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The purpose of this paper is to obtain a Lie algebra with the property that suitable linear com-
binations of its basis operators are ladder operators for the quantum number I in the eigenkets

~

nlm ) of the nourelativistic Coulomb problem. By analogy with the way in which the Pauli-Lenz
operator A is constructed from the classical Laplace-Runge-Lenz vector A„we deduce a new Her-
mitian vector operator 8 as a quantum-mechanical analog of a conserved classical vector 8, which
is orthogonal to A, and the orbital angular momentum L, and has the property B,=A, . Apart
from a standard modification, 8~8, as A~O. %e show that the combination A+i8 provides
abstract ladder operators for the quantum numbers I, and I and m, and we calculate the coefficients
for these transformations. The operators L and 8 are a basis for a Lie algebra which is the same as
that of L and A, namely, O(4). The Hermitian operators H, B„and I., are a set of commuting
operators and we determine the corresponding eigenvalues and eigenkets. Finally we show that the
ten operators A, 8 (both suitably modified), L, and (A' L + 4

)' 2 can be combined to form a Her-

mitian basis for a Lie algebra, the de Sitter algebra O(3,2).

I. INTRODUCTION

It is well known that the classical dynamics of a parti-
cle in a central potential admits constants of the motion
additional to the energy E and the angular momentum
L.' If the potential allows periodic motion then there
exists a conserved vector which is an algebraic function of
the position and momentum vectors r and p. A familiar
example is the nonrelativistic Coulomb problem, for
which the conserved vector is

A, =(Mk) 'LXp+r 'r .

where M is the mass of the particle and k is the constant
1n F=—kT f.

This so-called Laplace-Runge-Lenz vector provides a
simple solution for the classical motion: the eccentricity
of the orbit is equal to A, and the radius vector to the
aphelion of the orbit is parallel to A, . Of course, the ex-
istence of the conserved vectors L and A, is related to the
symmetry inherent in the Coulomb problem and, in fact,
the six quantities L and [Mk /2(

~

E
~

)]' A, are genera-
tors of a symmetry group. If E&0 this group is iso-
morphic to the Lie group SO(4)—the orthogonal group of
rotations in four dimensions.

The quantum-mechanical version of the nonrelativistic
Coulomb problem can be treated in a similar manner by
introducing a Hermitian vector operator which is a
quantum-mechanical analog of (1), namely, the Pauli-
I.enz vector:

A.=( 2Ma fi zH) —'~z (LXp —p)&L)+r 'r
2

(2)

where H =(2M) '(p —2irt a 'r ') and a =irt /Mk is
the Bohr radius if k =e (4treo) ' Here and in wh. at fol-

lows it is assumed that bound states are being considered.
Use of the two constants of the motion L and A provides
a derivation of the Bohr formula for E by general algebra-
ic methods (Pauli ). As in the classical case L and A
generate a symmetry group which is isomorphic to
SO(4)."

An important property of these generators is that they
can be used to construct ladder operators for certain ener-

gy eigenkets. For example, if
~
Earn) is a ket for the

commuting operators H, A„L, then the ladder operators
for p and m consist of appropriate linear combinations of
L and A. These operators map

~
Epm ) onto adjacent

kets such as
~

Ep +1, ttt+I) [see Eqs. (19) and (20)
below]; thus, starting with any one of these kets it is possi-
ble to reach all of them by using the ladder operators.
There are many other examples of ladder operators which
consist of linear combinations of the generators of a
group, and the construction and properties of these opera-
tors have been the subject of numerous studies (see, for ex-
ample, Englefield" and Wybourne' and the references
therein).

However, for the kets
~

Elm ) of the commuting opera-
tors H, L, L, a linear combination of generators of
SO(4) cannot, in general, map

~

Elm ) onto a ket with l
changed by +1. Instead an indirect sequence of transfor-
mations represented by a nonlinear function of L; and A;
must be used for this purpose (Sec. II). This contrasts
with the ladder operators L+ L„+iL„ for m, ——with the
ladder operators for the energy eigenvalue and with the
examples referred to above.

These remarks suggest that the theory of ladder opera-
tors for the quantum number l of the kets

~

Elm ) for the
Coulomb problem is incomplete. The present paper is in-
tended to remedy this situation: we show that by consid-
ering additional operators to the generators of SO(4) one
can obtain ladder operators for l. In Sec. II we summa-
rize some useful properties of the Pauli-Lenz vector A.
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Then in Sec. III we derive a new Hermitian vector opera-
tor 8 which in linear combination with A yields ladder
operators for I, and I and m. The coefficients for these
transformations are calculated. In Sec. IV it is shown
that L and 8 are a basis for the Lie algebra O(4). The
operators H,B„L,are a set of commuting operators and
we determine the corresponding eigenvalues and eigenkets.
The enlarged set of ten operators L, A, B, and
(A L + —,')'~ can be combined to form a Hermitian
basis for a Lie algebra. This is found to be the de Sitter
algebra O(3,2) (Sec. V).

Use of Eqs. (5), (10), and (11) shows that the coefficient
ai must satisfy the finite-difference equation

(21 +3)a(~, —(21 —1)ai =1 .

This can be rewritten as

[4(l + 1) —1]ar+ i
—(4/ —1)ai ——21 +1,

from which it is obvious that (41 —1)ar =I n—, where
n is independent of / but otherwise is arbitrary. Thus

II. PROPERTIES OF THE PAUI. I-LENZ VECTOR

1/2
n —I

Q( =l
41 —1

(13)

We give a brief review of some well-known properties
of the Pau1i-Lenz vector which are of use in this paper.

The commutators

[L;,LJ ]=i k&tpLp,

[L;,AJ ]=i kerp Ak,

(3)

[A;,Ai]=i% 'e~jkLk,

sho~ that the Hermitian operators I. and A are a basis
for the Lie algebra O(4); the corresponding symmetry
group is SO(4). The Casimir operators

Ci l
Elm & = (n —1)

l
Elm & .

eigenvaluesyieldEquations (8) and (14)
E=—(2MaiA' in )

The operators H, A„L, are also a commuting set with
kets

l
npm &. These can be expanded:

I

The possible values of n can be calculated as in Bohm. '~

Alternatively they may be obtained from the coefficients
of the ladder operators for I which are derived in this pa-
per: from Eqs. (37) and (39) below it is clear that for
physical eigenkets I must have a maximum value of n —1.
Thus n = 1,2, 3, . . .. From Eqs. (6), (10), (11),and (13)

Ci ——A' L +A (6) l npm & = QD, l
nlm & .

I
(15)

C2 ——L A

can also be written

Ci ———(2Ma R H) ' —1

2 ——0.

From (14) and (15)
7

C, l npm & =(n —1}
l npm & .

Define8

X+-= —,'(A+iri 'L)
(9)

and

(16)

(17)

From Eq. (4), A is a vector operator and according to
the VAgner-Eckart theorem

A+
l
Elm &=+[(I+m)(/+m —1)]'r ai l E,l —l, m+1&

+ [(/+m +1)(/+m +2)]'i

)&ar+ i l E,/+ l,m+1 &,

X+ ——X„++i'+, X+ ——X„+i'
Then from the commutators

[H, X+ ]=[H,x+ ]=0,
e-'[L„X++]=[A„x++]=+x++,

'[L„X+]=—[A„X+]=+X+,
(18)

A, l
Elm &= (I rn )'r ar l

—E I —l,m &

—[(/+ 1) —m ]' ar+, l
E,I + 1,m &, ( 1 I)

where A+ ——A, +iA„and a& ———[/(21 + 1)]
X (E,/ —1llA l lE, /&. Here and in what follows the kets
are chosen in such a way that

it follows that X++ and X+ are ladder operators for p and
m in the kets

l npm &. The coefficients for these transfor-
mations follow from expectation values such as

(x+x+
& =((x+)'—(x,+)'+x,+ &

= —,
' [n2 —(m+p+1) ],

where in the last step (X+) = —,Ci and Eq. (16}have been
used. Thus

(E,/+ 1
l lA l lE,I &

=[(2/+1)~(2/+3}]'"(E/IIA IIE*I+1&

This choice is the same as that of Bohm'3 but differs from
that of Biedenharn and Louck. '

X+
l
npm & = —,[n —(m +p+1) ]'i

l n,p+ l, m+1& (19)

X+
l
npm & = —,

'
[n —(m —p+1) ]'

l
n,p+ l, m+1 & .
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Equations (19) and (20) can also be obtained by using the
theory of the coupling of two angular momenta. '

It is apparent that to transforin the ket
~

nlm ) into a
neighboring ket such as

~
n, l + l, m ) by using the genera-

tors of SO(4), one must apply a nonlinear function of
these generators, for example, L™+1A+L'+ [see Eqs.
(10) and (4S)]. This procedure differs from the usual
ladder operation such as that for m and p in Eqs. (19) and
(20) or the eigenvalue I of the kets

~

nlm ) for the three-
dimensional isotropic harmonic oscillator.

III. LADDER OPERATORS FOR I

A, ~S,= — 1+ L .2L E
Mk

Equation (21) can be written explicitly:

Bc= —r)& L+ pL
1 1, 1

r Mk I. (23}

{L»j I =~iikBk

A straightforward though tedious calculation yields the
Poisson brackets

8, =(Ap, —A„,O) . (21)

It has been known since the work of Fock and Barg-
mann that if a classical system possesses constants of the
motion whose Poisson brackets define a Lie algebra, it is
possible, at least for the simplest systems, to find
quantum-mechanical operators whose commutation
brackets serve the same purpose. Furthermore, as the ex-
ample of the isotropic harmonic oscillator illustrates,
linear combinations of these operators should yield ladder
operators.

For our purpose it is instructive to compare the
Coulomb problem and the three-dimensional isotropic
harmonic oscillator. The classical dynamics of each sys-
tem possesses both SO(4) and SU(3) symmetry: the gen-
erators of SO(4) are the six conserved quantities L and a
Laplace-Runge-Lenz vector A„whereas the generators of
SU(3) are the eight conserved quantities L and a sym-
metric, traceless second-rank tensor T~i (Fradkin ). The
tensor Ti for the classical Coulomb problem is rather
complicated and therefore the quantum-mechanical treat-
ment employs the operator analogs of L and A, . For the
oscillator the opposite is true and hence for the quantum-
mechanical oscillator it is conventional to use L and
TJ.' ' In the classical dynamics A, specifies a single
symmetry axis of the elliptical orbit for the Coulomb
problem, whereas for the oscillator Ti specifies (via its
eigenvectors) the two orthogonal symmetry axes of the el-
liptical orbit. ' In the quantum theory of the oscillator a
suitable linear combination of the generators of SU(3) (the
quadrupole tensor operator) yields ladder operators for I,
and I and m in the basis

~
nlm) ' however, no linear

combination of the generators of SO(4) will yield ladder
operators for I in the Coulomb basis

~

nlm ).
This comparison suggests that for the Coulomb prob-

lem we introduce a vector constant of the motion which is
orthogonal to both the Laplace-Runge-Lenz vector Eq. (1)
and the angular momentum vector. %'ith cylindrical
coordinates such that L=(O, O,L, ), Eq. (1) can be written
A, =(A„A~,O) where A„=1—(L /Mk)r ' and A~
= (L /k)r Thus we .consider the conserved vector

IB &Bi I =e&ikLk &

where 8'= [—Mk2/(2E)]'~28, and E ~ 0. Thus for
bounded motion L and 8' are generators of a symmetry
group SO(4).

Although in the classical problem 8, provides the same
information as A„we shall show that some useful new
quantum-mechanical operators can be obtained from 8, .
From Eq. (23) we construct an abstract Hermitian opera-
tor

8= —,'[FG(L )+G(L )Ft], (24)

where

F=(—2Ma A' H} '~ —rXL+ pLr R2
(2S)

G is a Hermitian operator whose functional dependence
on L is determined below [Eq. (44}], and a =i}i /Mk.
The operator ( H) ' is i—ntroduced in Eq. (2S) for the
same reason that it is included in the Pauli-Lenz vector
Eq. (2), namely, to obtain operators which are a basis for a
Lie algebra (Sec. IV). For the Pauli-Lenz vector the clas-
sical hmit of ( —2Ma A H)' A is A„' to obtain a clas-
sical limit for ( —2Ma iii H)'~iB equal to 8, will re-
quire

G(I.')-(L')-'" (26)

as iii~0. [The expression we derive for G does have this
limit —see Eq. (44).] The operator 8 is not a unique
quantum-mechanical analog of the classical vector 8, be-
cause L does not commute with r)(L and p. However,
the form Eq. (24) is sufficient for our purposes We not. e
that the operators A and 8 are related: use of the identi-

ty F= AX L shows that Eq. (24) can also be written

8= —,[(A XL)G(L') —G(L')(L X A)] .

It is straightforward to show that [H,F]=0. Using
this and the relations LXr= —r &( I +2iAx and
[L,p] =2ifi(p X L—imp), one obtains F =F 2ifiA-
Thus Eq. (24) can be written

8=—,
' [FG(L }+G(L )F—2iA'G(L )A] .

Clearly [H,B]=0.
We now consider the effect of the abstract operators F

and 8 on the kets
~

nlm ). For the choice of kets implicit
in Eq. (12) it can be shown that
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and

F+
~

nlm }= +i'(/+1)[(1+m)(1+m —1)]'~ a&
~
n, l —l,m+1}

+i%/[(/+m +1)(1+m +2)]'~2o&+&
~
n, l + i,m+1}, (28)

F,
~

nlm ) =imari(/+1)(/ m—)'~ a&
~
n, l —l, m }+ifi/[(/+1) —m ]' ai+& ~

n, 1+1,m ), (29)

where F+ F„——+iF~ and ai is given by Eq. (13). The proof of Eqs. (28) and (29) is given in the Appendix. Using Eqs.
(27), (10), (11), (28), and (29), we find

B+
/

nlm }= +
z ii}i[(/+1)Gi+(/ —1)GI i][(1+m)(/+m —1)]'~ ai J n, l —1,m+1}

+ ,'iA—[(/+2)Gi+i+/Gi][(/+m +1)(/+m+2)]' ai+& ~
n, l+ 1,m+1}

and

Bg
~

nlm )= —,
' ii}i[(/+1)Gi+(1—1)Gi i](12—mi)'~~a(

( n, l —l, m }

+ —,
' iA'[(/+2)Gi+&+/Gi][(/+1) m—]'~ ai+i

~
n, l+ l, m },

where Gi is the eigenvalue in

G(L )
~

nlm ) =Gi
~

nlm ) .

If Gi satisfies the finite-difference equation

(/+1)Gi+(/ —1)Gi i ——2'/1

Eqs. (30) and (31}become

B+
~

nlm }=+i[(1+m)(/+m —1)]' ai
~
n, l —1,m+1}+i[(/+m +1)(/+m+2)]' ai+&

~
n, !+1,m+1},

(32)

(33)

(34)

B,
~

n/m }=i(/ —m )' ai ( n, / —l, m }+i[(1+1) m]—' ai+&
~
n, /+ l, m } .

Now define the abstract operator

C= —(A+iB) .
l

2

Then Eqs. (10), (11), (13), (34), and (35) yield
' 1/2

(35)

(36)

[n (1+1) ]—(/+m + l)(1+m +2)
(21 + 1)(2/+ 3)

1/2

~
n, 1+1,m+1}, (37)

(n 1)(I +m——1)(1 +m )

(21 —1)(2/ +1) ~
n, / —l,m+1), (38)

in, / —l, m) .

[n —(/+1) ](/+m +1)(l—m+1)
(2/+1)(21+3)

~'

(21 —1)(21+1)

' 1/2

i
n, /+ l, m } (39)

(40)

Thus we have shown that the combination, Eq. (36), of
the Pauli-Lenz operator and the operator defined by Eq.
(24} yields ladder operators for 1, and 1 and m, provided
the operator G(L2) in Eq. (24) has eigenvalues which
satisfy Eq. (33). Now the solution to Eq. (33}is

P e i&S—1/2) (43)

which provides an explicit representation for the parity
operator

G, =2iii-'[2/+1+{ —1}']-' .
Therefore consider the Hermitian operator

(g—2L2+ & )1/2

(41)

(42)

and which also occurs in the scattering operator for the
Coulomb problem. ' From Eqs. (32), (41), (42), and (43)
we find the nonsingular operator

G( L') =[A'(S+ —,
' P)] (44)



1654 O. L. dc LANGE AND R. E. RAAB 34

We note that the classical limit of Eq. (44) yields Eq,
(26). In what follows Eq. (44) is assumed.

q =n —l, n —2, . . . , —(n —1)

IV. ALGEBRA OF THE OPERATORS L and 8

From Eqs. (34), (35), (13),and

m =n —lq I

—1 n —lq I

—», —n+ lq I+I;
or, equivalently, the same formulas with m and q inter-
changed.

For the ket
~

n, O, n —1) Eqs. (49) and (50) yield
L+

~

nlm) =~[(1+m)(1+m+1)]'~'~ nl, m+»,
it follows that

I'+
~
n, O, n —1)= Y'~

~
n, O, n —1)=0 . (51)

[L;,B,] ~

nlm ) =iAe; „BI,
~

nlm )

[B;,BJ] ~

nlm ) =i' 'ejkLk
~

nlm ) .

The action of these commutators on a different basis can
be determined by superposition: for example, for the kets

~
npm ) of the operators H, A„L, we use the expansion

Eq. (15). Thus

From Eqs. (34), (13), and (45) it is evident that a normal-
ized solution to Eq. (51) is

~

n, l =n —l, m =n —1).
Thus all kets

~
nqm ) can be obtained from the single ket

~

n, l =n —l, m =n —1) by applying the ladder operators
of Eqs. (49) and (50) and using Eqs. (34), (35), and (45). In
the coordinate representation the wave functions calculat-
ed in this manner are the Coulomb wave functions in par-
abolic coordinates. [We note that Eq. (12) is implicit in
these calculations. ] As is well known, these wave func-
tions span a representation space of the Lie group SO(4).

[L;,BJ]=i tie,jkBk (46) V. ALGEBRA OF THE OPERATORS
L, A, B, ANDS

[B;,BJ ]=i R 'e;JkLI, , (47)

where, as in the theory of the Pauli-Lenz vector, it is im-
plicit that the equations act on a vector space of kets
which is an energy eigenspace. [This restriction is re-

quired by the inclusion of the operator ( —H) '~ in the
definitions Eq. (2) and Eq. (24). In our calculations bound
states are assumed. ] This method of determining commu-
tation relations is familiar: it occurs, for example, in the
theory of a Lie algebra associated with spherical harmon-
ics" and in a study of the symmetry algebra associated
with a charged particle in a magnetic field. We use the
same method in Sec. V.

Equation (46) establishes that 8 is a vector operator
while Eqs. (3), (46), and (47) show that the Hermitian
operators L and 8 are a basis for the Lie algebra O(4).
This is an invariance algebra because [H, L]= [H,B]=0.
The Casimir operators are C~ ——A l. +8 and
Cz ——L 8=8 L. From Eqs. (34), (35), (13), and (45) it
can be shown that C] has eigenvalues n —1 while C2 ——0.
Clearly the algebra of L and 8 is the same as that of L
and A (see Sec. II).

The Hermitian operators H, B„I., are a commuting set
with kets

~
nqm). If we define

and

8'=KB,

(2Ma fi H)S(S——1)

(2Ma i' H)(S ——,
'

) +1
(54)

It is of interest to inquire whether some larger set of
operators which includes L, A, and 8 can be a basis for a
Lie algebra. From Eqs. (37)—(40) and (45) one finds by
using the same method as in Sec. IV that the set of nine
operators C+, C„C+, C„L+, and I., does not close
under commutation.

We recall that the definition of the Pauli-Lenz vector
Eq. (2) includes the operator ( —H) '~i to ensure that A
and L are a basis for the algebra O(4). With the same
modification in the definition of 8 [see Eqs. (24) and
(25)], 8 and L are also a basis for the algebra O(4). In the
present case to obtain a set of operators which close under
commutation we proceed as follows.

First we modify the definitions of A and B. Let

(52)

Y-+= —,'(8+iri 'L), (48) and A and 8 are given by Eqs. (2) and (24). Then for the
operator

and F+ ——F„++iF~+, F+ ——F„+iFz, then as in the cal-
culations leading to Eqs. (19) and (20), we find the ladder
operators for q and m:

F+
~
nqm ) = —,

'
[n —(m +q+1)']'~'

~
n, q+ l, m+1),

1'+
~ nqm) = —,'[n —(m —q+1) ]'

~

n, q+l, m+1) .

(50)

From the coefficients in Eqs. (49) and (50) we obtain the
elgenUalues

D=i(A'+i 8')

the results of Sec. III yield

D+
~

nlm ) =+ [(1+m +1)(1+m +2)]'~

X
i
n, 1+1,m+1),

D+
i
nlm ) =+ [(1+m —1)(1+m)]'i

X
i
n, l —l,m+1),

D,
~

nlm ) =[(1+m +1)(1—m +1)]'
~
n, l+ l, m ),

(55)

(56)

(57)

(58)
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D,
~

nlm ) =[(I—m)(1+m)]'~
~
n, l —l, m) . (59) VI. DISCUSSION

[L;,LJ ]=ifiegjkLk,

[L;, U ]=iRe, k Uk,

[L;,VJ ]=ihey, Vk,

[L;,S]=0,
[U;, Ui]= i' '—fiji,Lk,

[ U„Vi]= —i5;JS,

[U S]= iV—

[ V;, VJ]= iR '—e,jkLk,

[ V;,S]=iU; .

(60)

(61)

(63)

(64)

(65)

(67)

(68)

Secondly we include in our set of operators the operator
S [Eq. (42)]. Thus we consider the ten operators D+, D„
D+, D„ I.+, L„and 5, and change to the Hermitian
basis U= ——,(D+D ), V=(i/2)(D —D ), L, and S.
The 45 commutators which can be formed from these
operators can be evaluated using Eqs. (45) and (56)—(59).
The results are

For the bound states of the nonrelativistic Coulomb
problem we have introduced a new abstract operator B
which has the following properties:

(i) 8 is a conserved, Hermitian, vector operator;
(ii) L and 8 are a basis for an invariance algebra, the

Lie algebra O(4):
(iii) H, B„L, are a set of commuting operators: in

Sec. IV the eigenvalues of 8, and L, are determined using
suitable ladder operators;

(iv) the combination A+iB (where A is the Pauli-Lenz
vector operator) provides ladder operators for the quan-
tum numbers I, and I and m of the eigenkets

~

nIm );
(v) 8 is a (nonunique) operator corresponding to a con-

served classical vector which is analogous to the Laplace-
Runge-Lenz vector;

(vi) the ten operators A', 8' (modified forms of A and

8), L, and (iri L + —,)'~ can be linearly combined to
yield a Hermitian basis for an invariance algebra, the de
Sitter algebra O(3,2);

(vii) the classical limit of fiA is a vector with magni-
tude L and directed to the aphelion of the elliptical orbit;
the classical limit of fiB' is orthogonal to this and also has
magnitude L(specifically, A'A' XA'8'~ —L L).

APPENDIX

These are the same as the commutators which defme the
Lie algebra O(3,2) (see, for example, Englefield").

From Eqs. (52) and (54) for the modified Pauli-Lenz
vector A' and Eq. (1) for the Laplace-Runge-Lenz vector

A„we note that the classical limit of fiA' is L A„a vec-
tor with magnitude L and pointing to the aphelion of the
orbit. Similarly, the classical limit of RB is LB, [see
Eqs. (53), (54), and (23)] and A'A' XA'8'~ LL. —

From the definition Eq. (25) and the canonical commu-
tation relations [p;,qJ ]= i A5,J, [p;,pj ]=—[q;,qj ]=0, one
finds

[L;,FJ ]=itis(JkFk . (Al)

Also PFJP '= FJ where P—is the parity operator Thus.
F is a proper vector operator and the Wigner-Eckart
theorem yields

and

F+
~

nlm ) =+[(1+m)(1+m —1)]'~ ci
~
n, l —l,m+1)+[(I+m + l)(1+m +2)]' di i

n, 1+1, +m1)

F,
(
nlm) =(I —m )' ci in I —l, m) —[(I+1) —m ]' di

J
n I+l,m) .

(A2)

(A3)

We determine the coefficients

ci ———[1(21+ 1)] ' (n, I —1/ /F/ /n, I )

[L,A+iFg]= fP(A+iFg)(2+2fi 'L g)

+2ifiF(1 Ag Lg )—. —

The second term on the right is zero if

g =g„=2' '[1+(—1)I'2S] (A6)

as follows.
Let g be some function of L . Then

[L,Fg]= 2iRAL g, —

where A is the Pauli-Lenz vector Eq. (2). Also

[L,A] = 2A A+ 2i A'F .

(A4)

where p =0 or 1 and S is given by Eq. (42). "fhen

[L,A+i Fg&]=Pi (A+i Fg&)[1+(—1)&2S] . (A7)

Also, from Eqs. (4) and (Al),

So [L„Ai+iFJgq] =i fir,jk(Ak+iFkgp ) . (AS)
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From Eqs. (A7) and (AS) it is clear that A++iF+g&
transforms

~

nlm ) into
~

n, 1+(—I)",m+ I ), while
A, +tF,g„ transforms

~

nlm) into
~

n, l+( —1)",m).
Using these results, the eigenvalues in

g„(nlm ) =2irt '[ I+ ( —1)t'(21 + I)] '
~

nlm ),
and Eqs. (10), (11), (A2), and (A3), we find

ct =i fi(1+ 1)at

dt = —/eclat+ i,
where at is given by Eq. (13).
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