l I l I I ll

Z1 -Ar

0.02 I I I I I I I I I

0.1 6
v (=vlz1)

FIG. 6. The scaled loss cross section o (=Z~' cr) vs U

(=U/Z&) for He+ Li+ Be+ 84+ Cs+ and Ns+ ions colhd
ing with a Ne target. The experimental data are obtained for a
Li + ion (Q, Ref. 23).

I ) I I I I I Il

FIG. 7. The scaled loss cross section a (=Z1' cr) vs v

(=U/Z~) for He+, Li +, Be3+, 8 +, C'+, and N + sons colhd-
ing with an Ar target. The experimental data are same as in
Fig. 4 except for a He+ ion ( , Ref. 24).

ing from 2 to 7 and with the reduced velocity ranging
from 0.3vo to 6vq in collisions with N, 0, Ne, and Ar tar-
gets. One could see the importance of the atomic form
factors in the small momentum-transfer region in estimat-
ing the loss cross sections at high velocities. Neglecting
the polarization of target atoms, the loss cross sections
can be well scaled especially at lower velocities than the
peak velocity. We presented the scale factor Z i in the re-
lation tr; =Zi tr;„, where ttt =2.8 for N and 0, 2.6 for
Ne, and 2.4 for Ar. Formally, ttt =2 is straightforwardly
obtained as appeared in (2.25). These scale factors are dif-
ferent from Zi, which the first Born approximation
predicts. FinaBy, me eagerly expect much more experi-

mental data, which covers a wide velocity (or energy)
range of hydrogenlike ions, will be reported in the future
to help in the further development of the theory.
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