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Two information-theoretic relationships have been derived for assessing the convergence behavior
of arbitrary Rayleigh-Schrodinger {RS}perturbation expansions; these provide sensitive global infor-
mation indices for quantitatively estimating the rapidity and regularity of convergence. The pro-
cedure has been applied to nine different high-order RS eigenvalue series for the ground states of
H and He, arising from different partitionings of the Hamiltonian operator for the same system;
our findings for the order of merit of these series are in complete accord with previous numerical
and theoretical studies. Furthermore, the theory has been applied to an idealized RS series modeled
on a geometric progression, thereby gaining insight enabling one to correlate the rapidity with the
regularity of convergence for actual RS series; in this context, the so-called doctrine of "small per-
turbations" has also been investigated, and, in corroboration of earlier work, it is concluded that the
doctrine is an unreliable guide for selecting favorable partitionings of the Hamiltonian. To our
knowledge, this is the first time that information theory has been applied to the study of perturba-
tional convergence.

I. INTRODUCTION

The central problem of Rayleigh-Schrodinger (RS) per-
turbation theory is the convergence behavior of the RS
perturbation series for the systems under consideration.
Conventional RS perturbation theory, ' however, presents
such formidable computational difficulties in proceeding
to higher order that, until recently, only low- (first- or
second-) order RS series were normally available; hence,
the issue of convergence could seldom be investigated
quantitatively. The situation has now radically changed
with the advent of the new discipline of large-order per-
turbation theory (LOPT) involving techniques whereby
very-high-order (e.g., 100th-order) RS perturbation series
can be readily computed for a variety of systems. As a re-
sult, RS convergence is currently being intensively studied
in the context of LOPT; several recent reviews ' of these
developments are available.

Via the methods of LOPT, RS series to almost arbi-
trarily high order have been generated exactly for the
eigenvalues of a number of one-particle systems, (e.g.,
the anharmonic oscillator, and the Stark and Zeeman ef-
fects for hydrogenic iona). For larger systems, exact RS
scrlcs callllot bc obtained„but cxccllcllt approxlmatlons to
them can be computed by other LOPT methods which
combine the variational principle with perturbation
theory, such as the Hylleraas -Scherr-Knight (HSK) pro-
cedure and the perturbational-variational Rayleigh-Ritz
(PV-RR) matrix formalism. The HSK procedure has
primarily bccn applied to calclllatc high-order 1/Z cxpall-
sions' for atomic isoelectronic sequences, while the flexi-

ble PV-RR formalism has also been recently applied to
atomic 1/Z expansions, " as well as to compute high-
order RS series for molecular-orbital eigenvalues in
molecular topological studiesiz ' and for the hydrogenic
Stark effect. Is

As these LOPT series become increasingly available,
the following three key questions assume ever greater
relevance: (1}In general, is a given series convergent, i.e.,
does it possess a nonvanishing radius of convergence r„.
(2) more practically, how rapidly, if at all, does a series for
which it is known that r, &0, actually converge for
selected physically significant values of the perturbing pa-
rameter lL,; and (3} given two or more RS series for the
same system, resulting from two or more different pertur-
bational partitiomngs of the Hamiltonian operator, which
of these series has superior convergence properties?

Of course, one can always attempt to answer such ques-
tions of convergence by straightforward numerical sum-
mation of the series for various values of A, , forming and
comparing partial sums of increasingly higher order. Fre-
quently, however, subtle effects arise, particularly in con-
nection with the third question, which cannot be readily
investigated with a purely numerical approach: For ex-
ample, for a given system, one series may converge more
rapidly in the lower orders, and then be overtaken by
another series in the higher orders. ' In such cases, one
would like to have a procedure for objectively computing
a weighted index of convergence which characterizes the
global behavior of the series under comparison.

The traditional analytical method of investigating series
convergence involves singularity studies and radius-of-
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convergence considerations. Thus, great studies towards
answering the first of the above three questions in an a
priori manner have been made possible by the masterly
work of Kato. ' ' At first glance, it might appear that
the Kato general theory should also be a suitable tool for
addressing the second and third questions concerning ra-
pidity of convergence. ' Unfortunately, this is not so be-
cause, as has been shown recently, ' the Kato procedure
yields disappointingly weak lower bounds for the r, of
representative RS series, i.e., these bounds are typically an
order of magnitude too small. We may illustrate the na-
ture of the difficulty by considering 1/Z expansions
which Kato proved, ' in general, to be convergent RS
series: For the ground state of the helium isoelectronic se-

quence, the initial' " Kato estimate of r, was
1/7.64=0.131, thus implying diuergence of the eigenvalue
series for all members of the sequence with Z &7 (N +),
very slow convergence for Z=8 (0 +), and only slowly
increasing rapidity of convergence' for Z=9, 10, . . .
(F +,Ne +, . . . ). In fact, as has been demonstrated both
numerically ' and theoretically, ' " r, is slightly greater
than unity in harmony with the observation that the
eigenvalue series converges very slowly for Z=1 (H ),
moderately rapidly for Z=2 (He), and with greatly in-
creasing rapidity of convergence for Z =3,4, . . .
(Li+,Be +, . . . ). Recently, another method has been put
forth23 for estimating radii of convergence, which yields
considerably more accurate results than the Kato pro-
cedure. Nevertheless, in view of the complexity of the
subject and the many associated difficulties, there remains
a real need for the development of additional, completely
independent methods for assaying RS convergence.

Qualitatively, one might anticipate some linkage be-
tween perturbation theory and information theory. In this
context, the use of perturbation theory formally resembles
a basic problem in any experimental science, namely,
selection of the minimum number of experiments to gain
the maximum amount of information about a given sys-
tem. In perturbation theory, the successive perturbation
corrections (orders) may be regarded as the "experiments, "
and achieving a high rate of convergence to the series lim-
it corresponds to minimizing the number of perturbation
orders required.

In this paper we show how these ideas may be quanti-
fied: We present and illustrate here a novel method for
investigating the rapidity of convergence of RS series,
based upon combining information theory with perturba-
tion considerations. The new procedure compliments ex-
isting ones ' in that it is completely free of the necessity
of the complicated study of singularity structure and/or
of the asymptotic behavior of large-order series coeffi-
cients. In addition, our information-theoretic approach
also sheds some light on a related problem, namely, the
regularity of convergence. To our knowledge, this is the
first time that information theory has been applied to the
study of perturbation convergence.

This paper is organized as follows. In Sec. II, the
theory is developed; in Sec. III, the procedure is tested and
illustrated by application to a comparative study of nine
different high-order RS perturbation series for the ground
states of H and He. In Sec. III we also summarize the

A. General considerations

Two fundamental relationships of information
theory24 z6 provide our starting point. The first of these,
the Shannon equation,

p) ogle) its,

specifies the entropy of a probability distribution
P&(pi,p2, . . . ,p„), where p; is the probability of the ith
outcome and the logarithm is taken to the base 2 in order
to obtain the entropy in bits. Here, I is a measure of the
uncertainty of an experimental outcome or, equivalently, a
measure of the information obtained in the experiment
which reduces the uncertainty. Therefore, I is often
called the information index or the information content.
Now consider the special case, relevant to this study,
where all p outcomes are equiprobable so that

pi ——p2 ——. . . ——p„=p . Then, Eq. (1) yields the max-
imum entropy Iz ——log2ii, . Furthermore, let two distribu-
tions P& and P„, having, respectively, p and v equiprob-
able outcomes, be compared. One obtains, for the differ-
ence in the information content, dZ =I„—I„,

hI =log2 bus,
V

(2)

which is the basic equation we shall employ in this study.
Note that when v~p, dd&0, i.e., information is gained
due to the reduction in the outcome uncertainty; converse-
ly, when v& p„ then M &0, corresponding to the loss of
information with the increase in the number of possible
outcomes.

We now show in a general way how RS perturbation
series are susceptible to analysis in information theory.
The RS series for an arbitrary quantum-mechanical ex-
pectation value E (e.g., the energy) of a given system in
any state has the form'

E =E(&)= g e;A,'= g E;, (3)

where the e; are the RS expansion coefficients, A, is a real
natural (variable) or dummy (fixed at unity) coupling pa-
rameter, E; =e;&', and for convergent series, E(A, ) is the
exact series limit for a given A, ; in what follows, we shall
fix A. at the various physically significant values of in-
terest, and consider the E; on the right-hand side of (3).
It is convenient to partition the RS series (3) into the par-
tial sums of the leading j orders and of the remainder of
the series by writing

(J)+gF(J+1) j =0 1 2 (4a)

so-called doctrine of "small perturbations" and contrast it
with our procedure; in this context, we study the relation-
ship between rapidity and regularity of convergence by
considering a model RS series based on a geometric series.
Finally, in Sec. IV our results are discussed and our con-
clusions are presented.

II. THEORY
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~E(&+"= g E, , (4e)
f=j+1

with the convention that E' "=0 and E =AF' '. Note
that, in general, the jth-order perturbation correction EJ is
given by

E E(j) E(j—1) gE(j) j) E(j+i) (4d)

We may relate Eq. (2) to the RS perturbation series as fol-
lows. Consider the RS series of any expectation value
summed through an arbitrary order, say the kth. It is
crucial to our procedure to recognize that the different nu
merical Ualues which can be expected for E' ' are the out-
cornes of the Shannon scheme Sinc. e these computed ex-
pectation values behave as continuous variables, one can-
not work with individual discrete values but rather with a
range or interval of values which is proportional to the
number of possible outcomes;2 'i5 full details of how these
intervals are selected according to different criteria are
presented in Sec. IIB. Since any of these outcomes of
E'"' can be expected in summing the RS series through
kth order, their probabilities are equal in the correspond-
ing probability distribution P„' '(pi, p2, . . . ,p„). There-
fore, in principle, Eq. (2) is applicable for the calculation
of the amount of information gained or lost in E(k) as
compared to the partial sum through one order lower,
E'" ", with the corresponding probability distribution
P„'" "(pi,p2, . . . ,p„): The uncertainty in the perturba-
tion series summation is reduced when the convergence
limit E is approach more closely on passing from E'
to E' ', which implies that v&p„conversely, the uncer-
tainty is increased and some information is lost when a
"local divergence" occurs so that E'"' is a poorer approxi-
mation than E'" ", i.e., vga. Furthermore, the ratio
(M/v in Eq. (2) will be larger for a more rapid approach to
the convergence limit of the series, and vice versa. Thus,
Eq. (2) provides a quantitative means of calculating the
information gained or lost with each added perturbation
order, as well as yielding numerical indices characterizing
the rapidity (rate) of convergence of the series. In addi-
tion, Eq. (2) also furnishes numerical estimates of the reg-
ularity of convergence of the RS series: When the series
converges regularly, the standard deviation o of the infor-
mation index dZ will be smaller than that occurring in
series having local divergencies as well as other irregular
behavior; evidently o(M) provides a statistical estimate of
regularity.

The above discussion provides a general background for
the applicability of the basic Eq. (2) to RS perturbation
series. The actual implementation of Eq. (2) can be
achieved in a variety of ways. In Sec. II 8, we present two
such methods.

p, =z ~WE(")
~

v=IC
~

aE("+"~;

(Sa)

(5b)

here, E is a proportionality constant giving the number of
outcomes per umt width of the tail (in our ease, K = 10 ),

I

l

I/
I

l)E(k-1 j
)

) ~EIkI)

expected variable values) of the perturbation series
summed through a given order. For example, based on
the accuracy of the perturbation series analyzed in Sec.
III, one could treat two outcomes of a series summed
through kth order, E' ', as different if they differed by
not less than a unit in the eighth digit after the decimal
point. As is customary, however, with continuous vari-
ables, we work with intervals of values which are propor-
tional to the number of outcomes, rather than directly
with the latter. Our information-theoretic approach is
thus based upon judicious selection of these intervals.

In the great majority of perturbation series encountered
in quantum chemistry, all partial sums E'"' have the
same sign and their absolute values fall somewhere in the
interval 0&

~

E' '
( &2 )

E ~, where E is the series limit.
Thus, for convenience of presentation, but without loss of
generality, we assume that these conditions are fulfilled,
and work with absolute magnitudes measured on a scale
2

~

E
~

in length; at the end of this section, we shall show
how this scheme can be readily modified to deal with the
anomalous situation where some E' ' differ in sign
and/or some [

E' )
( &2)E (.

To be concrete, consider initially the simple ease when
the series limit E is negative (e.g., atomic and molecular
eigenvalues) and is approached monotonically from, say,
above so that for all k, 0~E'k "~E(")pE. This situa-
tion is depicted in Fig. 1 in terms of absolute magnitudes
(i e, 0& )

E "~ & (

E'"'
~

& [ E ( ), where all relevant
quantities are shown schematically. It is evident from Eq.
(4a), as well as from Fig. 1, that the number of outcomes
of two consecutive perturbational summations, E'"
and E' ', may be taken as respectively equal to the num-
ber of outcomes of the corresponding tails of the series
j()E(k) and &F(k+". If we let p and v denote, respective-
ly, the number of outcomes of &E(")and &F-'"+",we can
write

8. Rapidity and regularity analysis

As previously indicated, in order to apply Eq. (2) to the
problem of perturbational convergence, one must specify
the number of equiprobable outcomes (i.e., the number of

FIG. 1. Monotonic convergence from the left at the ( k —1)th
and kth order of an RS perturbation series. The kth-order per-
turbation correction, the kth-order summation, the correspond-
ing series tail, and the series limit are, respectively, Ek, E' ',~' +",and E; cf. text for the use of absolute quantities.
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FIG. 2. Monotonic convergence from the right at the

(k —1)th and kth order of an RS perturbation series. The scale
has been enlarged to 2

I
E

I
on the right.

At first glance, it might appear that Eq. (6) is limited to
the special type of convergent series described above. In
the following discussion, however, we remove these re-
strictions and show that Eq. (6) is, in fact, generally appl-
icable to all types of perturbation series.

(1) Note that since Eq. {6) only involves the absolute
magnitudes of the series tails, the sign of the series limit
E is irrelevant. Thus, Fig. 1 and Eq. (6) apply equally
well to negative E monotonically approached from above
or positive E approached from below, both of which may
be described as convergence from the left.

(2) Furthermore, the case of monotonic convergence
from the right,

I
E

I
& IE{k}I( IE'k "I (2IE

I
(cf.

Fig. 2), is also, evidently, entirely equivalent to the case of
monotonic convergence from the left, for the same reason
as in remark (1) above.

(3) Similarly, the more complex case of alternating con-
vergence, where two consecutive series summations brack-
et the series limit ie

I
E" "I & IE I

& IE'"
versa, can be formally regarded as monotonic conver-
gence. This is evident from Fig. 3 where it is seen that
the use of the absolute value of, say,

I

4&{ +"
I

is
equivalent to the inversion of

I
E

I
into

I
E ' '

I

equidistant from
I
E I, and

I

E'k "
I
( I

E 'k'
I

& I
E

I
.

and one must, of course, take absolute values. Substitu-
tion of Eqs. (5) into Eq. (2) yields the first equation of our
rapidity and regularity analysis:

g~(k)
EI i

' ——log& {„,} bits, k =0, 1,2, . . . .

Subsequently, we shall present another method of dealing
with alternating convergence which is more sensitive to
the alternating character of the signs of consecutive per-
turbation corrections, Ek and Ek+ ).

(4) Monotonic or alternating convergence implies that,
for each k, I

&R{"+"
I

&
I

&&'"}I. In these situations,
Eq. (6) yields M'i '&0, thus correctly reflecting that in-
formation is gained at each consecutive perturbational or-
der in approaching the series limit nore closely.

{5) If for some k, the monotonic or alternating
approach to the limit is interrupted and

I

bE{k+i}
I

& I
hE'"' I, which we have previousl termed the case of

a local divergence, Eq. (6) yields M'i ' &0, correctly indi-
cating that information is lost in this step in moving away
from the series limit; this behavior is illustrated in Fig. 4
for convergence from the left.

(6) Finally, consider asymptotically convergent series
which occur frequently. 's'~ Here, for some range of k,
0&k &k,„„ I

~&{"+"
I &

I

~{"}I, and the series con-
verges; subsequently, for k &k«„

I

hE{"+"
I

&
I

bE{ '~

and the series diverges. Thus, Eq. (6) will correctly exhib-
it initial gain of information for 0 & k & k,„„and then loss
of information for k & k,„,.

(7) The initial condition, i.e., the value to be assigned to
I

b,F{"}
I

for k=0, remains to be specified. For all series
considered above, including the case of asymptotically
convergent series for k not too much larger than k,„„all
partial sums E' ' lie within a range of

I
E

I
above or

below E. Thus, the number of equiprobable outcomes of
Eo——E{o},before performing the experiment of evaluating
Eo, is proportional to

I
E I, and we may take

I

&&{o}
I
=

I
E I; formally, this result may be derived

from Eq. (4a) by the convention that E' "=0.
(8) We conclude from the above discussion that Eq. (6)

should be applicable to all types of series. In practice, one
computes l8'i ' for k =0, 1,2, . . . to the highest order
available. These results are then averaged to find the
mean value {EI})and the standard deviation cr(rCl', ),
which furnish global indices for, respectively, the rapidity
and regularity of convergence; the larger (Mi ), the more
rapid the convergence, and the smaller cr(dZ}), the more
regular. If two or more RS perturbation series are avail-
able for the same system (cf. Secs. III and IV), compar-
ison of their respective information indices provides a

I I

I I

I~E
I

I I} E{k+1+}(
} f{k+1}}}

I

I

I

l~
I

IE(k))

~ ~E Ik+1 )
~

I
s
1 L
I
1

I E(k)I

FIG. 3. Alternating convergence at the ( k —1)th and kth or-

der of an RS perturbation series formally treated as monotonic
convergence from the left.

FIG. 4. The case of a local divergence at the (k —1)th and
kth order of an RS perturbation series.
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simple method for determining which series has superior
convergence properties, thus answering the key questions
raised in Sec. I.

Although offering a convenient procedure for the a pos-
teriori analysis of RS perturbation series, Eq. (6) suffers
from the following two disadvantages. Firstly, evaluation
of the quantities

I

A&'"'
I

and
I
&E' +"

I
requires a

rather precise knowledge of the series limit E which, in
some cases, may not be available; therefore, Eq. (6} is not
well suited for a priori analysis of series. Secondly, as
previously mentioned, Eq. (6) cannot distinguish between
monotonic and alternating convergence, thus possibly los-
ing some of the information content of the series. We
now show how both of these difficulties can be overcome
simultaneously by a simple reformulation of Eq. (6).

Consider three consecutive perturbational summations
which, for later convenience, we reindex as E'k
E' " and E'"'. lf we now regard E' " and E'"',
res ectively, as the limits approached by E'k 2' and
E' ", then by precisely the same arguments used in
deriving Eq. (6}, we obtain via Eq. (4d) our second equa-
tion for rate analysis,

i) I 2"'——log2 bits, k =0, 1,2, . . . .
k

(7)

The following comments will be useful in interpreting and
applying Eq. (7).

(1) Since the perturbation orders themselues, rather than
the series tails, appear in Eq. (7), there is no longer any re-
quirement for an accurate value of E. Thus, Eq. (7) lends
itself to almost a priori analysis, and in any case, at an
earlier stage than Eq. (6}.

(2) Like Eq. (6), Eq. (7) is applicable to all types of
series. Unlike (6), however, (7) exhibits sensitivity to alter-
nating convergence. This is highlighted in Fig. 5, which
illustrates typical alternating behavior. Here,

I

E'"
and

I

E'+
I

lie approximately equidistant from
I
E I, so

Eq. (6) would yield M 'i =0; on the other hand,
I Ek I & I Ek+ i I, so Eq. (7) would yield M'i +"&0, thus

correctly reflecting the increase in information.
(3) Now consider the initial condition for k=0 to be

used in applying Eq. (7). For monotonic convergence, i.e.,
when the low order Ek all display the same sign, we take

I
E- i I

=
I
E

I
fo«he same reasons given pre»ou»y [«.

remark (7) above] in deriving the initial condition for Eq.
(6). If, however, the low-order Ek display alternating
behavior by changing signs, it is appropriate to take

I E,
I
=2IE

I
since the zeroth-order term could lie

anywhere in the interval 0(2 IE I. In this context, it
should be noted that it suffices completely to use a very
rough, approximate value of E in the initial condition
since it only affects the value of lU z

'.

(4) Aside from the possible distinction in the initial con-
dition, Eq. (7) is applied in the same manner as Eq. (6) [cf.
remark (8) above] to compute comparative global indices
characterizing the rate and regularity of convergence.

(5) Finally, consider the relationship between Eqs. (6)
and (7). Evidently, Eq. (7) can be regarded as an approxi-
mation to Eq. (6) obtained by truncating the infinite-series
tails to their lead terms. Further, for convergent series, as
one proceeds to higher order, Eq. (7} should agree more
and more closely with Eq. (6) since the widths of the tails
will diminish. Despite this similarity, however, Eq. (7)
differs fundamentally from Eq. (6) because of the asym-
metry introduced by the former in dealing with alternat-
ing series.

Note that in some applications, it is advantageous to
apply Eqs. (6} and (7) separately to different portions of
the same RS series. In general, this will occur when the
series under consideration displays different convergence
behavior in different regions and/or when the use of the
one or the other information index introduces apparent
singularities. For example, consider the important special
case when the series has primarily an alternating character
but one or more perturbation orders Ek vanish identically
(cf. Sec. III C): Evidently, Eq. (7) is not defined for van-
ishing Ek, and it is mandatory to use Eq. (6) to deal with
these orders; for the remainder of such a series, however,
it is appropriate to use Eq. (7).

In conclusion, for those anomalous cases when some
E'~' differ in sign and/or some

I

E' '
I

&2
I
E I, which

can occur due to s'trong local divergences, we proceed for-
mally as follows. The scale from 0 to 2

I
E

I
is extended

sufficiently to include the anomalous values by adding
equal multiples of

I
E

I
at the left and right, where the

series limit plays the role of a symmetry center to the
scale; this procedure is illustrated in Fig. 6. Again a
rough value of E suffices. Denote the right and left
ends of the extended scale by R and L, respectively, where
R=(n+1)IE

I
&0 and L= (n —1)IE

I

—~0,
n =1,2, . . .; on subtracting L from R, one then obtains
R L=n 2

I
E

I
. T—his step is equivalent to a transforma-

tion to a new scale ranging from 0 to (n 2
I

E
I + I

L
I

)

which is shifted on the right by adding
I
L

I
. Then, in a

I

Ir a

I I
I I i
I I

I

gl
I

1

l
I I

2IEl
—oo IE I... - 2IE I -IE I

t i
1 i

0 IE l 2IEI 3IEl 4lEI "+~ IEI

FIG. 5. Direct treatment of alternating convergence at the
(k —1)th and kth order using the perturbation corrections Ek
and Ek+ b cf. text and Eq. (7).

FIG. 6. An extended convergence scale for use in cases of
strong local divergences.
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Elk-1)
I

L- -2IEI -IEI 0 IEI

Elk)
I l

I I I

2IEI 3IEI 4IEI = R

of our study, we now discuss it briefly. Consider two dif-
ferent partitionings of a given Hamiltonian operator H,

(b)

(e)

E{k-1)' E(k-1)
I l

l I 1

0 IE I 2IE I 3IE I

E {k -{{" {I [E {k -1 {~z {E {]
I

l l I I

1~3IE I 2I &IE I IE I

E'" '=E'")+ILI =Elk)+2IE I

I l i
I I

4 IEI 5IE I 6IE I

E{k{"{I [E{kl+z {E{J
I

I i I

{{'&IEI S/3IE

H =Hp+H),

H =Ho+H),
with corresponding RS eigenvalue perturbation series

i=0

i=0

(8a)

(8b)

(9a)

FIG. 7. Transformation of the convergence scale of Fig. 6 to
the range from 0 to 2

~
E ~: (a) the scale before transformation;

(b) after the first transformation; (c) after the second transfor-
mation.

second transformation, we reduce the scale to the original
range of 0 to 2

~
E

~
by dividing with n An ex. ample of

these successive steps is shown in Fig. 7. The information
indices M'{ ' and Mz ' are evidently invariant under
these two transformations since Eqs. (6) and (7) only in-
volve the ratios of interval widths which do not change.
Thus, after reduction of the data to the new scale, Eqs. (6)
and (7) may be applied as before.

III. APPLICATIONS AND RESULTS

A. Types of series considered

In order to subject our information indices, Eqs. (6) and

(7), to a rigorous and unbiased test, we have applied them

to a comparative study of a number of high-order RS
eigenvalue perturbation series computed for different par-
titionings of the Hamiltonians for the same systems;
specifically, we have considered nine such series for the
ground states of He and H, three for the former present-

ed in Sec. III B, and six for the latter in Sec. III C. The
convergence properties of all of these series have previous-

ly been thoroughly investigated' "' by other means, and

in this exploratory study, our goal was to determine if our
information-theoretic assessments of relative rates of con-

vergence were in accord with these previous findings.
Furthermore, in Sec. III D, we have applied our procedure
to an idealized RS series modeled on a geometric progres-
sion.

The motivation for different partitionings of a given

Hamiltonian is, of course, to find that partitioning scheme
which leads to the most rapid convergence of the RS
series. ' In this context, there is a well-known, w1dely

used intuitive doctrine which is cited in many contem-

porary texts on quantum mechanics: This is the doc-
trine of sinall perturbations which states that if the per-
turbation is "small" in some imprecisely defined sense, the
perturbational convergence will be rapid, and, as a corol-

lary, if several different partitioning schemes for the same
Hamiltonian are compared, that scheme with the smallest

perturbation will lead to the most rapid convergence.
Since this doctrine is closely related to the subject matter

A criterion which is often used to define the smallness of
a perturbation is the width of the tail of the eigenvalue
series from second-order onward (since the zeroth- and
first-order terms can be computed from the zeroth-order
eigenfunction), i.e., in our notation,

~

b,E{ '
~

=
~

E (Eo+E—{)~. If, for example,

(10)

the doctrine would predict that series (9b) converges more
rapidly than series (9a). Equation (10) offers the frequent-

ly cited justification of partitioning the Hamiltonian via
the Dalgarno-Stewart screening transformation' "'0 or
the choice of the Hartree or Hartree-Fock Hamiltoni-
an ' as Ho. A detailed analysis of the doctrine of small
perturbations and its shortcomings is presented else-
where. Here, we need only note that the series we inves-
tigate in this section were all computed to test this doc-
trine, and that despite a superficial similarity, Eq. (10)
differs widely from our information indices, Eqs. (6) and
(7). We may anticipate our findings by stating that, in
agreement with previous conclusions, ' ' the doctrine of
small perturbations, taken alone, is far from being a reli-
able guide to rapidity of convergence.

B. RS eigenvalue series for 1s 'S He

Riley and Dalgarno' ' (RD) investigated the doctrine
of small perturbations by computing three high-order RS
eigenvalue series for the ground state of He, resulting,
respectively, from a hydrogenic, Hartree, and a modified
Hartree partitioning of the Hamiltonian; full details of
their partitioning schemes are given in their paper. Both
&CAN i ', Eq. (6), and M z"', Eq. (7), were computed for all
three series, and these results are displayed, order by or-
der, in Table I, as well as (M{}, o(dd{), (EIz), and
o(bIz). Table II presents a summary of these results,
comparing (M{), (diaz), o(M{), and o(ddz) with the
rapidity and regularity of convergence behavior found by
RD.

C. RS eigenvalue series for 1s2'S 8

Recently, Silverman and Olbrich (SO) have systemati-
cally studied the doctrine of small perturbations by gen-
eralizing the Dalgarno-Stewart screening transformation
to higher order. Their procedure may be summarized as
follows. For atomic isoelectronic sequences, ' the conven-
tional unscreened 1/Z expansions are obtained by parti-
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TABI.E I. Information indices for the hydrogenic„Hartree, and modified Hartree RS eigenvalue

series for 1s 'S He. See Tables II, III, and IV (entries for a =2.3) of Ref. 16(a); all three are 19th-order
series.

Series
k

Hydrogenic
gl {k)tt

1 ~ (k)b
2 gl (k)b

2

Modified Hartree~ (k)tt
1 hI '"'

2

1

2
3

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1.405
2.834
5.286
3.280
1.126
1.747
1.678
1.609
1.571
1.577
1.608
1.692
2.115

0.538
1.678
2.987
5.181
4.306
0.752
1.777
1.710
1.628
1.568
1.562
1.568
1.536
1.786
1.858

1.443
4.667
2.749
2.509
2.254
1.846
1.472
1.294
1.238
1.252
1.208
1.322
1.103
1.585
0.585

1.661
0.840
4.409
2.716
2.468
2.175
1.756
1.423
1.278
1.242
1.239
1.242
1,256
1.239
1.263
1.322
1.263
1.322
1.322
1.000

8.116
—2.879

3.138
4.012
2.665
3.424
3.509
0.720
3.239
2.585

—1.000

1.005
5.442

—0.366
3.207
4.346
2.289
3.685
2.692
1.566
2.856
2.732

&sI&
o(EI )

2.118
1.075

2.029
1.192

1.769
0.949

1.584
0.841

2.503
2.714

2.678
1.514

'In bits; computed with Eq. (6).
'In bits; computed with Eq. (7).

tioning the Hamiltonian hydrogenically so that the in-

terelectronic repulsive potential alone is taken as the per-

turbation, whereas the screened expansions in 1/Z,
Z=Z —s, result from also including a portion of the nu-

clear attractive potential, weighted by the factor s, in the
perturbation; here s is a disposable screening parameter.
The eigenvalue E in ordinary a.u. is related to the un-

screened and screened eigenvalues in scaled a.u. , e and e,
respectively, by

E=Z 6=Z E,

g e)A,
i=0

6= g e'(A,

i=0

(12a)

(12b)

(12c)

(12d)

TABLE II. Comparison of global information indices for the hydrogenic, Hartree, and modified

Hartree RS eigenvalue series [see Tables II, III, and IV (entries for a=2.3) of Ref. 16(a)] for ls 'S He

with observed convergence behavior.

Modified Hartree
Hydrogenic
Hartree

2.503
2.118
1.769

&~,)'
2.678
2.029
1.584

2.714
1.075
0.949

o(AI2)

1.514
1.192
0.841

Observed behavior'd

Rapidity Regularity

In bits; computed with Eq. (6).
bIn bits; computed with Eq. (7).
'See discussion in Ref. 16(a).
On a scale where 1 denotes most rapid and most regular, etc.
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s =s(A, }=g s;A,'.
i=0

(13)

This yields more complicated transformation equations
relating the screened e; to the unscreened ej and sk, which
include the standard screetiing transformations as a spe-
cial case. The assignment of the values

$0 = —Eil26o, (14a}

1 2 &z
$) — $0

2 eo
(14b)

and, in general, the recursively computed

1
$n —I =

n —2
0

SJ'$~ J'

0 Pp
n=1,2, . . . ,

If s is treated as a constant, Eqs. (11) and (12) yield the
standard screening (Euler) transformations relating the
screened e; to the unscreened eJ and $, where s is still ar-
bitrary; in particular, the choice of s = —e'i/2' causes ei
to vanish, and the resultant zeroth-order energy Z eq con-
tains the e series correct through first order and a portion
of the second-order term. The SO generalization consists
of treating s as a function of A, , where

to the successive orders s;, i =0, 1, . . . , n —1, Eq. (13),
causes the screened eI, eq, . . . , e„ to vanish simultaneous-

ly, and the resultant zeroth-order energy Z eq contains
the e series correct through nth order. Effectively, this
generalized screening repartitions the Hamiltonian in a
step-by-step manner so as to include more and more of
the correlation effects in the zeroth-order problem, thus

reducing the width of the series tail
~

bE ' '
~, Eq. (10), to

any desired extent. SO applied their procedure to accu-
rate high-order unscreened RS eigenvalue series 2"' for
the helium isoelectronic sequence to generate a number of
screened series with varying degrees of screening. In par-
ticular, we have applied our information-theoretic ap-
proach to analyze six of their series, designated as nos.
0,1,2, . . . , 5, for the slowly convergent case of the ground
state of H; here, in obvious notation, no. 0 refers to the
unscreened series, no. 1 to the series where e& vanishes, no.
2 to the series where ei and ez vanish, etc. Equation (7)
was used to compute information indices for those por-
tions of these series which exhibit alternating behavior
while Eq. (6) was used to deal with vanishing orders and
regions of monotonic convergence. Since both Eqs. (6)
and (7} were employed in these calculations, it is con-
venient to suppress the subindex in this case, and to
denote the information index as siinply b,I'"', etc. Table

TABLE III. Information indices for six 25th-order RS eigenvalue series (Ref. 29) (nos. 0,1, . . . , 5)
for 1$ '5 8 mth increasing degrees of screening. See Sec. III C.

0
1

2
3

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

21
22
23
24
25

No. 0

0.078
0.678
1.987
4.180
3.291
0.639
0.577
0.512
0.470
0.440
0 415
0.394
0.376
0.360
0.347
0.336
0.325
0.316
0.308
0.300
0.294
0.288
0.282
0.277
0.272
0.267

No. 1

3.260
0
3.486
2.246
0.729
2.751
0.601
0.495
0.557
0.577
0.509
0.494
0.461
0.469
0.417
0 AAA

0.393
0.419
0.377
0.397
0.363
0.379
0.353
0.355
0.349
0.372

gl (k)a

No. 2

5.350
0
0
3.589
1.194

—0.040
0.810
0.188
0.618
0.211
0.497
0.211
0.418
0.208
0.364
0.204
0.326
0.201
0.296
0.198
0.274
0.194
0.256
0.191
0.241
0.188

No. 3

6.533
0
0
0
4.259
0.889

—0.185
0.685
0.184
0.719
0.363
0.864
0.521
1.242
0.818
0.097

—0.662
—1.480

0.258
—0.168

0.511
0.143
0.736
0.332
1.142
0.547

No. 4

7.264
0
0
0
0
1.672
0.157

—0.156
0.341
0.160
0.370
0.217
0.324
0.196
0.260
0.167
0.215
0.152
0.188
0.145
0.171
0.139
0.158
0.133
0.146
0.127

No. 5

7.911
0
0
0
0
0
0.517

—0.39S
—0.313

0.052
0.064
0.215
0.231
0.35S
0.413
0.606
0.848
1.894

—0.182
—1.333
—0.492
—0.243
—0.080

0.021
0.122
0.209

0.693
0.948

0.818
0.937

0.626
1.163

0.706
1.498

0.483
1.392

0.401
1.595

'In bits; computed with both Eqs. (6) and (7); see text.
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Series no. Order of meat '
0.818
0.706
0.693
0.626
0.483
0,401

0.937
1.498
0.948
1.163
1.392
1.595

'In bits; computed with both Eqs. (6) and (7); see text.
bReference 29.
'Rapidity of convergence on a scale where 1 denotes most rapid,
etc.

III displays, order by order, the indices &CAN'k' for these six
series, as well as the corresponding (L8) and o(M). Fi-
nally, Table IV collects in summary form a comparison of
(bJ ) and o(M) for all six series together with the con-
vergence assessments of SO.

TABLE IV. Comparison of global information indices for six
RS eigenvalue series (Ref. 29) for 1s 'S H w'ith previous as-
sessment.

TABLE V. Information indices for an RS eigenvalue series
modeled on a geometric progression.

g(1)gE + b o(M2)

0.1

—0.1

0.3
—0.3

0.5
—0.5

0.7
—0.7

0.9
—0.9

0.99
0.99
0.91
0.91
0.75
0.75
0.51
0.51
0.19
0.19

7

15
15
26
26
51
51

174
174

3.332
3.332
1.737
1.737
1

1

0.515
0.515
0.152
0.152

2.926
3.014
1.661
1.667
1

0.978
0.538
0.509
0.170
0.152

1.048
0.813
0.296
0.270
0
0.110
0.168
0.038
0.239
0.006

'See Eqs. (15) and (17).
The highest order to which the series must be summed to ob-

tain a relative accuracy of 1)(10 '.
'In bits; computed with Eq. (17) and appropriate zeroth-order
conditions.
The standard deviation cr(LE~ ) vanishes for all r and, hence, is

not tabulated.
'Averaged over n + 1 terms.

D. RS eigenvalue series modeled
on a geometric progression

The geometric progression has frequently been used in
atomic calculations to approximate various RS series and
to estimate thar gums. In order to shed additional ligllt
on the relationship between the rapidity and regularity of
convergence, we have also computed information indices
for an idealized RS eigenvalue series modeled on a
geometric progression. Thus, the series has the form

E= g E, =Eo g r',
i=0 i=0

Eor

and the convergence limit for
~

r
~

& 1

E =Eo/(1 r);—
(15b)

(16)

the convergence is, respectively, monotonic and alternat-
ing for 0&r&1 and —1&r &0. It is elementaryss to
show that in this special case, both Eqs. (6) and (7} reduce
to the same expression,

gl (k) ~ (k)

r
(17)

for k=0, dd'i ' is also given by Eq. (17) but M 2 ', in ac-
cordance with our conventions, assumes either the value
of logz

~

1/(1 r)
(

or logz )
2/(—1 r) ~, depending on-

~hether the convergence is monotonic or alternating.
Our results for (ddi ), cr(M, }, (M2 ), and o(ddz) are

presented in Table V for various positive and negative
choices of r. The mean values and standard deviations
are computed over n + 1 terins, where n (also collected in
Table V} is the highest order for the given value of r to
which the series must be summed to achieve a relative ac-

curacy of 1 X 10;Table V also displays the ratio E'"/E
in order to demonstrate the rapidity and regularity of con-
vergence as a function of the smallness of the perturba-
tion.

IV. DISCUSSION AND CONCLUSIONS

First, consider the three RS eigenvalue series' "for the
ground state of He. In accordance with the doctrine of
small perturbations, Eq. (10), the Hartree series should
converge most rapidly since the Hartree energy EH„ is
the best first-order approximation to E. In fact, RD
found, perhaps to their surprise, that the simple hydro-
genie series actually converged more rapidly than the Har-
tree; to overcome this difficulty, they then introduced the
modified Hartree series. By numerical summation, RD
showed that the relative order of the rapidity of conver-
gence of the series, in decreasing order, was modified
Hartree ~ hydrogenic & Hartree, requiring, respectively, a
10th-, 14th-, and 19th-order series to converge to within
an accuracy of one unit in the eighth decimal place. It is
seen from Tables I and II that both of our global informa-
tion indices, ( lLI i ) and (Mz ), reflect precisely this order
of rapidity of convergence. Further, both of the standard
deviations, o(LDLL) and o(Mz), indicate the reverse order
of decreasing regularity of convergence, i.e., Hartree-
& hydrogenic & modified Hartree. Although the Hartree
and hydrogenic series differ only slightly in regularity, the
modified Hartree series is markedly irregular (as noted by
RD); in our approach, this is evidenced by the negative in-
formation indices shown in Table I which lead to the
large standard deviations for the modified Hartree series.
We shall shortly return to the problem of correlating rapi-
dity and regularity of convergence.
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It is also of interest to examine the predictive power of
the indices M'i ' and M'2 ', when averaged over only the
first two terms, k=0, 1, in Table I. When this is done, the
indices computed with Eq. (6) predict the order of de-
creasing rapidity of convergence to be Hartree& modified
Hartree&hydrogenic, in agreement with the doctrine of
small perturbations; one could have anticipated these re-
sults since Eq. (6), when restricted to the zeroth- and
first-order terms, closely resembles Eq. (10). On the other
hand, the indices computed with Eq. (7), when averaged
in the same manner, predict the order to be modified
Hartree & Hartree & hydrogenic, thus correctly identifying
the most rapidly convergent series even at this early stage;
this may be attributed to the greater sensitivity of Eq. (7)
to the alternating character of the modified Hartree series.

Now consider the six RS eigenvalue series ' for the
ground state of H . On the basis of radius-of-
convergence considerations and numerical analysis, SO
concluded that the order of merit for these series was no.
1&no. 3&no. 0&no. 2&no. 4&no. 5, where rapidity of
convergence played the dominant role in their assessment.
It is seen from Tables ID and IV that, again, our global
information index (rCT) reflects this order of rapidity of
convergence perfectly. The order of decreasing regularity
is not specified by SO, but we find from ir(M) that one
has no. 1&no. 0&no. 2&no. 4&no. 3&no. 5. Note that
for the H series, unlike the He series, the order of rapidi-
ty and of regularity differ but slightly, the sole difference
being the displacement of no. 3 from the second to the
fifth position due to its large number, i.e., 4, of negative
information indices (cf. Table III).

As noted by SO, these six series represent strong coun-
terexamples to the doctrine of small perturbations since
the values of E"' in a.u. for nos. 0,1, . . . , 5, are, respec-
tively, —0.375000000, —0.472656250, —0.514813509,
—0.522 052 785, —0.524 316896, and —0.525 588 007,
which monotonicaBy approach the limit E
= —0.527751016. Thus, Eq. (10) unequivocally predicts
the order of decreasing rapidity of convergence to be no.
5& no. 4&no. 3~ no. 2~no. 1~no. 0; one also recovers
this result by averaging bZ'+ over the entries for k=0, 1

in Table III. Despite the steady improvement in the in-
formational start as one proceeds to the higher numbered
series, their global convergence behavior is increasingly
dominated by oscillatory local divergences leading to the
negative information indices shown in Table III.

The question naturally arises as to when, if ever, the in-
tuitive doctrine of small perturbations coincides with real-
ity. Further, to what degree can one correlate rapidity
and regularity of convergence'? Partial answers to these
questions can be obtained by studying the information in-
dices and other data presented in Table V for a model RS
series based on a geometric progression. The extreme reg-
ularity of a geometric progression is reflected by the fact
that both Eqs. (6) and (7) reduce to the satne form, Eq.
(17); indeed, it is not hard to show that simultaneous satis-
faction of Eq. (17) by hI i

' and lO '2
' is a necessary and

sufficient condition for the series to be geometric. It is
evident from the entries in Table V that a geometric series
fully satisfies the doctrine of small perturbations: As
[r) O, E"'/E l, b.E'' O, andn 0;as [r[ 1,

E'"/E~O, hF. ' '~E, and n~oo. This is reflected by
the growth of (fbi) and (bI2'? Rs

~

r
~

~0. Further,
since the M ~

' and M 2
' assume the same constant value

for a given r, cr(dd, ) vanishes, as would cr(b,Iz) were it
not for the asymmetric zeroth-order conditions for dZ2 ,

.(0}.

here, however, as
~

r
~
~1, n increases rapidly, and the

averaging effect over many terms drastically reduces
o(M2) as shown in Table V.

%e now show how the above analysis provides us with
useful insight for interpreting the convergence properties
of real RS series from the standpoint of information
theory. In general, the actual RS series encountered have
a far more complex structure than the simple geometric
progression, although it is known that in many cases the
tails of these series exhibit approximate geometric
behavior. Consider initially a series with a good informa-
tional start which then converges rapidly in a
nongeometric manner: Since the convergence is taken to
be rapid (n small) and nongeometric, the global informa-
tion indices (Mi ) and (ddz ) will be relatively large, and
the individual LU'~ ' and LE z

' will display considerable
fluctuations (i.e., they are not approximately constant as
they would be for geometric behavior); it follows immedi-
ately that the standard deviations a(M, ) and o(AI2) will
also be relatively large. An excellent example of such a
series is furnished by the modified Hartree series for He
(cf. Table II); another less pronounced example is provid-
ed by the no. 3 series for the more difficult case of H (cf.
Table IV). In this context, the no. 5 series for H is a
slowly convergent series with nongeometric behavior
(seven negative information indices); hence, the excellent
informational start, the best for all H series, is soon
downgraded, (M) is relatively small and cr(dd) relatively
large; much the same applies to no. 4. Finally, consider
series with fair to good informational starts, and approxi-
mately geometric tails; examples are provided by the
remaining series, hydrogenic and Hartree for He and nos.
0,1,2 for H . Here, the primary factor governing the glo-
bal indices (dZ) and tr(ICY) is the approximate value of r
in the geometric tail (cf. Table V): For small

~

r ~, the
convergence will be rapid and (M) and o(M) will be rel-
atively large, but cr(dd) will not be as large as for
nongeometric behavior; for large

~

r J, the convergence
will be slow, and both (M) and o(dd) will be relatively
small. These predictions are completely borne out by the
convergence behavior of the hydrogenic ( r =0.30) and the
Hartree ( r =0 40) series. .Thus, the hydrogenic series has
only a fair informational start but its smaller value of r
enables it to overtake and surpass the Hartree series,
despite the superior informational start of the latter.
Series nos. 1, 0, and 2 for H may be discussed in a simi-
lar manner; the r values of these series are relatively large
(respectively, r =0.75, 0.80, 0.85) which accounts for their
slow convergence and relatively small (M) in compar-
ison to the hydrogenic and Hartree states.

It will not have escaped attention that our
information-theoretic approach, particularly Eq. (7),
resembles the classic ratio test for testing the conver-
gence of a series. There is, however, a fundamental dis-
tinction: In the ratio test, one seeks to evaluate the limit-
ing ratio lima „ lEa+, /Ea

l
to determine whether the
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series converges or not; in our approach, however, we do
not discard the values of these ratios (actually, their re-
ciprocals) before the limit is reached, but use them all to
obtain a statistical estimate of the global behavior of the
sees.

We may summarize our results and conclusions as fol-
lows.

(1) We have derived two information-theoretic relation-
ships for assessing the convergence behavior of arbitrary
RS perturbation series. These provide sensitive global in-
dices for estimating the rapidity and regularity of conver-
gence. Our procedure is simple to implement since it does
not depend upon the difficult analysis of singularity struc-
ture,

(2} We have applied our procedure to nine different
high-order RS eigenvalue series and obtained results in
complete agro:ment with previous numerical and theoreti-
cal studies.

(3}We have investigated the doctrine of small perturba-
tions quantitatively from the standpoint of information
theory by studying a model RS series based on a
geometric series. It is shown that in the case of pure

geometric behavior, the doctrine is strictly obeyed. For
real RS series, however, with nongeometric or mixed
behavior, we conclude, in agreement with previous find-
ings, that the doctrine is unreliable.

(4) Further, on the basis of our study of the geometric
series, me have been able to corrdate, in a semiquantita-
tive manner, the rapidity and regularity of convergence of
RS perturbation series. It is shown that, in general, the
more rapid the convergence, the more irregular the series.

(5) Finally, our results suggest that it may also be possi-
ble to correlate the relative magnitudes of our global in-
formation indices with the relative magnitudes of the cor-
responding radii of convergence of the RS series under
consideration.
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