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Complex-rotated Hartree-Fock method and its application to the Be shape resonance
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A complex-coordinate rotation has been applied to the standard Hartree-Fock equations, in order

to form a complex-rotated Hartree-Fock procedure. The resulting complex differential equations

were solved by direct numerical integration. This method was then used to study the position and

width of the 2I' shape resonance in Be . The results were found to be quite independent of the value

of the rotation angle 8 for 8 greater than the value at which the complex pole was uncovered.

I. INTRODUCTION

A recent addition to the calculation methods available
to atomic and molecular theorists is the complex-
coordinate-rotation method. ' s This method, which is
based on the rotation of the electron coordinates into the
complex plane, is now being used in a wide variety of
ways to calculate atomic and molecular resonances. Reso-
nance states are typically described as having a complex

energy

E=Ett +iEt Eg i (I———/2),

where Ett corresponds to the position of the resonance
and Et corresponds to the width, or inverse lifetime, of
the resonance. The purpose of the complex rotation
method is to produce a non-Hermitian Hamiltonian
whose eigenvalues are given by Eq. (1).

The fundamental transformation of the complex rota-
tion methods is„ in the atomic case,

r re'~,

where r is the electron radius. This rotation has two ef-
fects on the calculation of the energy and wave function
of a resonance. The pole corresponding to the resonance
energy is generally thought to be located on a higher sheet
of the Riemann surface where it is "hidden" by the first
sheet. The rotation by Eq. (2) has the effect of shifting
the energy axis in order to "expose" the resonance pole,
allowing it to be calculated. Furthermore, the wave func-
tion associated with the resonance is transformed from an
unbound, non-L -normalizable form to a boundlike, albeit
complex, wave function.

The complex-coordinate-rotation methods has tradi-
tionally been applied to basis-set calculations of one type
or another. Two of the more widely used applications are
to the configuration-interaction approach or to a basis-set
solution of the Hartree-Fock equation. To our
knowledge, no application has been made to the standard
self-consistent form of the Hartree-Fock method, where
the atomic wave function is found by direct numerical in-
tegration of the Hartree-Fock equation.

In this work we apply the complex-coordinate-rotation
transformation to the numerical Hartree-Pock method in
order to produce a general ab initio calculation Inethod

capable of directly solving for atomic resonances. As a
test case, we apply this complex-rotated Hartree-Fock
method to the lowest I' shape resonance in Be

II. THEORY

We begin by performing the rotation of r into the com-
plex plane upon the nonrelativistic atomic Harniltonian

N
4 =g ( ——,

'
V; Z/r;)+ g—1/r;

i=1 /, J
(i &j)

producing

4 (8)=g( ——,
' V;e ' e' —Z/r, )+ g e 'elrj .

i=1 &sJ

(& &J)

(4)

Notice that while the kinetic energy term is rotated by
e ', the potential energy terms are rotatai by e ' . We
now wish to use the Hartree-Pock method to solve the
complex energy eigenvalue equation formed by this opera-
tor

P (8)g(8)= (Ett +iEt )f(8) .

The complex eigenvalue of this equation define the ener-

gies and widths of atomic resonances and the complex
eigenfunctions are L . The Hartree-Fock equation is de-

rived in the ordinary sense by setting to zero the varia-

tions of the energy with respect to the atomic orbitals.

The energy functional to be varied is given by the expecta-

tion value of the Hamiltonian with respect to the atomic

wave function g, plus Langrange multiplier terms which

preserve orthonormality. A difficulty arises in the rotated
system due to the non-Hermitian nature of A (8). That
is, the eigenfunctions of M(8) form a biorthogonal set'

instead of the normal simpler orthonormal set. This leads

to left and right eigenvectors and a complication in the

description of the expectation value of the energy. We

follow the standard procedure in this case ' and define

our energy functional as
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W=(it(8)
~
A (8}

~ y(8})+/A,,(8)(y, (8)
~ y, (8))

+ y &. (8)&y.(8) ~y (8)& . (6)

Here the complex part of P that is due to the rotation of r
is not complex conjugated when the bra state is formed
but the normally complex parts of the wave function,
such as in the angular factors, are treated in the standard
fashion. The )i,'s in Eq. (6) are the complex equivalents of
the Lagrange multipliers designed to preserve orthonor-
mality. We have assumed here that the total wave func-
tion g is composed of a Slater determinant of spin orbitals
Pa which can be separated into radial and angular com-
ponents,

Pa = P„l(r—) Yr'n, (8,$)g~

+(XR, +iXla )+(eR, +iera )(PRa+lpla )

+ g (eR b+leI b }(PRb+lplb )
b

(b+u)
(l~ ——I )

(8)

L(8) i;e d;e 2Z 2;e 1(1+1)
dry r r2

Y, and X, in Eq. (8) stand for the direct and exchange
potentials associated with the orbital a. PR, and Pz, are
the real and imaginary parts of the radial wave function
and eR and eI are the real and imaginary parts of the en-

ergy parameters that come from the Lagrange multi-
pliers. The potential tnms that constitute Y, and X, are
found by directly rotating, with rare'e, their standard
real form. For example, the direct potential Y, is com-
posed of terms of the form YK(a,b) where

K

YK(a,b)=r K l p. (rl)pb(rl)dri . (10)
0 K+1

This becomes, upon rotation,

YR(a, b)+i YI (a,b)

K

(PRa+l pla )
gg K+1

X (PRb +lPIb )drl e'

Similar rotations are performed on the Y (a,b)Pb terms
which coinprise X,. The inclusion of the Lagrange multi-

Upon variation of the energy functional W with respect to
P„ the complex differential equation for the radial wave
function P, becomes

L(8)(PR, +ipr, )

-i8
( YRa+iYla )(PRa+iPra )

pliers forces orthonormality on our complex orbitals
under the form

the rotation to

(8} ae in ee Kr co—see iKr sine— (14)

produces no difficulties because the exp[ Kr co—s(8)] fac-
tor forces the same asymptotic behavior as does
exp( —Kr). That of course implies that 8~ m/2, a restric-
tion we must observe rigorously. On the other hand, the
general asymptotic form of a resonance state can be writ-
ten

e iKryr (15)

where K is a complex number [ ~

K
~
exp( iP)). —Such a

state has an energy which is given by Eq. (1). The wave
function of Eq. (15) is exponentially divergent at large r
(P & 0), but rotation by an angle 8 produces the asymptot-
ic form

ikre'(~e
(16)

M

which is L for 8&P. Therefore, we require that, for
8 & p, the real and imaginary parts of these now bound or-
bitals approach zero as r~0 and r~ oo.

If we multiply Eq. (8} through by exp(2i8) we can
rewrite it as (dropping the subscript a)

d2
(PR+iPI)=(FR+iFI)(PR+ipl)+(GR+iGI), (17)

dr

thus producing a complex, inhomogeneous differential
equation for P. The differential equation which is solved
by a standard Hartree-Fock program (we follow here the
multiconfiguration Hartree-Fock program of Fischer )

has the form

d P=FP+G .
dl'

(18)

The general solution of Eq. (18) is P=P;„+aph„where
P;„ is any solution to the inhomogeneous equation and
Ph, is a solution of Eq. (16) when G=—0. Unfortunately,
there are no numerical integration techniques which func-
tion properly over the entire range of r. Consequently,
numerical integration of Eq. (18) must be broken into two
parts, one over the region closer to the origin, and the oth-
er encompassing the region of large r. These numerical
integrations are performed on a set of grid points which
define r. The grid point J where the two integration rou-
tines meet is determined by the form of the direct poten-
tial. b The outward integration, from r =0 to r =J, is per-
formed with a numerical technique called the shooting
method, and the integration in the large-r region is per-

5~ —— (PR, +iPI, )(PRb+iPIb)e' dr .
0

(12)

The boundary conditions imposed on the wave func-
tions which are solutions of Eq. (8) are similar to those
imposed by standard Hartree-Fock (HF) theory. For
bound-state orbitals, whose general form is

pa„r"e
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6
r2 Pr =I'~Pr++sPz+ Gr (19b)

Since Eqs. (19) are obviously coupled, the two real in-
tegrations must be performed simultaneously. If we
rewrite Eqs. (19) in matrix form

h

$2 PR FR +I PR Gii

yr' Pr Fr F~ Pr GI+, (20)

we see that, by setting G=—0, the homogeneous form of
the differential equations is

(21a)

PI ~RPI ++IPSE
l"

(21b)

One therefore performs the two real integrations of Eqs.
(21) for the homogeneous solution and of Eqs. (19) for the
inhomogeneous solution, and the complex coefficient a is
found by matching the complex wave functions at the
point J+1. The new orbital P' is then normalized by

formed using a different numerical technique, the refined
direct method. This latter method uses as an initial point
the value of J, and satisfies the boundary condition at in-

finity by forcing P =0 at some point M. These two solu-
tions are forced to match at the point J+1 (recall that
they are already equal at J), which allows us to solve for
o;. This procedure produces the new HF orbital P',

%e use basically these same techniques to integrate the
complex form of the Hartree-Fock equation (17). Since
we wish to perform only real numerical integrations, Eq.
(17}must first be split up into separate equations for Pa
and Pz,

d2
PR ~8PR FIPI +GR (19a}

8l'

and

finding the coefficients CR and CI under the condition

1=I (C~+iCI) (Pa+i') e' dr .

III. CALCULATION

As a test of this complex-coordinate-rotated Hartree-
Fock method, we studied the lowest P shape resonance in
electron-beryllium scattering. We performed a completely
self-consistent, rotated HF calculation on this system by
allowing each orbital to vary for some given 8. The calcu-
lation was then repeated at different 8's to ascertain the 8
dependence of the solutions. The calculation was first
performed on the isoelectronic relative of Be, neutral bo-
ron. Boron is of course a stable atom with naturally
bound orbitals, and corresponding real eigenvalues. This
calculation converged quite rapidly and produced a total
energy of Eii ———24.52911 a.u. and Ei ———5.510X10
a.u. for 8=0.35. The result obtained by an unrotated HF
calculation, to which our method should be equal, was
E= —24.52906 a.u. We therefore have an overall error
in the calculation of order 10 a.u. The energy of the ro-
tated system was found to be independent of 8 to roughly
the same order, i.e., to about 10 a.u.

We move now to the resonance problem of the berylli-
um negative ion. Again, a fully self-consistent calculation
was performed where all the orbitals were allowed to vary,
subject to the orthonormality restrictions. As starting
values for the orbitals, rotated Roothaan-Hartree-Fock
orbitals were used for the core ls and 2s wave functions
and a rotated screened hydrogenic orbital (with Z,ff = 1.0)
was used for the resonance p wave function. As in the
neutral case, the complex energy turned out to be indepen-
dent of 8 to order 10 a.u. This is a somewhat sur-

prising result that we discuss further below. The results
obtained for the complex energy range from Eit
= —14.547 77 a.u. and EI —9.394)& 10—— a.u. for
8=0.28 to Eii ———14.547 78 a.u. and Ei ———9.446
)&10 a.u. for 8=0.49. The energy obtained from a HF
calculation for the neutral beryllium atom was
—14.57306 a.u. giving a value of 0.025 a.u. for the ener-

TABLE I. Calculations on the lowest I' shape resonance of Be

Calculation

Present work

McNutt and McCurdy'

Rescigno et al. '

Hunt and Moiseiwitsch'
Donnely and Simons

'Reference 10.
"Reference 11.
'Reference 12.
~Reference 13.

Method

Complex-rotated
Hartree-Fock

Complex-rotated
self-consistent field
Slater basis
Static exchange,
complex coordinates
Local potential model
Second-order electron
propagator

Eq (a.u. )

0.025

0.025

0.022
0.021

I (a.u. )

0.018

0.019

0.008
0.036
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gy of the resonance state above the ground state of berylli-
um. There is no experimental data for this resonance at
present, but many theoretical calculations exist. ' ' Re-
sults obtained in these other calculations were compared
to our results in Table I. Our values seem to be in quite
good agreement with those of McNutt and McCurdy. '

The lack of significant 8 dependence of our results is
quite interesting. In most other complex rotation calcula-
tions, the 8 dependence of the energy is quite pronounced.
In cases in which a strong 8 dependence is observed, the
energy of the resonance is determined from a 8 diagram
by finding a point, where E(8}seems to stable. These di-
agrams, which are constructed by plotting the complex
energy as a function of 8, can be quite bizarre in appear-
ance. ' It has been suggested to us' that the 8-
independent result is due to the fact that we have numeri-
cally integrated the HF equations. It was hypothesized
some time ago that an exact resonance wave function can
be represented by a power series in re' whose coefficients
are independent of 8 for 8~P.' The supposition is then
that our numerical technique correctly embodies this 8
dependence into our rotated wave function. Preliminary
examination of this conjecture proved inconclusive. If

this conjecture is true, it would be powerful argument for
using this form of the complex-coordinate rotation rather
than a basis-set approach. We are hopeful that future
work in this area will clear up this point.

IV. CONCLUSION

%e have developed a calculation method which is the
complex-rotation form of the Hartree-Pock method. We
have solved the Hartree-Fock equation in the rotated
space in the standard way, that is by direct integration of
the differential equation. At this point, the calculation
has only been developed for single-configuration wave
functions, which restricts our analysis to shape resonances
only. The obvious next step is a multiconfiguration form
which will allow configuration-interaction effects, such as
Feshbach resonances, to be examined. The success of the
calculation in the Be case is encouraging enough to
proceed to the more general case.
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