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The mutual consistency and structural interconnection between the Wentxel-Kramers-Brillouin

(WKB) and Wigner-Kirkwood (WX) semiclassical approximations is investigated for nonrelativistic

S-particie systems, with mutual scalar interactions and coupling to an external time-varying elec-

tromagnetic field. The generalized WK expansion of the propagator (x
~
U(t, s) ~y) is obtained

from a large-mass expansion of the higher-order %KB approximation. Two techniques are
described for computing the WK coefficient functions. One relies on a large-mass expansion of clas-

sical paths and the transport representation of the %KB approximation; the other is recursive in na-

ture. For time-independent Hamiltonians 0 the standard WK expansion of the heat kernel

(x
~

e OH
~ y ) is recovered.

I. INTRODUCTION

Semiclassical behavior of a quantum system can result
from either of two asymptotic limits. One may assume
that Planck's constant h is small and study the limit
& ~0; or the particle mass rn may be taken as large and
the associated limit m~ao investigated. Each of these
semiclassical mechanisms has a large and active literature.
The characterization of quantum dynamics as h ~0 leads
to the Wentzel-Kramers-Brillouin (WKB) approximation
in the form found initially in the work of Birkhoff. ' The
m~00 asymptotic expansion can be shown to be the
limiting mechanism responsible for the Wigner-Kirkwocxl
approximation. In this paper we investigate the mutual
consistency and the structural interconnections between
these two nonperturbative semiclassical approximations.

The physical systems we consider are defined by the
class of time-dependent Hamiltonians of the form

i fi g(x, t) =H(x, i AV„,t—)g(x—, t) .
Bt

(1.2)

The Schrodinger problem (1.2) may be identified with the
X-body quantum problem if each point particle is spin-
less, moves in three dimensions (so that n =3%), and has
mass m. The presence of the vector potential in (1.1)

H(x,p, t)= [p A(x, t)] +u(x,—t) .2'
Here x is the generic coordinate vector in I" that deter-
mines the position of all of the system particles, p is the
momentum conjugate to x, and t is the time variable. The
interaction structure, responsible for nontrivial dynamics,
is given by a time-dependent vector field A and scalar
field u. Time evolution of a state vector ib, in Hilbert
space A =L ()I"), is determined by the time-dependent
Schrodinger equation,

means that the Hamiltonian H(x,p, t) describes the nonre-
lativistic dynamics of a finite collection of particles that
mutually interact through scalar fields and couple via the
Lorentz force to a temporally and spatially varying exter-
nal electromagnetic field.

In order to clarify the statement of our problem and to
illustrate the basic ideas in the simplest possible context
let us restrict our discussion (in the remainder of this In-
troduction) to the static scalar field case, i.e., A (x, t) =0
and u(x, t)=u(x). In this circumstance Schrodinger s
equation becomes

fP . 8i' +u(—x) P—(x, t) =0 .
2m Bt

(1.3)

p( t) J (
~

( )HIS
t )y( (1.4)

Both the generalized %KB method and the VA'gner-

Kirkwood (hereafter WK) approach may be used to ob-
tain nonperturbative (infinite order in the potential) ap-
proximations for the propagator. Let us compare the
basic forms assumed by these two approximations for the
static scalar field problem. Consider first the %'KB ap-
proximation. Here the propagator is represented asymp-
totically as h ~0 by

Time evolution of the system is then determined by the
one-parameter group Ie " ~":tE R) of unitary operators
acting in A . The related quantum propagator is defined
as the integral kernel (coordinate-space Dirac matrix ele-
ment), (x

~

e " "~y), of the evolution operator. With
this terminology the Cauchy initial data problem for Eq.
(1.3) assumes the following standard form. Suppose state
vector P is equal to the initial data function (b in A at
time s; then the solution of (1.3) is expressed in terms of
the propagator by the integral

1986 The American Physical Society



STRUCTURAL CONNECTIONS BET%%EN T%'0 SEMICLASSICAL. . .

{x
~
e

—i(i s)—Hlt)
~y)

m

2mi A(t —s)
e(ilii)s(x, t;y, s)exp[)p(x t .

y s)] (1.5)

The function S is the classical action [for system H (x,p, t}]that appears in the statement of Haniilton s least-action prin-
ciple. Suppose q (r) is the unique solution to the Euler-Lagrange equations for the two-point boundary-value problem in
which the classical system starts with configuration y at time s and arrives at configuration x at time t & s, then

S(x,t;y, s) = J —q(r}i—u(q(r)) dr . (1.6)

Here, the (Newtonian) dot indicates ordinary differentiation. Clearly S determines the rapidly oscillating phase behavior
(as })i~0}of the propagator, whereas the complex-valued 4' contains the nontrivial ainplitude dependence. The function
4 is smooth in A' and allows a small ))t expansion

4= it)) +{t'h)$2+ (i A)zpi+ (1.7)

A simple procedure called the transport method allows the determination of the values of QJ in terms of the action func-
tion S.

The large-mass (or WK} approximation of the time-evolution kernel is given by the m -+ 0() asymptotic representation
' e/2

{x
~
e i(i —s)HI%

~ y }—
2iri)rt(t —s)

exp + J u(f')dg 1+ T i + —Tz+
2 t —s iR gyes

(1.8)

where the argument of the coefficient functions T~ is
(x,t;y, s). The u-dependent term in the exponential is the
mean value of the potential u integrated over a linear path
in I"having end points x and y, i.e„

g=—y+g(x —y), gE[0,1] . (1.9)

It is evident that expansions (1.5) and (1.8} represent the
asymptotic approximations associated with two similar
problems in singular perturbation theory. In singular
perturbation theory one examines the behavior of the solu-
tions of a partial differential equation as a function of a
vanishing parameter appearing in front of the highest-
order differential term. In the m~0() case we see that
the multiplier of the Laplacian term in (1.3) vanishes. In
the h~O problem the singularity is somewhat more
severe in that both the Laplacian and time-derivative mul-
tipliers vanish. It is a common occurrence in singular
perturbation theory that the behavior of the solution in
the small parameter is highly singular. Both (1.5) and
(1.8) exhibit essential singularities in their respective small
parameters, i.e., h and m '. Only after the precise
mathematical structure of the essential singularity has
been determined is it then possible to carry out a small-
parameter asymptotic expansion in the neighborhood of
the singular point.

Expansions (1.5} and (1.8) are nonperturbative in char-
acter because in both the leading tenn is infinite order in
the potential u, and thus both are capable of accurate pre-
dictions in the ease of very strong interactions. For the
large-mass expansion problem a combinatorial method
based on connected simple graphs gives a procedure for
obtaining in closed analytical form all of the coefficient
functions TJ. In the WKB method the higher-order coef-
ficient terms )tij are determined from a special type of
one-dimensional recurrence relation' in terms of the ac-
tion S. The %K.B approximation has been the subject of
extensive study ' primarily because the functions ap-

q(r)=p(){r)+ g m Jpj.(r) .
j=l

(1.10)

Since q(r) describes the solution of the two-fixed-end-
point problem in classical mechanics, the leading term
po(r) represents a linear trajectory from y to x having

pearing in the expansion are all determined from classical
mechanics. Thus (1.5) allows a detailed comparison of
quantum and classical dynamics. On the other hand, the
WK approximation is appealing because the coefficients

TJ are so simple and are correspondingly easy to evalu-
ate. 6 4' 59 In particular, it has been widely used in quan-
tum statistical mechanics. ~ Note if t~lPli then
(1.3) becomes the Bloch equation describing the system
with Hamiltonian H(x,p) that has inverse temperature
PyO. In this circumstance expansion (1.8) describes the
coordinate-space Dirac matrix elements of the canonical
density operator e

Since the parameter m does not occur in the transfor-
mation t ~RPh, the analytic structures of
(x le-""'"I» m
equivalent. Further, the heat kernel (in the A =0 case)
only depends on R and m through the quantity (rt /2m.
Hence, a large-mass expansion of the heat kernel deter-
mines at once its form as i)1~0 (i.e., the traditional
Wigner-Kirkwood expansion).

The basic idea in this paper is that one may obtain the
WK approximation for the propagator from an appropri-
ate infinite-mass expansion of the WKB approximation.
From Eqs. (1.5)—(1.7), it is apparent we must determine
the m ~ oo expansion of the action S and the expansion
of the associated coefficient functions PJ. The mass
dependence of S has two sources. First, there is the exph-
cit mass variable in the formula for the Lagrangian;
second, there is an implicit mass dependence in the classi-
cal path q(~). We characterize the mass dependence of
q(r) by a Taylor series in m
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constant velocity (x —y)/(t —s}. Once the higher coeffi-
cients pJ (r) have been found the large-mass behavior of S
will be well defined. Proceeding in this fashion, and upon
employing the transport method, it becomes possible to
determine closed-form off-diagonal (x&y) expressions for
the WK coefficients T~. This method of obtaining the
WK expansion from the WKB expansion via a large-mass
expansion has wide applicability since it requires only that
the dynamical quantum problem arise from a well-defined
Lagrangian with an analytic dependence on the mass pa-
rameter.

When specialized to the density (x ~e ~ ~x), the
present method bears some conceptual similarity with the
work of Miller. He obtained a WK expansion of the
density by combining the lowest-order WKB approxima-
tion with the short-time expansion of a classical trajec-
tory. With that approach a number of the lower-order
WK coefficients are correctly determined, but the higher-
order coefficients are incorrect because of the incomplete
WKB approximation used.

Semiclassical asymptotic approximations have, in gen-
eral, three basic features. These are (i) the analytic struc-
ture (particularly the singular behavior) in the small pa-
rameter, (ii} the construction of formulas for the higher
correction terms, and (iii) the convergence properties of
the approximating series (e.g., the determination of the or-
der and uniformity of the asymptotic series together with
estimates that bound the total error). This last aspect is
by far the most intractable feature of these approxiilia-
tions to understand, and only a limited number of results
are available. However, the scalar field problem of (1.3) is
well understood in all three of the above aspects.
Fujiwara gives coefficient expressions and error term
bounds for the WKB propagator approximation, and Os-
born finds error term bounds for the WK approximation
that are valid for both the time evolution and temperature
(Bloch etluation) realizations of the problem.

The analysis in this paper will establish the linkage be-
tween WKB and WK approximations in a formal fashion
and so will not give estimates of the total error. All of
our mathematical derivations are of a heuristic nature,
and throughout it is assumed that series expansions have
meaning snd are st least asymptotically convergent.

Section II describes the large-mass expansion of the
classical path q(r). In Sec. III the WKB approximation
is reviewed snd the transport method is used to obtain the
behavior of the higher-order corrections to the first-order
WKB formula. By combining the results of the large-
mass path expansion and the transport recurrence rela-
tions, Sec. IV shows how the %K expansion can be ob-
tained from the m ~ ao behavior of the WKB approxima-
tion. The Appendix discusses an alternate large-mass ex-
pansion method which does not employ any direct refer-
ence to classical paths.

II. THE LARGE-MASS EXPANSION
OF THE CLASSICAL PATH

motivate the form of the expansion and show how to
solve for all the coefficients pk(r) recursively. The first
few of these coefficients are calculated explicitly, since
they will be needed in Sec. IV to illustrate the bridge be-
tween the VfK snd %KB methods.

We investigate classical paths of a system described by
a Lagrangian L of the form

L(x x t)=—x +A(x t) x —u(x, t),
2

(2.1}

where it is assumed throughout that the fields A, v and
their derivatives are smooth bounded functions. Physical-
ly (2.1) describes a nonrelativistic classical system of N
point masses m; having charges Q;(i= 1-X}that move
in three dimensions, if n =3M For .an arbitrary mass pa-
rameter m, define the mass ratios }u;=m;/m, and let
r'/p; be the position of the ith particle in Ri; then

where X denotes a Cartesian product. Suppose the parti-
cles' mutual interaction is described by a smooth total po-
tential energy u(x, t), and that they couple to external elec-
tric and magnetic fields described by a magnetic vector
potential W and scalar potential P so

Then (2.1}describes this system provided we take

The large mass limit of our system is to be understood
as follows. We consider the ratios p; [and hence A, v in
(2.1)] to be fixed, while the explicit m in (2.1) is allowed to
become large. This amounts to considering a family (with
continuous index m) of dynamics problems with fixed
mass ratios among the particles (p;/pJ), and which reduce
to the original dynamics problem when m assumes the
value used to define the fixed Ip; I. This interpretation
differs from other useful large mass limits to be found in
the literature, for example the Born-Oppenheimer ap-
proximation in which the masses of only some of the sys-
tem particles are allowed to become large. In the present
scheme, all particle masses become large in unison, as is
seen from the relations m; =p;m (p, ; fixed, m ~+ oo).

Let p be the momentum conjugate to x. Then the
Hamiltonian (1.1) is that associated with Lagrangian (2.1),
and system dynamics is described by Hamilton's equa-
tions

The purpose of this section is to analyze the inverse-
mass expansion (1.10) of the classical path. After defin-
ing the general Hamiltonian system to be considered, we

q(r) =V2H(q(~), p(~), ~), (2.2a)

(2.2b)
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Combining these gives Newton's equation for the classical
path q(r) i}(~)=g rn Jpj.(r),

j=l
(2.9}

(2.3)

where we have introduced

f = —VU —BA

I' p ——V Ap —V~A

(2.4a)

(2Ab)

Our notation is as follows. First, greek indices a,P, . . .
range from 1 to n, and we employ the summation conven-
tion on repeated greek indices in a term [e.g., (2.3)]. Con-
cerning derivatives, V denotes differentiation with respect
to a vector argument, and 8 with respect to a scalar argu-
ment. If there is more than one argument of either type,
we use VJ (or BJ) to denote differentiation with respect to
the jth vector (or scalar} argument (cf. Hamilton's equa-
tions). Finally V~~ denotes the Pth component of this gra-
dient. (The location of indices carries no covariance im-
plications. }

Equation (2.3) has the form of a Lorentz force law for
the N-body system. If N = 1 and U =0 it is easily checked
that it reduces to mq'=Q(E+qXB). The quantitiesf,F Is are all gauge invariant (this topic will be discussed
in Sec. III}.

The classical action $(x,t;y, s} which occurs in the
WKB approximation requires the solution to (2.3) subject
to the two-point boundary condition

where the coefficients pj (w) are mass independent. If (2.8)
is to hold for all m, we require

pj(s)~pq(&)=0 (j&1) . (2.10}

We have thus arrived at the form (1.10) of the rri
' ex-

pansion of the classical path q about the linear path po
representing "free" motion of a system subject to con-
straint (2.5).

The next objective is to solve for the coefficients p& us-

ing a simple r~u~ive meth'. The bmic id' is to substi-
tute (1.10) into (2.3); then comparing powers of m

yields equations of motion for p~ which may be solved us-

ing a simple one-dimensional Greens function. Let us
substitute (2.6) into (2.3), and express the resulting force
terms as Taylor series. We obtain

and similarly

F p(q, r) =e"'vF,p(po, r) .

Here V acts on the vector argument off, or FN~, as usu-

al, and we have suppressed the r argument of the path
functions for brevity. Insert (1.10) and the above into
(2.3) to obtain

q(s)=y, q(t)=x (s (t), (2.5)

where x,y me fiix~ comigmatlons. Assume a unique
solution q(r)=q(7 x, r;y, s}, s (r(t, 'to this problem ex-
ists. This is generally the case for smooth bounded poten-
tials if t —s is small enough. 36 Write

+—g rii Jpj~ e" FN&(po, ~),
0

(2.11)

where

(2.6)
where we used po ——0, and pj is the ath component of p~.

In order to equate common powers of rn ' in (2.11),
employ (2.9) to write

e" v= g exp(m Jpj".V)

where g = (v s) l(t —s}. No—te that po is the linear path inI" satisfying (2.5), and that po solves (2.3) if the right-
hand side vanishes (free motion or infinite mass hmits).
Formulas (2.6) and (2.7) are essentially a definition of g.
Since the boundary conditions on q are already satisfiei
by p0, we require

n, =O
g (n!) '(p "V) 'm

n =0 j=1

Hence the coefficient of m i' in e" v is

(2.12)

rl(s) =rj(t}=0 . (2.8)

Suppose now that the functions If,F &I are bounded
on the domain I")&[s,t]. Consider the formal limit
m~00 in (2.3). As m increases, the path q which de-
pends on m changes. Assuming that q remains bounded
with respect to this dependence in a neighborhood of
m '=0, one finds q(r)~0 as m~00. Integrating this
twice and applying (2.5) shows q(~)~po(~) and hence
g(~)~0, as m -+ 00. Motivated by these considerations
we seek an expansion of s} of the form

where the sum specified by g~~, ~
is defined as follows: If

p =0, then g~~„~[. . . ]=1;if p & 1, then sum over all the
p-tuples of non-negative integers (nj. ) = (n i, . . . , nr )

which satisfy the constraint

Ip

Jii~ =p
j=1

With (2.12) we can equate the coefficient of rn 'i'+",
where p & 0, in (2.11) to obtain
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(2.13)

where r(=minIr, r'J, r) =maxIr, r'I, and b,t=t —s. A
change of variable to the unit interval allows us to scale
out the trivial dependences on At. Upon setting
r=s+ght, 0(/&1, wefind

p~+, ~(s +gb t) = (3 t—) J dg'g(g, g')A(s +g'ht)

(2.14)

Notice the right-hand side of (2.13) involves only

po, . . . ,p~. Since po is known, we may solve recursively
for any p~+i. Specifically, the problem for p~+i is of
the form

where g is the unit-interval Green's function

(2.15)

Gf

P+, Qp~+i (r) =h(r)

along with the homogeneous boundary conditions (2.10).
The Green's function solution for this problem has the
standard form

p~+i, (r) = —I dr'(r( s)(t —r) )(ht—) 'h (r')

As an illustration of the use of (2.13) and (2.14) let us
compute p~ and pi (both of these are required in Sec. III).
Start with p, . In this case (2.13) with p =0 becomes

p'i =f (por)+potsF p(por).

Notice that po
——(x y)/—bt(co, nstant velocity), and that

po(s +g'b, t) is g'. Then (2.14) yields

p, (s+gbt)= —(dt)' J, dg'g(g, g') f (g', s+g'ht)+ - F &(g',s+g'ht)

Observe that both the space and time arguments of
f~,F~& are integrated along a linear path from the initial

(y,s) to the final (x, t) value. This will occur repeatedly in

our analysis, so it is convenient to introduce the space-
time linear path for 0 & g & 1:

g=(y+g(x —y), s+ ((t —s)) =(g, s+ (At) . (2.16)

Also, the quantity in large parentheses above will occur
often so we denote it by

where y=A, (. The values co (j) represent the Lorentz
force acting on a system moving on the linear trajectory
po(1 ). With these notations the result for pi may be re-
stated as

pi (s+ght)= (5t) I —dg'g(g, g')to (g') . (2.19)

Now consider the form taken by p&. Equation (2.13)
with p =1 reads

oi (z, r) =oi~(z, r;(x y)/ht }— p2a pl ~tea(po&r)+pltsFatt(po~r) ~ (2.20)

(2.17)

where (z,r)E)R"+'. For future reference we note the
composition law Q, E'[0, 1]),

H«e, as usual, V' acts on the vector argument of co . This
would correspond to V, in (2.17), so p' acts on f F
(and not x). The velocity term pit, follows from (2.19')

upon using d/dr=(l/5t)(d/dg),

to~(~)
~ („,) t=f (y )+ F p(y) =~o (y),

(2.18)
Integrating (2.20), as in (2.14), and substituting (2.19),
(2.21) yields

p.(s+k~t)=(~t)' J, dt's I, dkg(4 ki)~ti(kz)h(ki, k)~ ~.(ki)+~ig(kk)(~t) 'F.t (k)] . (2.22)

It should now be evident how one proceeds to solve for
the general coefficient pj in (1.10).

III. TRANSPORT EQUATIONS

It is the transport method that makes the determination
of the higher-order correction terms to the WKB approxi-

mation possible. In a notation suitable for the further
development of the large mass expansion we give an ac-
count of the transport recurrence relations and their solu-
tions which provide expressions for PJ. . The use of the
transport method in quantum mechanics apparently ori-
ginates in the work of Birkhoff, ' although it was



34 STRUCTURAL CONNECTIONS BET%'EEN T%0 SEMICLASSICAL. . .

rediscovered by Luneburg in an optics context. This sec-
tion concludes with a discussion of the gauge transforma-
tion properties of the WKB representation of the propaga-
tor.

From a partial differential equation perspective the
quantum propagator is the solution of the time-dependent
Schrodinger equation

iA (—x
~

U(ts) ~y)=H(x, iA—V„,t)(x
~
U(ts) ~y)

(3.1)

subject to the 5-function initial condition imposed at an

arbitrary starting tine s,

(x
~

U(t, s) ~y)~5(x —y) as t~s . (3.2)

H(x, iAV—,t)= 5 + A(x, t) V„2' 7Fl

The notation adopted here for the propagator refiects the
fact that if the Hamiltonian is time dependent then the

evolution operator, U{t,s), depends independently on t
and s and is not a one-parameter group in the time dis-
placement variable t s= b t.—Th—e quantum Hamiltonian
corresponding to (1.1}and Lagrangian (2.1) is

The Hamilton-Jacobi equation (3.5) typically has many
solutions. The particular solution appropriate for (3.4) is
determined by the initial condition (3.2). Recall that the
free propagator [the solution of (3.1) and (3.2} in the event
that A =0 and u =0] is

U (x,y;b, t) =
2+i A5t

n/2
i m/x —y/'

exp
fi 2b.t

(3.6)

The rapid oscillation and the multiplicative singularity in
(3.6} become a representation of the 5 function 5(x —y) in
the limit b,t~O. We look for a similar behavior to
develop in (3.4) as Et~0

Defined by the Lagrangian (2.1) and the two-fixed-end-
point classical paths q(r) =q(~;x, t—;y,s) discussed in Sec.
II; the action

t
S(x,t;y, s) = L(q(r), q(r), g)d~ (3.7)

is a known solution of (3.5). Further, if the Qt~0 limit
of (3.7) is examined it is found without difficulty that

S(x,t;y, s) = mix —yf'
2 t

V.A(x, t)+
i
A(x, t)

i

+(x —y) f A(g, s)dg+0(bt) . {3.8)

+u(x, t) . (3.3)

The WKB approximation for (x
~
U(t, s) ~y) may be

constructed as follows. The first step is to make an ansatz
about the essential singularity structure in the variable fi
of the propagator, namely

P'( x, t) =S(x, t;y, s) (3.9)

Thus S is a singular solution (as At~0} of the
Hamilton-Jacobi equation such that its leading singular
term exactly reproduces the rapidly oscillating phase fac-
tor required for the 5-function representation (3.6). So
choosing

(x i U(t, s) iy) =
2ni hb, t

' n/2

exp —P +4
fi

(3.4)
allows (3.4) to satisfy the initial condition (3.2) provided
that

%(y,s;y,s) =0 . (3.10)
where the phase function P' is assumed real valued,
dependent upon x, t;y, s and independent of iit'. The less
singular complex-valued amplitude and phase correction
%' is assumed to be smooth in A' and to admit a small-fi
Taylor-series expansion (1.7).

Insertion of (3.4) into equation of motion (3.1) gives the
standard requirement (in the limit A'~0} that P' be a
solution of the nonlinear partial differential equation

The final step in specifying the generalized WKB ap-
proximation is to determine the function %(x,t;y, s). This
is done by calculating the coefficients f~ in the series rep-
resentation of 4, nainely

(3.11)

dP'(x, t) +H{x,V &W(x, t), t }=0 . (3.5)
The differential equation satisfied by 4 is obtained by
substituting (3.4) into (3.1) and using (3.5). One finds that

8 x —y 1

g~
+ gt A{» t) Vx 'p(»t'y s)= [t&

~

Viq'
~

+2Viq. Vfi0+bi(ihql+$0)+V. A], (3.12)

where $0 is defined by

$0(x, t;y, s) =— S(x,t;y,s)—m [x —yi (3.13)

and the omitted arguments are the same as their last appearance. From (3.8) it is seen that $0 is nonsingular as Et~0.
Inserting series (3.11) into (3.12) gives, upon equating the coefficients of common powers of fi
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~
+ ~

——Viijlo ——A V. 0,= 2 5t, iV A+
2 ~if' i+-2 g ViPP k-VA'k (3.14)

where p &1, 5& i is the Kronecker delta, and the suin is absent if p =1. The condition (3.10} requires that {3.14) be
solved subject to the boundary condition

Pz(y, s;y, s) =0, p & 1 . (3.15)

The transport method for solving (3.14) is based on the observation that an appropriate variable substitution will alter
(3.14) frotn a first-order partial differential equation in n + 1 variables to a first-order ordinary differential equation.

Using (3.13) to replace Pu yields

5ifp+ —(ViS —A} VA'p= 5p, iV A+~i4t -i+ Q Vile -k ViA
P7l 2PPf k=1

(3.16)

In this identity replace x =q(r) and t =r where s &r & t. Now recall that the gradient on the first vector argument of
S with the appropriate path arguments is the momentum conjugate to q (r)

V ~S(q(r), ry, s )~p(r) =mq(r)+ A (q(r), r),
where the second equality is (2.2a). With this substitution the left-hand side of (3.16) becomes a total derivative in the r
variable

g~(q(r), r;y, s ),
and so (3.16) is now an ordinary differential equation that may be solved by integrating with respect to r The on. e con-
stant of integration is fixed by condition (3.15). In this way P~ (p & 1) is expressed as a functional of q:

p —1

gz(x, t;y, s)= J dr 5& iV A(q(r), r)+ bipz i+ g Vip& k.Vil('k (q(r), ry, s) (3.17)2' s k=1

Since the right-hand side of (3.17) only involves $0-g~ i, it may be used in conjunction with knowledge of the path q,
to determine f~ in a recursive fashion. Representation (3.17}is the main result of the transport method.

A few comments about our representation of the WKB approximation (3.4) are in order. Often in the literature one
encounters a different version of the lowest-order WKB expansion, " ' ' ' namely

{x
(

U(t s) ~y ) —
(
D(x, t;y, s)

~

'~ie" ~"'s'""s"l

(2miR)" ~~
(3.18)

D(x, t;y, s)=det[ ViVfS(x,—t;y, s)] .

tion (W,P)~(W, P) induced by a smooth function A.:I —+R. The corresponding gauge transformation for the
n + 1 dimensional potentials is

D (x,t;y, s) = exp —I dr[V A{q(r),r)

+b igo{q(r) r'y s ) ]

The determinant D may be interpreted as the density of
paths from y to x, and of course becomes singular if q (r)
encounters a caustic. However, the identity

A(x, t) =A(x, t)+ VA(x, t),

u(x, t) =u(x, t) —BA(x, t),

where in the notation of Sec. II,

A(x, t)= QQ;A(p; ' r'—, t) .

(3.20a}

(3.20b)

(3.19)

establishes that the first-order version of (3.4) with 4 re-
placed by Pi is identical with (3.18). Identity (3.19) is a
consequence of the continuity equation' obeyed by D,
and is proved in Ref. 68 in the case where 3 =0; the ar-
gument given there readily generalizes to the A &0 case.

The gauge-transformation properties of the propagator
are useful in understanding the structure and interpreta-
tion of the higher coefficients PJ appearing in the WKB
approximation. Consider an arbitrary gauge transforma-

First note that the tensor I' tt and the force vector f
are invariant under the gauge transformation From.
Newton's equation of motion (2.3) it follows that the clas-
sical path q(r) is also invariant. The gauge-transformed
Lagrangian (2.1) is

L(x x t)= —x +A(x t) x —u(x t)

Using these facts it is an elementary calculation to deter-
mine that the induced change of the action (or equivalent-
ly go) is
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S(x,t;y, s) —S(x,t;y, s) = —fo(x, t;y, s)+go(x r;y, s) =A(x, t) —A(y, s) . (3.21)

The gauge transformation behavior of the remairung coefficient functions g~ (p & 1) is given by (3.17). If p = 1, there
are canceling contributions from the V A and h, go terms that leave gi invariant. For p & 2, only the invariant quantities

i appear in the functional relationship (3.17). Thus only the coefficient go has a gauge dependence, which is
that found in Eq. (3.21). Further note that the right-hand side of (3.21) is independent of mass, so we may conclude that
the entire gauge dependence of the propagator is confined to the mass-independent part of the phase in (3.4).

IV. THE %'IQNER-KIRK%'OOD EXPANSION

A complete account of the large-mass expansion of the propagator is arrived at by combining the reciprocal-mass ex-
pansion of the classical path q(r) given in Sec. II together with the transport functional identities (3.17) for gz. The WK
approximation has the general form (as m ~ oo)

1 1 1 1(x
~
U(ts) ~y}—U (x y;bt)exp . 6r J de(g) (x ——y) f dgA(g) exp —Ji+ J2+ Ji+i' 0 m m

(4.1)

where the coefficients Jz depend on iri but not m. In this section (4.1) will be derived as a consequence of the m ~ oo

limit of the WKB approximation
' n/2

(x
i

U(t, s) iy}—
2rri lht exp S(—x, t;y,s}+gi+i&P2+(iR}pi+ (4.2)

In particular we will determine the diagonal (x =y) and the off-diagonal (x&y) expressions for the coefficients Jz. The
structure of the WK approximation given in (4.1} is slightly different from that stated in (1.8) for the static scalar case.
However, a cumulant expansion of the last exponential factor in (4.1) leads to the result quoted in (1.8). It is evident
from (3.3) that when a vector potential A is present, the time evolution kernel will not depend on A and m only through
the combination iI /2m.

Consider first the expansion of the action S (or equivalently bio} in inverse powers of m. From (2.7)—(2.9) and (3.7) it
follows that

li'o= g m-"Go"
k=0

(4.3)

where Go are m and iil independent coefficients. If (4.3) is used in (3.17) in conjunction with the m expansion of q (~)
one can again obtain a large-mass series expansion for Pi. Upon iterating this procedure all fz are seen to have an m
expansion. The explicit mass factor appearing in (3.17) means that the least m power in fz is m, so

Pp ——gm Gp.
k=p

Of particular importance is the coefficient Go. We begin with fo,' here (2.6), (2.7), and (3.9) lead to

(4.4)

m x —y
P (x, t;y, s)= —f dr —

~
po+ri(r)

~
+A(q(r), r) q(r) u(q(~), ~)—

Recall po ——(x —y)lb, t is constant. The quadratic velocity term in the integrand gives rise to three terms: One cancels
the leading term above; the cross term integrates and vanishes due to (2.8}; if the third term is integrated by parts there
are no end-point contributions due to (2.8). Since ri =q, (2.3) yields

Qo= J «j , ri (r)[f (q(~), r)—+qp(~)F p(q(~), r)] q(r) A(q(r), r)+—u(q(r), ~)]

d'7 2'g~ T e ~ Po 7,'7 + 2'g~ 'Zap T8 F~p Po T, 'P

q(r)e"" A(—po(v ),r)+e'"'" u(po(~), z)] . '
(4.5)

Changing variables to the unit interval, r=s +gb t, the ar-
guments of A and u become g [cf. (2.16)] so that Go may

For the sake of brevity, we adopt the following notational Collecting the parts of go proportional to m shows
conventions. If the argument of a g or G is omitted, it is that
to be taken as (x,t;y, s). Similarly for the fields A, u,f,F
omitted arguments are to be (po(~), ~), and for the path Go= J, d~[ po A~(po'~ +u(po'~ ] ' (4.6

variables q,p, g we will omit (r). The evaluation of any
such quantity at a different argument will be made expli-
cit.
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be expressed as the linear path parametric integral
(I= [0,1]):

Gu(x, t;y,s)=bt f dg u(g) — .A(g)

This term completely provides for the change of Pu under
a gauge transformation, and gives the first exponential
factor in the WK representation (4.1). In fact comparing
(4.1) with (4.2) and utilizing (4.3) and (4.4) requires

resulting in the useful formula

V, GOO(x, t;y, s)= —A (x, t) C—(x, t;y,s),

where C is manifestly gauge invariant,

C (x,t;y,s):—bt f dA, M (A, ) . (4.11)

Hence the Laplacian of 60 with respect to its first argu-
ment is

J = f (iii)' '6 (4.8)
b iGo~= —V A(x, t) —Vi C .

Integrate by parts the pi A term; noting (2.10) and that

d
d'r A.(P„r)=Vt'A. (p„~)p,tr+ aA. (p„~),

we obtain the gauge-invariant form

Gu ———i d~pia(fa+ppttFap) .

Changing variables to the unit interval and using (2.18)
yields the final expression

6(')(x, t;y, s)= —,'(b, t) f,d gg(gi, g2)tu (pike (g2) . (4.9)

Now turn to Gi. Set p =1 in (3.17) and collect the
m ' parts of the resulting formula to obtain

Gi ———,'bt f dg'[V A(g)+bi60(g;y, s)] . (4.10)

Recall that G~ is gauge invariant, but that A and Go are
not. Hence, it is desirable to have a simple method for
canceling V A with part of biGii in (4.10) so as to leave a
manifestly gauge-invariant result. This method, which is
useful for all G~i (j &1), works as follows. Differentiate
(4.7) with respect to x, remembering the x dependence in

V'i60 ——f dg[gbtV u(g) g(x —y)trV A—tt(g) —A (g)] .

The last term is integrated by paris

—f dg g A (g)= A(x, t)—
dg'

+ f ding[(x —y)tiV~A (g)

+bt BA (g)],

We shall illustrate the calculation of J~ by determining
this coefficient for p =1,2. From (4.8) it is seen that we
need to find 60, Gi for Ji and 60„6i, and 62 for J2.
First, consider Gi'i. Return to (4.5), after using (2.12) to
collect the m ' terms. One finds

160=, d r[ Yplafa+ Yplapott ap

—po (pi V)A —pi A +(pi V)u] .

pi c=— C (x, t;y, s)

=At 7 ~A, + T5'~p
(x —y)p

Faa(A. )QO!

=bt f dA, A'V tu(A, )

by the antisymmetry of F tt. Recalling (2.18) gives

1 1

Gi ————,'ht ht A. co y

where y=kg. Finally, make the change of variables

y =A,g in the inner integral and follow that by a change of
order of integration. The g integral over [y, 1] may be ex-
actly evaluated and the result is

Gi(x, t;y, s)= ——,'(bt) f dyy(1 —y)V tu(y) . (4.12)

Together formulas (4.9) and (4.12) sum via (4.8) to give
J].

The coefficient J2 requires the construction of 60, Gi,
and 62. Consider Gz first. Using the fact that QJ begins
with m»G» ~e see that the transport identity implies
that for p&1

G~= —,
' ht A~6»', 'y, s (4.13)

Upon inserting expression (4.12) for Gi and iterating
(4.13) we obtain the general result for all p & 1

6 (x t y s) — (QPp i) (bt)

X f dj[g(1 —g)] (bY 'V co(g) .

It remains to obtain Go and Gi. The m parts of
(4.5) give Go. Proceeding as in the calculation of 60 and
upon implementing an integration by parts to bring the
expressions into a manifestly gauge-invariant form we
find

Substituting this result into (4.10), wherein the (x, t) is re-

placed by g' we find the V' A terms cancel leaving

G~ ————'ht V& C 'y s

Now (4.11) gives
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Go(x, t;y, s) = —
&
(«)' J,d'kg(k4z)~. (fi)~p(k~)[g(k, k)V ~.(4)+(«) '~ig(k, k)F.p(k)] .

Finally the m parts of (3.17) with p =1 give 6f. The resulting formula is

Gi ——,'(ht—) J,d gg(gi, g2){g(gi,gg)[V cop(gi)+(g)ht) 'Fpg(gi)][V tup(gz)+($2bt) 'F~(gi)]

+gg&'(1 —g& kop(gi)[hoop(gi)+2($2«) 'V~Fp (gi)]

+g,g&'[2g& —(g. +1)g,]~p(g, )[V V'~.(g, )+(g,~t)-'V F.p(g, )] ~

(4.14)

(4.15)

where g&
——max{(i,g2J.

In a number of physical applications it suffices to know
the trace of the propagator in 4 . The trace is the dx in-
tegral of the diagonal values of WK expansion formulas.
In the case of a static field (t)u =RA =0) there is a sub-
stantial simplification of the general expansion coeffi-
cients. The diagonal values of the relevant Gf are

Go(x, t;x,s)= ,', («—)
~

Vu(x)
i

Go(x, t;x,s)= —,(bt) V—Pu(x)V u(x)VPV u(x),

2
—8+t

6~(x, t;x,s) = '
(bt) +'h&u(x), p &0,

(2p + 1)t

Gi(x, t;x,s)= ~(bt) Fp (x)Fp (x)

+(b t) —V Vpu(x }V Vpu (x)
6t

+—Vpu (x)Vpbu (x)
I

%'e have demonstrated these ideas by discussing in de-
tail the case of an X-body system interacting with an
external electromagnetic field. In addition to the explicit
expansion formulas given in this section, it is seen that the
geometrical origin of the /A [0,1] averages [cf. (4.14}and
(4.15)], ubiquitous in the earlier treatments of the WK ex-
pansion, 6' ' lies in the m~ao expansion of q(r)
about the linear (infinite mass) trajectory pu between y, s
and x, t. Further, the weight factors g(gi, gi), also com-
mon in these formulas, are a consequence of the two fixed
end point boundary condition and Newton's equation of
motion for q(~}. Illustrative of the efficiency and the
ease of computation of this method is the fact that the ex-
ample we have treated above subsumes all prior results in
the literature (for scalar-valued wave functions) and ex-
tends the WK approximation so as to incorporate time-
dependent vector and scalar potentials.

The appendix presents a second method for obtaining
the large mass expansion of the propagator, which is
based on recurrence relations. Although it does not con-
vey the geometrical insight of the classical path expansion
method, it is a direct and usually more practicil method
of computing formulas for the fundamental Gf coeffi-
cients.

In the Gf above, the static magnetic field only appears in
the term 6 i, whereas the static electric field appears in all
the terms. By contrast all the Gf depend (for both diago-
nal and off-diagonal cases) on A in the nonstatic case.

In summary, we have found that the mutual consisten-
cy and structural connection between the higher-order
WKB and the higher-order WK expansion is realized by a
large mass expansion. This expansion is the joint result of
a large mass expansion for the classical path q (v) and the
transport recurrence identities for the correction terms
that enter the WKB approximation. The structural con-
nection just described provides a new way of deriving the
generalized %K expansion. It is to be expected that this
approach to the %K expansion should succeed in a wide
variety of quantum problems since it only requires the
weak hypothesis that the underlying classical Lagrangian
be analytic in its mass parameter.

APPENDIX: LARGE-MASS
RECURRENCE RELATIONS

In Sec. IV we have deterinined that the functions Gf
play the key role in constructing the WK functions J~.
There the functions Gf were computed using the large-
mass expansion of the classical path q (r) in combination
with the transport recursion identities (3.17). However,
given the form of representation (4.1)—(4.8) it is possible
to obtain a recursive solution for Gf by a procedure which
avoids the m ' expansion of q entirely.

Define a complex phase function W by

(x
~
U(t, s) ~y) =U (x,y;bt)exp[W(x, t;y, s)], (Al)

where W depends on both fi and m. Substituting (Al)
into the Schrodinger equation (3.1) gives the nonlinear
partial differential equation that 8' obeys,

+—A ViW+ V.A+
i
A

i + . u(x, t) .1 1 2 1

2m i%2m i'
Replace x —+(=y+ ((x —y) and t~r=s +gb t everywhere in (A2) and then multiply by b t,

(A2)
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0

ht Bi%(hays)+(x —y) ViW= ht(
i
ViW'i +bi%) —. (x —y).A(j)

2ply iA

A Vi8'+ VA+. iA~ +. u(g).
m 2n ~%2m

(A3)

In the equations above, we have again employed the convention that the suppressed argument of a function is the same
as the last one shown for that function. The motivation for the substitutions we have made in (A2) is that now the left-
hand side of (A3) is (d/dg) 8'((;y,s). This step is just a linear-path version of the transport method. The large-mass ex-
pansion of 8; consistent with (4.1), is

W= g m»J»(x, t;y, s),
p=0

(A4)

where J» depends on A' but not on m. As ht +0 th—e initial data condition (3.2) requires [cf. (3.8), (3.10), (3.13)]
W(y, s;y, s)=0 or equivalently,

J»(y, s;y,s)=0, p &0. (A5)

Inserting the expansion (A4) into (A3) and equating common powers of m» for p & () gives (with J,—=()):
p —1

J»(gy, s)= , i'd, th, J»—i+, iAbt —g ViJ» i t,
.V,Jk

k=0

+htA(g) ViJ i+8,t ' V.A+ . A +b,t '
u(g) —y A

» I 1 p ~»0 — x—
(A6)

It is a simple matter to integrate (A6) with respect to gC [0,1] and upon imposing (A5) find the integral equivalent of
(A5) and (A6). However, we are more interested in the behavior of Gt . Note that boundary condition (A5) and the finite
sum (4.8) expressing J» in terms of Gt implies (because of the variability of A') the condition

Gt (y~s;yes) 0 (A7)

If we substitute (4.8) into (A6), equate common powers of fi, integrate with respect to g6 [0, 1] and employ the boundary
condition (A7) to determine the constant of integration, then

P —1 min k II
Gt»(x, t;y,s)= J dg ~ QiGI» i'+ g

k =0 n =maxIO, 1+%+1—p I

ViGI» „' ViG„"+2A(g) ViGt»
'

(g;y, s)

+5I i5 iV.A(g)+5to 25 u u(g) — A(g) +5 iA(g) (A8)

As a check on the a posteriori self-consistency of the
results of Sec. IV we have computed GI» directly from
(A8). This latter method does not use in any way the
large-mass expansion of the classical path q(r). The re-
sulting formulas for the coefficients are identical to those
found in Sec. IV.

Another useful check on the coefficients Gt» is to com-
pare them with other results in the literature. Results of
this type closely related to ours are the %igner-Kirkwood
expansions of the heat kernel (x ~e ~ ~y), for time-
independent Hamiltonians H, found in Refs. 41 and 55
and Ref. 6 (with and without the vector potential, respec-
tively). By specializing our results to the static case, and
re~lacing b,t= i' we h—ave found the resulting Go, Go,
G» 6'2 to be in agreement with known results.

Using 6& we have similarly verified terms 3 through 9

of Eqn. (2.29) of Ref. 55 (to use their results, one must set
T= 1 and compute some of the superfluous integrals;
there are misprints in the 3rd and 8th of the above men-
tioned terms).
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