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Transition matrix elements and oscillator strengths are calculated for various transitions between

discrete levels of the neutral Li atom in the Dirac-Fock approximation, in the "length" and "veloci-
ty" forms, using nonlocal effective currents determined from quantum field theory. The matrix e1e-

ments and oscillator strengths are shown to be numerically equal in the two forms, for this specific

example, thereby verifying a previously given general proof of this equality.

I. INTRODUCTION

A resolution of the problem of the difference between

the "length" and "velocity" forms of the transition ampli-

tude for single photons in the long-wavelength limit, as
calculated in the nonrelativistic Hartree-Fock (NRHF) ap-
proximation, has recently been proposed. ' The usual way
of calculating transitions in the HF approximation has

been to evaluate the dipole matrix element in the length or
velocity forms, using appropriate single-particle HF wave

functions, having the same argument r for the initial and

final states. Recent work ' has suggested that if one

takes a quantum-field-theory approach and imposes the
necessary requirement of gauge invariance, the correct
form of the transition matrix element involves the reduced

vertex operator. The alteration corresponds to the re-

placement of a local current by a nonlocal effective
current, A(r, r'), the matrix element of which must be tak-
en between appropriate single-particle HF wave functions,
which now have different arguments r and r'. This non-
local current, or reduced vertex operator„satisfies a Dyson
equation. The local current appears as an inhomogeneous
term in this equation. The formalism also necessarily
forces the use of V(X —1) HF wave functions, deter-
mined by solving the HF equations for the core electrons
without regard to the valence electron, and then solving
the valence-electron HF equations in the frozen potential
of the N —1 core electrons. The field-theory approach is
merely a systematic way of taking into account the mul-
tiparticle nature of the many-electron atoms, even if in
certain approximations one-particle wave functions (in the
HF case) or two-particle wave functions [in the random-
phase-approximation (RPA) casej make their appearance
in calculations.

The nonlocal current in the NRHF approximation and
the equations which determine it were generated in recent
work ' by Feldman and Fulton, and the gauge invariance
of transition matrix elements for general gauges was also

proven there. The formalism was applied to the dipole
limit of the NRHF case in Ref. l. If one takes the dipole
limit in the initial stages of the analysis, the length and
velocity forms are connected by a gauge transformation
and the proofs of Refs. 2 and 3 apply. A more conserva-
tive approach is used in Ref. 1; the analysis is carried out
in a fixed gauge, the radiation gauge. The dipole limit is
taken only in the final stage and only the commutator

an algebraic identity, is used to prove the identity of the
final expressions for the matrix elements in the length and
velocity forms. The conclusion is the same in both ap-
proaches.

An extension of the treatment of Refs. 2 and 3 to the
relativistic [in particular the relativistic Hartree-Fock or
Dirac-Fock (DF)] ease was considered in Ref. 4. Positron
states now enter into the analysis and, since more of the
full QED theory appears, renormalization plays a role.
After rather extensive arguments, which also involve the
neglect of terms of higher leading order in a Zct expan-
sion than the ones which are retained, the structures of
both the relativistic random-phase approximation (RRPA)
and DF equations turn out to be the same as those for the
corresponding nonrelativistic formalism. The specific
proof of the equivalence of the length and velocity forms
of transition matrix elements, using a commutator ap-
proach' is not considered for the DF ease. Since a proof
of this equivalence in terms of gauge invarianee is given
in Ref. 4, a repetition of the work of Ref. 1 for the relativ-
istic case is superfluous.

Perhaps a more useful development of the general for-
malism considered in Refs. 1—4 is to illustrate its validity,
particularly as far as the nonlocal effective currents gen-
erated from the DF approximation are concerned, by nu-

merically evaluating transition matrix elements which
arise in a specific case. Besides demonstrating the numer-
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ical equivalence of the results for the length and velocity
forms in this specific case, the present paper has three
other aims: (a) to attempt to bridge the "language bar-
rier" between the somewhat abstract and field-
theoretically motivated formalism of Refs. 1—4 and the
language and notation customarily used by atomic physi-
cists; {b) to demonstrate that the approach of Refs. 1—4
can be successfully employed in specific numerical calcu-
lations; (c) to generate new values for transition matrix
elements, differing from those for both the length and
velocity forms, using only local currents and DF wave
functions for the initial and final states. (These values
provide the lowest-order contributions in a sequence in-
volving increasing numbers of additional correlations, the
sum of which is finally to be compared to experiment. )

In the following section we first briefly define the ex-
pressions relevant to the subsequent numerical calcula-
tions and give the equations which must be solved numer-
ically. We then apply the general analysis to the case of
various El transitions of LiI, and list the numerical re-
sults for these transitions. A brief discussion concludes
the main part of our paper.

Appendix A is initially devoted to the realization of
aim (a) listed above: the "translation" of the formalism of
Refs. 1—4 to the more familiar language of atomic phys-
ics. More important, the differential equation, the solu-
tion of which plays an essential role in the numerical
evaluations, is derived from the field-theory formalism.

The partial differential equations derived in Appendix
A and given in the main body of the paper are only the
starting points for the numerical analysis. The angular-
momentum parts must be explicitly dealt with, and cou-
pled differential equations in a single radial variable (for
functions which enter the evaluation of the transition ma-
trix elements) must be obtained before the numerical cal-
culations can actually be implemented. These differential
equations in the radial variable are obtained in Appendix
B.

II. SUMMARY OP RELEUANT FORMALISM
AND NUMERICAL RESULTS

FOR E1 PHOTON ABSORPTION IN Li I

M (k)=(2k)-'" I u,'(r, )d'r, A(r„r„k)

Xd rzu~(rz), (2)

The relevant one-photon transition matrix element for
absorption of a photon in the DF approximation is given
by

Mf;(k)=(2') 5(ef e; k)Mf;(k) . — —

This equation is Eq. (2.1) of Ref. 1 and is valid for the rel-
ativistic dipole case, as well as the nonrelativistic dipole
case. ' The letters f (i) refer to the final (initial) atomic
state, ef and e; are the corresponding DF one-particle en-

ergy levels, and k is the energy of the absorbed photon.
(We take A'=e = 1 in all equations. }

The matrix element Mf;(k} of Eq. (1), with the energy
conservation taken out, is a specific case of a more general
matrix element, M~(k), in the dipole approximation:

where p and q label discrete DF states (among which are

f and i), (2k) '~ is the photon wave-function normaliza-
tion, and A(ri, r2,'k) is the nonlocal effective dipole
current, which depends on the tue spatial variables, r]
and ri. The function A satisfies an inhomogeneous in-

tegral equation, Eq. (A6). This equation has different in-
homogeneous terms, corresponding to the different local
photon-electron interactions for the different "forms":

[X(ri,rz, k)]' ' '=5' '(ri —ri)Ak' '(ri),

where (form} stands for (velocity) or (length), and

gi velocity)(

X'""""'(r,) =tekel, r,

(3)

{with ek the photon polarization vector), in the velocity
and length forms of the dipole approximation, respective-
ly. It is the velocity form which naturally arises if the di-
pole approximation is made in the radiation gauge. The
length form can be made to appear in one of two ways:
by a gauge transformation, carried out subsequent to the
dipole approximation, following Lamb's point of view, 67

or by use of a commutator identity' connecting the two
forms in both the nonrelativistic and relativistic cases.
For the relativistic case, this commutator identity is

[h (r},r] = ia, —

h (r)=a p+mP+ V„„,i(r) .
(6)

[m~(k)]' ' '= I d r u~(r)A'k' '(r)ue(r) .

These matrix elements are the ones normally called the
DF matrix elements, if u~(r) and u~(r) are DF states.
However, the matrix elements which naturally arise from
DF theory contain contributions from nonloeal as well as
local effective currents, where the latter are generated
from the local field-theoretical lepton-photon interaction.
The sum of these local and nonlocal currents is A of Eq.
(2). As previously stated, A satisfies Eq. (A6), which is
the dipole approximation equivalent of Eq. (3.44) of Ref.
4. When this equation for A is used in Eq. (2), and the
notation is translated from the abstract to the more con-
crete form, one obtains

Mf;(k) = [mf;(k)]'t'~'

M J k Vfj;- Vf~M. k

J /e —e —k e —p+k0 J

The corresponding commutator in the nonrelativistic case
is given in the introduction. In principle, M&; of Eq. (1)
and M~, A of Eq. (2) should carry separate labels, distin-
guishing the length and velocity forms. In point of fact,
both forms, which involve different inhomogeneous terms,
Eqs. (4} and (5), yield the same Mf;, M~, and A, and thus
these functions require no distinguishing labels.

The transition matrix elements corresponding to the lo-
cal currents, described by Eqs. (3)—(5) are
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M.,(k)= [m.,(k)]" '

Mbj(k) Vaj Vo~j~MIb (k)+' "+
eb —ei —k 8b —ei +k

bI

Mj, (k) = [mj, (k)]' '
(9a)

Mbl(k) Vjlb Vjb'Mlb(k)"+ (9b)
8b —8j —k 8b —8j+k

bl

The indices i, f, j, and I above refer to DF electron states
outside of the frozen relaxed core. [We calculate in the
V(N —1) DF approximation. ] This core for Li I consists
of two ls electrons. The indices a and b refer to the core
electron states a and to positron states n, i.e.,

[uI= I~,~],
(e, —ej+k) ~, „= (e„—+ej k)= —2m, 8„~0 .

Tllc symbol ~~ illdlcatcs summation over dlscrctc alld 111-

tegration over continuum states. The expressions V~
which appear in Eqs. (8} and (9} above are overlap in-
tegrals of the electron-electron (e-e) Coulomb interaction
with DF states:

V"=— V x—r' ru, r'

X [ue(r)u, (r') —u, (r)ue(r')]d r d r',
V(

/

r—r'
/

) =8'/
J

r —r'
/

.

The first term in the curly brackets is the direct and the
second the exchange contribution; V(

~

r—r'
~

) is the e-e
Coulomb interaction.

Equation (8) and the equations for M,j and Mj, [Eqs.
(9a) and (9b)] are useful to make the structure of the
theory clear and also serve to point to possible approxima-
tions to be made in the nunMrical analysis. However, they
are not the actual starting points for that analysis. As far

tII J= IIzj . (12)

Equations (8) and (9) are inconvenient as a starting
point for numerical calculations. They can be recast in an
alternative and equivalent form which is much better suit-
ed to calculations. The details of this reordering are given
in Appendix A. The transition matrix element Mf; (with
positron states consistently neglected) is given by

as structure is concerned, we note that Eqs. (9a) and (9b)
are a closed set of linear algebraic equations for the core-
electron (or positron) to valence-electron transitions. The
solution of these equations must then be substituted in Eq.
(8), which can give valence-electron —valence-electron
transitions.

A more important issue is the question of positron
states. These states do not appear in the DF equations
for e~, e;, and the corresponding wave functions for two
reasons: Renormalization effectively serves to take into
account some of their contributions, and the remaining fi-
nite terms are of higher leading order than the contribu-
tions of the usual DF potential and are neglected. It is
thus consistent to neglect such contributions in Eqs. (8)
and (9) (for the matrix elements) as well. One can see
directly from the structure of Eqs. (8) and (9) that these
contributions are negligible, since energy denominators
from positron terms will be large [of O(2m) compared to
O(ma )] and overlap integrals V~ will be small (since
they will involve overlaps between discrete and continuum
states). Indeed, it is apparent from more recent work on
atoms of much higher Z than Li I that, not only posi-
tron states, but deeper-lying core-electron states can be
neglected in numerical calculations. In other words, since
small overlap integrals and large energy denominators are
already seen to lead to negligible effects for deep-lying
core-electrons, they are even more likely to be negligible
for positron states. '0 We will therefore, at a minimum,
here and henceforth neglect the positron states n and let

Mf;(k)=[mf;(k)]' ' '+(2k) ' g I d r[u (r)A, ' ' '(r)F' ' '(r)+F' ' ' (r)A'k' '(r)u (r)],

(form}—:(length) or (velocity) .

The functions F'+ ' satisfy partial integro-differential equations, as follows:

[h(r)+k e]F +(r)+ I—VDF(r, r')F +(r')d r'= —I Q(r, r')([~++1 +]u )(r')d r'.
The inhomogeneous terms [c.+u~](r) are defined as

[ +u ](r)—:f V( ~r —x~ }u;(x}[uf(x)u (r}—uf(r)u (x)]d x,
and

(13)

(14)

(15)

[~ u~](r)—=[u+u~](r) with f~i .

The homogeneous terms [P +u ](r) are given by

[P"+u ](r)=g I V(
~

r —x
~
}Iujl(x)[FII+(x)u (r) —FII+(r)u (x)]+Fji—(x)[u&(x)u (r) —uII(r)u (x)]I .

P

(16)

The relnaining expressions appearing in Eq. (14) are defined as follows: k is the photon energy, e the DF energy eigen-
value for the electron-core states I a I, and Q (r, r') is a projection operator to electron states outside of the frozen core,

(18)
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The Hamiltonian ii (r) is local, excludes electron-electron interactions, and is defined in Eq. (6). Finally, VDF(r, r ) is the
DF potential,

VDF(r, r')=g 5' '(r —r') f V(
~

r —x
~
)u„(x)u„(x)d x —V(

~

r —r'
( )ur(r)u„(r') (19)

The orthogonality conditions

uprE~+ r r=O (20)

immediately follow as a consequence of Eq. (14}.
We note that Eqs. (13) and (14) are analogous to (8) and

(9), respectively. Equation (14) must be solved and the
solutions substituted into Eq. (13) to obtain Mf;, just as
Eqs. (9) must be solved and the solutions substituted into
(8) to obtain Mf;.

It is instructive to compare and contrast Eq. (14) above
with the corresponding equation in the relativistic
random-phase approximation" (RRPA). Equations (14)
and (17) correspond to Eqs. (6) and (5} of Ref. 11, respec-
tively, with the present I' +(r) replaced by io + (r) of Ref.
11. (The label a, indicating core orbitals, corresponds to
the label i of Ref. 11.) However, the inhomogeneous
terms [c.+u ](r) of our Eqs. (15} and (16) are absent in
Eq. (6) of Ref. 11. Our Eq. (14) is an inhomogeneous
equation, with k being an input parameter. Equation (6)
of Ref. 11 is a homogenceus equation, and is an eigen-
value equation for the eigenvalue oi, which thus plays an
entirely different role from k. The DF problem which
underlies our Eq. (14) involves the V(N —1) DF poten-
tial, while the DF problem underlying Eq. {6)of Ref. 11
does not. Finally, the projection operator Q(r, r') is im-
plicit in Ref. 11 but is explicitly displayed in the present
work. Thus, the orthogonality condition Eq. (20) is a
consequence of Eq. (14) in the present work, while the
corresponding orthogonality condition [Eq. (7}of Ref. 11]
is a constraint on io +, the satisfaction of which is as-
sured by introducing Lagrange multipliers in Eq. (6) of
Ref. 11. No such Lagrange multipliers appear either in
Eq. {14),or in the homogeneous RPA and RRPA eigen-
value equations [which also contain Q{r,r )] which arise
in the analysis'~ of Refs. 3 and 4 and precisely correspond
to Eq. (6) of Ref. 11.

Let us leave the comparison with the RRPA and return
to our main argument. Equations (14}—(17}are still not
in suitable form for the final computation. To achieve
this form, it is necessary to take angular momentum into
account specifically and to convert Eq. (14) to an integro-
differential equation in a single radial variable. This task
is carried out in a manner analogous to that of Ref. 11,
and the results, together with the relevant definitions, are
given in Appendix 8.

The formalism outlined above and in Appendix 8 has
been apphed to numerical calculations for the case of pho-
ton absorption between various bound states of Li t. The
values of mf',""s'"' and mf',

"" '"' are given in the third and
fourth columns of Table I, and those of the form-
independent M~; in the fifth column. The corresponding
oscillator strengths are listed in the sixth, seventh, and
eighth columns. The results of some other calculations
are quoted for purposes of comparison in the last two

m&,
"" ""'——3.43O lZ72 . (22)

The contributions of the new, nonlocal, part of the ef-
fective current are

b.My,
""s' '= —0.013 886 5, (23)

b,M',"" ""'=—0.0796469 .fi (24)

The length and velocity forms of both the local and non-
local contributions differ, but in such a way as to compen-
sate for each other, so that the final matrix elements are

M"'"~"'=3.350480 8, (25)

m'""~"&'=3.35O48O3 . (26)

The numerical results (25) and (26) agree to about one
part in 10, the accuracy of the computation, and make
the separate labeling of Mf; by "form" irrelevant. The in-
dications length and velocity are therefore dropped in
Table I, and the numerical results are also rounded to four
significant figures, since the greater accuracy is not need-
ed.

III. DISCUSSION

As both the general proofs of Refs. 1—4 and the specif-
ic numerical calculations for Li I in the present work indi-
cate, the argument between advocates of the length and
velocity forms of the Hartree-Fock transition matrix ele-
ments is resolved by the statement: If the conventional
Hartree-Fock form, with local current, is used, neither
form is correct; if a nonlocal current, generated from a lo-
cal field-theoretical photon-electron interaction in a gen-
eralized Hartree-Fock scheme, is used, both forms are
correct and can be shown to lead both formally and nu-
merically to the same result. %'e must reemphasize that
the numerical values of the "form-independent" results
are in general different from both the length and velocity
forms of the conventional HF results. The fact that, in

columns. We would like to emphasize that the equality of
the results of the calculation in the length and velocity
forms is not assumed but numerically demonstrated for
every transition considered. As an illustration, let us look
in more detail at the matrix element entries in the first
row of Table I. The customarily calculated local DF con-
tributions [from the first term on the right-hand side of
Eq. (13)] yield, for the 2si&z~2p&&z transition, to the lim-
it of accuracy of the computation,

m" +"'=3 3643673 (21)

aild
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fotherft vclocltp) fnonIocalI{length)(velocity)
Alp

(length)Transition

TABLE I. Summary of dipole transition calculations for Li I. mf',""g'"' and mf',"." ""'designate reduced dipole matrix elements cal-
culated in the V{X—1) Hartree-Fock approximation using the length and velocity forms for the dipole operator, while Mf desig-

nates the present form-independent result. f" s'"', f'"" "~', and f„,„~ ~ are the corresponding oscillator strengths. All quantities are
given in atomic units.

2$1/2 ~2p1/2
2$1/2 ~2p 3/2

2$1/2 ~sum

2»/2 ~3p1/2
2$1/2 ~3p3/2
2$1/2~sum

2$1/2 ~4p 1/2

2$1/2 ~4p 3/2

2$1/2 ~sum

2$1/2~5p 1/2

2$1/p ~5p3/
2$1/2 ~sum
2p 1/2 ~3d 3/2

2p3/2 ~3d3/2
2p3/2 ~3d 5/2

2p3/2 ~sum

0.0677
0.0677

0.1396
0.1396

0.1645
0.1645

0.1760
0.1760

0.0731
0.0731
0.0731

3.364
4.758

0.1551
0.2193

0.1458
0.2062

0.1106
0.1564

5.182
2.318
6.953

3.430
4.851

0.1368
0, 1934

0.1356
0.1917

0.1037
0, 1467

5.180
2.317
6.950

3.350
4.738

0.1611
0.2277

0.1494
0.2113

0.1131
0.1599

5.178
2.316
6.947

0.255
0.511
0.766

0.001 12
0.002 24
0.003 36

0.001 17
0.002 33
0.003 50

0.00072
0.001 43
0.002 15
0.654
0.0654
0.589
0.654

0.265
0.531
0.796

0.00087
0.001 74
0,002 61

0.001 01
0.00202
0.003 03

0.000 63
0.001 26
0.001 89
0.654
0.0654
0.588
0.654

0.253
0.507
0.760

0.00121
0.00241
0,003 62

0.001 22
0.00245
0.00367

0.000 75
0.001 50
0.002 25
0.653
0.0653
0.588
0.653

0.255'
0.511'
0.762'
0.750'
0.758'
0.001'
0.002'
0.00369'
0.004 88'

0.003 71b

0 004 34'

0.002 29"
0.654'
0.065'
0.588'

0.264'
0.524'
0.753'
0 759'

0.00454'
0.00407'

0.004 16"
0.00386'

0.653'

'Reference 17, Dirac-Hartree-pock.
Reference 18, many-body perturbation theory.

'Reference 19, basis set expansion.
Reference 20, model potential.

'Reference 21, many-body perturbation theory.
~Reference 22, random-phase approximation.

the present case of Li t, the length form is closer to the
form-independent result than is the velocity form presum-
ably has no deeper significance. It could well be an ac-
cident of the particular example considered.

The successful achievement of form independence of
transition matrix elements is required for the theory to be
consistent, but is not ipso facto a guarantee of a ~ood fit to
experiment. In fact, accurate experiments' for the
2s i ~2 ~2@i ~i transition in Li I give a value

(27)

for the oscillator strength, compared to our result (see the
first row, the eighth column of Table I, with an additional
significant figure given below),

(28)

While the inclusion of the nonlocal contributions im-
proves the conventional HF results, this improvement is
not sufficient to lead to agreement with experiment.
Presumably, additional correlations must be taken into ac-
count to improve theoretical results. The advantage of
the present approach is that such additional correlations
can be systematically included in the theory and form in-

dependence is maintained at each successive level of ap-
proxirnation.

The new feature of the present analysis —the appmr-
ance of a nonlocal part to the current which enters the
evaluation of transition matrix elements in the terms con-

taining I'+ ' in Eq. (13)—does not significantly change
the numerical result due to the dominant mf',

" ' term, the
conventional HF result, for the particular case of Lit.
Even though this contribution is small, it is numerically
significant, in view of the accuracy of the calculation. It
can well be much larger, relative to mf;, for different
atoms. Somewhat surprisingly, the form-independent re-

sult does not lie between mf',""s'"' and mg" ""', as has
been on occasion conjectured. ' This again need not be
inevitably so in all cases„and thus no special significance
should be attached to it.

Finally, we would like to reemphasize the difference be-

tween the present approach, which should be called HF
(even though it is not the conventional HF approach), and
the RPA approach. As we said in Sec. II, on cursory view

there are similarities between the equations which arise in
the two approaches. "' ' Indeed, if one considers Feyn-
man diagrams generated by expansions in powers of
the e-e Coulomb interaction, there is a topological
equivalence between corresponding Feynman diagrams in
the two approaches. The distinct origin of the two for-
malisms is made clear in Ref. 3. The HF formalism for
the transition matrix is generated from the two-point
function (the one-particle electron Green's function, G'"),
from which the three-point function for the nonlocal ef-
fective current (irreducible vertex, A) is gotten by inser-
tion of a photon hne in the G"' expansion (in powers of
the e-e Coulomb potential) in all possible ways. This re-
sults in the inhomogeneous equation for the nonlocal ef-
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fective current, given in the dipole approximation in the
present work. The RPA formalism for the transition ma-
trix is generated from the four-point function (the two-
particle electron Green's function, G' '}. The matrix ele-
ment is expressible in terms of the Bethe-Salpeter wave
function defined from O' '. This wave function satisfies
a homogeneous equation. The structures of the kernel ap-
pearing in the homogeneous part of the HF equation for
the effective current and the kernel of the Bethe-Salpeter
equation, leading to the RPA approximation, are very
similar, but not identical. As stated above, the present pa-
per uses the HF rather than the RPA approach.

Although the present work has been limited to the case
of Lit, applications to other one-valence-electron atoms
have been carried out and lead to similar results. Applica-
tions of this method to study transitions in atoms with
more than one valence electron, and to calculate photoion-
ization amplitudes in one-valence-electron atoms are
underway.
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APPENDIX A: RELATION OP FIELD-THEORY
FORLIALISM TO THE COMPUTATIONS

M~(k)={2k) ' ~ A (A 1)

where

p — p r] ri
(A2)

The expressions appearing in (A2) can be translated into
more conventional notation, as follows:

I' i —= &u Iri&&e Ir2&'=&p lri&&riIq&
q r2

(A3)

(A4)

(A5)

The equation satisfied by
~

Ak ) is the dipole equivalent
of that for

I Ak) [Eq {3.44} of Ref. ". "f.also the nonre-
lativistic Eq. (3.38) of Ref. 3],

The first form of (A4) is in a "one-sided, " the second in a
"two-sided" Dirac notation, and the last form is that
given in Eq. (2). The standard Dirac notation is used on
the right-hand side of (A3), i.e.,

The purpose of this appendix is twofold: First, we
"translate" the somewhat abstract notation of Refs. 3 and
4, which is a natural extension of the Dirac bra-ket nota-
tion, into the more familiar language of wave functions in
coordinate space and integro-differential equations;
secondly, we take advantage of the greater structural tran-
sparency of the abstract formalism (as was done in Refs. 3
and 4) to obtain the key equations relevant to the numeri-
cal computations [Eqs. (14)—(17)]. These two activities
will be carried on in tandem.

Equation (2} in the more abstract notation is

(A6)

(A7)

and A,'k' ',X'r'~' are defined in Eqs. (4) and (5), and (3),
respectively. The other symbols appauing in (A6) are de-
fined as follows [cf. Eqs. (3.18) of Ref. 3 and (3.40) and
(341}of Ref. 4]:

(
6 (rl r3)6"'(r2 —r4) V(

I
ri —r2 I ) ti (Il r2}(3' '{r3—r4}V(

I ri —r3 I
)

r2 r4

~ =(~U+QU}QL. —QU(~L+Ql. »
A =HU —HL,

(AS)

(A9)

(A10)

where the subscript U(L) indicates operations in 'the

upper (lower) index space of the one-sided Dirac notation;
H is the DF Hamiltonian [cf. Eqs. (6) and (19)]

(A12)

H =h+VDF, (Al 1)
(A13)

8 is a combination of projection operators, P, Q, and Q
[cf. Eqs. (3.11)and (3.20) of Ref. 4], where

Q=&f Q-. , Q-„= In&&n
I

.
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In (A12)—(A14}, a or j labels electron states (inside or
outside the core, respectively) and n labels positron states.
The completeness of states leads to the identity [Eq.
(3.21), Ref. 4]

and, thus, to the alternative form of R:

& =(PU+QU)li —IU(PI +Qr )=PUII —IUPL, (A16)

where the last, approximate, form arises when positron
states are neglected.

To illustrate the translation procedure, consider (A6) in
the coordinate basis. We have, inserting complete sets of
state on the right-hand side of {A6),

+ r r 3 4, r ~ r 5 6 r k ~

The A, 'k' ' term on the right-hand side of (A17} is given
by (A7), the 1 matrix element by (A8). In order to com-
plete the translation into the forms of M~ which appear
in Eqs. (8) and (9) of Sec. II, we illustrate a part of the
8 /(k —4 ) matrix element in (A17}:

ri PUQL, r3, ~
&ri IP Ir3&&r41QJ Ir2&

r2 k Ao r4 f k —e+ej

Equations (8) or (9) can now be obtained without any dif-
ficulty.

In order to arrive at Eqs. (13)—(17), it is preferable to
carry out our manipulations on the abstract forms, and
translate only our final results into conventional forms.
To obtain new relationships, we imagine expanding to all
orders in +, reordering as suits our convenience, and
resumming the infiiute series of terms. Thus, (A6) in
iterated form is

wf' =0, ~J
wf' =0, (A23)

where a, b refer to core states a,P and positron states. If
we define the functions E +(r), which make their appear-
ance in (13) and (14), in terms of

~

Wf') by'

+r(r, )=—&r, (r.+&—=
(

' wr'), (A24)

r. (rr) &rr(r. =&=(~';)-. (A25)

Equations (20) are just translations of the first of Eqs.
(A23). The various forms, (,,

'
~

Wf'), (~'
~

W '),
(,, ~

~ '), (~~
~

Wf') are merely representations of
~

F f')
in different bases, (coordinate) U-(coordinate)L,
(coordinate)U-(particle)i„etc. We shall take advantage of
the freedom of choosing any basis system which suits our
convenience. In particular, by adding or subtracting zero
[in the form {A23)],as needed, we obtain the identity

orm

Use of (A19) in (Al), with p =f, q =i gives

(form&+(2k} —1/2(~fi
~

g(form))

(A19)

(A20)

~fg 1 q ~II', 1

+ P 0 r)

(Pf'~ = f
i k Ao k A k Po

J

(A21)

Resumming and going over to the ket from the bra form
gives the basic inhomogeneous integro-differential equa-
tion for

~

Wf').

(k —A )
~

Wf') =8+,. +
~

Pf')
J

Equation (13), on the one hand, and Eqs. (14)—(17), on the
other hand, follow from Eqs. (A20) and (A22), respective-
ly, upon translation into conventional notation. %'e vali
next indicate some of the key steps in this process.

Because of the presence of 8 in (A22), it follows im-
mediately that

&form&+{2k) —1/2
]E (

~

g&form&
~

P
a

+&P..~~,"-'~ &. (A27)

If positron states are neglected, ~f,~g and
(A27), written in conventional notation, is%q. (13).

Equation (A26), with positron states neglected, is also

used in (A22). If one successively takes the ( '
~

matrix
element of (A22) and the ~, ) matrix elements of the ad-

joint of (A22), and uses the translation technique elaborat-
ed earlier in this appendix, one quickly obtains Eqs.
(14)—(17).

the use of which in (A20) [see the definitions (A24) and
(25)] leads to
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APPENDIX 8: REDUCTION OF EQUATIONS
TO RADIAL FORM

To aid in the numerical evaluation of the transition ma-
trix element Mf; in Eq. (13), we express the perturbed
core orbitals F +(r) occurring in Eq. (14) in terms of an-
gular momentum eigenstates and evaluate the angular
parts of the integrals analytically. The radial differential
equations resulting from the angular momentum decom-
position of the perturbed orbitals F ~(r},as well as the fi-
nal radial integrals in Eq. (14), can then be evaluated nu-
merically. In carrying out the angular momentum
analysis, we follow closely the corresponding analysis of
the RRPA equations described in Ref. 11. In the para-
graphs below we summarize the results of this analysis,
and write down the radial equations used in our numerical
studies.

To facilitate comparison with previous work on atomic
transition probabilities, we factor the photon polarization
vector ek from the transition matrix element Mf; and
from the local dipole currents A, 'k' '(rl) in Eqs. (4) and
(5). We can then rewrite Eq. (13) as the matrix element of
a nonlocal dipole operator D(rl, r2):

Mf; i (kl——2)'~ ek (D)f; . (81)

The local dipole operators, d'f' '(r) corresponding to
I

Eqs. (4) and (5}are

d(velocity)(r)

d(length)(r)

Equation (13}becomes

(D)f; ——(d' ' ')f;

+g f [u (r)d'" 'F (r)

(82}

(83)

+F + (r)d' ' 'u (r)]d r, (84)

where j;, m;, jf, and nf are angular-momentum quantum
numbers of the initial and final states, and where )M desig-
nates a spherical component of the dipole operator D.
The reduced matrix element satisfies the equation

where the perturbed core orbitals F + (r) satisfy Eq. (14).
Expressing the vector operators D and d in a spherical

basis and employing the Wigner-Eckart theorem, one may
replace Eq. (84) by an equation for the reduced matrix
element (f~(D~ (i & of the dipole operator

(86)

In Eq. (86) the summation index a refers to occupied core subshdls (n,«) where n is the subshell principal quantum
number and « is the relativistic angular-momentum quantum number: « =+(j + —,

'
) for j =(l + —,

'
); l being the or-

bital angular momentum of the core orbital, a. The states
~
~q+ & in Eq. (86) refer to angular momentum components of

the perturbed core orbitals F +(r). Only those components of the perturbed orbital F +(r) which satisfy the angular
momentum selection rules

~ j —1
~ (j» (j +1, and the parity selection rule, l +1» equals an odd integer, contribute to

the sum in (86).
Each of the terms on the right-hand side of Eq. (86) can be expressed as a product of an angular factor and a radial in-

tegral. The angular factors are conveniently written in terms of reduced matrix elements of a normalized spherical har-
monic CLg»(r) =v'4rr/(2I +1)I"Lg»(r):

j +1/2 I.
&[a][b] l t ~(in+4+I»

2 2

(87)

(88)

where nr(x) =1 if x is even, and 0 if x is odd, and where [a]=2j, + 1. We write the length form matrix elements of d as

(a
~

)d'""g'")~ ~b & =Cl(a, b) f [P,(r)Ph(r)+Qn(r)Qh(r)]dr,

and the velocity form of d as

(a
~

(d'"" "")(~b & =Cl(a, b}f [(1—«h+sc, )Q, (r)Ph(r) —(1+«h —«, )P, (r}Qh(r)]dr . (89)

The functions P, (r) and Q, (r) in Eqs. (88) and (89) are
large and small component radial Dirac functions. For
the core orbitals, a, and for the final and initial orbitals, f
and i, the radial functions are solutions to frozen-core ra-
dial DF equations. For the components q+ of the per-
turbed core orbitals F +(r}, the radial functions satisfy
inhomogeneous equations following from Eq. (14).

The radial orbitals P, (r) and Qe(r) are collected into a

two-component radial orbital, R, (r}, and the radial DF
equations are written

(H, + VDF)R, (r) =e,R, (r) . (810)

The term H, is the kinetic energy and nuclear potential
contribution to the radial Dirac Harniltonian and VDF is
the frozen-core Hartree-Pock potential:
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VDFR, (r) =g [a] uo(a, a, r)R, (r)
and the multipole components of the Coulomb potential

+g AL(a, a)ut (a,a, r)R (r)
L

vt {a,b, r) = z t R, (r')Rs(r')dr' .
pgl + (813)

(811)
where we have introduced the exchange angular-
momentum factor

Ct (a,b)
At (a,b)= {812)

In Eq. (813) r( and r & designate the minimum and max-
imum of r and r', respectively.

Before writing down the equations satisfied by the per-
turbed radial functions Rq+(r) it is convenient to intro-
duce one further angular coupling factor:

Ja Jb I.
A (a,b,c,d, L,J)=( —1) 'CL, (a, b)CL (c,d) ' .

Jd Jc

The perturbed orbital equations become

(814)

(Hs+ VHF —e to)R&+(r—)= ——,
'

C&(a,q)C|(i f)u&(i f r)R (r)+g A (a, i q f L, 1)u&(i a, r)Rf(r)

—g —,
' Ct(a, q)C|(Pp)[ul(p ,P, r)+v—t(Pp+, r)]R (r)

p, P

+g g A (a,p, q,p, L, I )vt (p,a, r)R&+(r)
p, P L

+g g ( —1) ~ A(a,p, q, P,L, 1)ut (p ,a, r)Rit(r)—,
p, P L

(815)

(Hs+ VHF e+to—)R& (r)= ——,
' Ci(a, q)Ct(i f)ui(fii, r)R (r)+g ( —1) 'A (a,f q, i,L, 1)uL, (f a, r)R;(r)

L

, C, (a,q)C, (—pp)[v&(p+, p, r)+u, (p p —,r)]R (r)
p, P

+g g A (a,P,q,p, L, I )ut (P,a, r)R& (r)
p, P L

+g g ( —I) r sA (a,p, q, p, L, I )ut (p+,a, r)Rtt(r) .
p, P L

(816)

In Eqs (815) and (816) we set co =ef —e; and we let p+ represent the angular-momentum components of the perturbed
core orbital Fp+(r) The couple. d equations are solved numerically and the solutions are used to evaluate the reduced ma-
trix elements in Eq. (86). For the example of Li I considered in the present paper, the system (815) and (816) consists of
four coupled equattons corresponding to the two angular momenta, trs =1,—2, of the perturbed Is ~~2 core orbital per-
mitted by dipole selection rules.
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