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Self-pulsing and deterministic chaos is observed in a single-mode, homogeneous-line, CO; laser
with an overall negative feedback, when the damping constant of the feedback loop is of the same
order as the population decay rate. This represents a fundamental limitation of the general use of
feedback schemes in high-stability laser applications. A theoretical model is shown to yield results
in good agreement with the experimental ones, thus confirming the simple structure of the associ-

ated phase space.

In laser applications where high stability is required, an
overall negative feedback is currently used, which is in ad-
dition to that already provided by the electromagnetic cav-
ity, for instance, by controlling the pump strength with a
signal provided by the detected output intensity.! Such a
feedback is not just an added artifact, but affects in a fun-
damental way the dynamics of photon generation; indeed
it has been proposed’ as a means to provide squeezed
states of the electromagnetic field, and preliminary evi-
dence of such an effect has been given.®> However, a fun-
damental objection to a feedback scheme is that it provides
one extra dimension to phase space, and hence the modi-
fied dynamics can be affected by irregular behavior.

Here we report observation of self-pulsing and deter-
ministic chaos in a single-mode laser fed back by its own
output, that is, with the cavity losses modulated by a signal
proportional to the output intensity. We further support
the experimental evidence by a theoretical model which
displays the dynamic features of a feedback laser. Notice
that chaos due to feedback has already been observed in
connection with nonlinear passive systems [either a potas-
sium dihydrogen phosphate (KDP) crystal between
crossed polarizers* or a long optical fiber in a ring cavity].’
In both cases the passive system was studied per se, being
outside the laser cavity, and thus the laser dynamics was
not affected by the feedback configuration.
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FIG. 1. Experimental setup with a CO, laser. M—total re-
flecting mirror mounted on a Piezo drive to control the mode
tuning with respect to the center line, E.O.M.—electro-optic
modulator, B.S.—beam splitter, L.T.—CO, laser tube, G
—grating, A—high-voltage amplifier, D— HgCdTe detector,
T.D.—transient digitizer, B— bias voltage.

We have shown recently the onset of chaos in low-
dimensional optical systems, in controlled conditions
displaying a one-to-one correspondence between the out-
comes of the experiment and those of the theoretical
model. For this purpose, instead of pursuing a strict anal-
ogy with the Lorenz model® whose physical realization is
only recent and still rather qualitative,” we have studied
the so-called class B lasers,® that is, single-mode
homogeneous-line lasers, where adiabatic elimination of
the fast polarization variable reduces the dynamics to two
coupled degrees of freedom (field amplitude and popula-
tion inversion). A third degree of freedom, crucial for the
onset of deterministic chaos, was provided in several ways:
(i) by a nonautonomous driving applying a sinusoidal forc-
ing to an intracavity modulator which modulates the cavi-
ty losses®!? or the cavity length,'! (ii) by injection of field
from an external detuned laser,® (iii) by a ring configura-
tion, which decouples forward and backward waves, thus
contributing at least one more degree of freedom!? (in
fact, as shown in Ref. 12 this latter system is modeled by
seven coupled equations because of the nonlinear popula-
tion grating induced by the two counterrunning waves).
Purposefully, we did not tackle the vast class of inhomo-
geneously broadened lasers, where it is extremely difficult
to drive close correspondences between experiments'® and
theory'* because of the large number of coupled degrees of
freedom.

Here we show a new way of introducing a third degree
of freedom leading to chaotic instability, namely, feeding
the laser output back on an intracavity modulator. When
the feedback loop is so fast that it practically provides an
“instantaneously” adapted loss coefficient, it does not
modify the phase space topology, which in the case of a
class B laser remains two dimensional. If, however, the
time scale of the feedback loop is of the same order as that
of the other relevant variables, the system becomes three
dimensional. Let us refer to the experimental setup of Fig.
1. Such a system is ruled by three first-order equations for
the intensity x, population difference y, and modulation
voltage z. With suitable normalizations (we refer, e.g., to
Ref. 9 for the unnormalized equations) the equations are

x=—kox(1+asin’z—y) ,
y=—yrly—A+xy), 1)
z=—B(z—B+fx) ,
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FIG. 2. Plots of normalized stationary intensity X vs B (the
bias-voltage B is expressed in angular units) for different values
of the feedback coupling constant f. The curves a, b, c, d, and e
refer to f =0 (no feedback), f=0.052, 0.102, 0.152, and 0.202,
respectively. Dashed lines correspond to the loci of the first
Hopf bifurcations for three different values of the damping con-
stant (sec™!) of the feedback loop, namely, Bi=3.5x10%
B2=3.0% 104, and Bi=2.5% 10%,
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damping constant of the feedback loop. Furthermore, B is
the voltage bias applied to the second input of the modula-
tor amplifier, A4 is the pump parameter, and f is a coupling
coefficient between intensity x detected on D and voltage
z. Notice that x is normalized to the saturation intensity,
y and A to the threshold population (without feedback),
and z is given in angular units, that is, if we call v the volt-
age applied to the modulator and V the A/2 modulator
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FIG. 3. Digitizer time plots of the experimental laser intensity (left side) and the corresponding power spectra (right-hand side) for
increasing values of the control parameter B. (a) corresponds to the onset of the first Hopf bifurcation, at a frequency v=57.3 kHz,
B =0.364; (b) shows the appearance of a subharmonic bifurcation f/2 where the fundamental frequency is v=52.0 kHz, B =0.378;

and (c) shows the appearance of chaos, B =0.383.
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FIG. 4. Plots of logioN,(g) vs logioe for different values of
embedding dimension n (n=10-15). Square dots come from
experiment. Numerical solution of Eqgs. (1) provides theoretical
plots coinciding with the experimental ones within the dot sizes.

voltage, then z =zv/V.
In our experimental system we have chosen ko=1.17
x107(sec™!), y=0.98x10*(sec™!), p=3.0x10*(sec™!),
and a normalized pump 4 =4.2. The stationary solutions
(x,7.,7) of Egs. (1) imply the condition
1/2
Ala _ 1 ]

B = fX +arcsin -
l1+x «

0]

Depending on the feedback coupling f, for different bias
values B we can have mono- or bistability (Fig. 2). In par-
ticular, around f =0.1 we expect an ambiguity since Eq.
(2) provides a quasivertical curve. Indeed, as we show
later, this is the region where we observe chaos.

By a linear stability analysis around the stationary solu-
tion, we evaluate the points where the system starts self-
pulsing (Hopf bifurcations). The lines of Hopf bifurca-
tions are drawn in Fig. 2 (dashed) for three different
values. In fact, we have a slight uncertainty in the assign-
ment of the open loop damping constant in our setup. At
the intersection points of our stationary solutions (lines
with fixed f) with the lines of onset of Hopf bifurcations
(lines with fixed B) the corresponding pulsing frequency in
kHz is given in Table I.

In Fig. 3 we present the power spectra of the intensity
detected in our experiment. Figure 3(a) shows the first
Hopf bifurcation, Fig. 3(b) the appearance of a subhar-
monic f/2, and Fig. 3(c) corresponds to the appearance of
chaos. Beyond chaos, we observe periodic time windows.
In order to get full assurance of the chaotic nature of the
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TABLE II. Bifurcation parameters and Feigenbaum ratio.

Bifurcation B 5
S 0.394907

fl2 0.395355

f/4 0.395662 5.11
f/8 0.395722 5.00
chaos 0.395734

time plot of 3(c), we have measured the Grassberger-
Procaccia'® or correlation dimension along the lines al-
ready outlined in Ref. 8.

Figure 4 shows clear evidence of a fractal exponent
D,=2.6%t0.1. While Fig. 4 comes from the experiment,
the same D, value is obtained by solving numerically Egs.
(1) for p=pB,=3.0x10* and B =0.383. The theoretical
plots, when reported in Fig. 4, closely follow the experi-
mental ones with uncertainties smaller than the dot sizes.
Similar good agreement with the plots of Fig. 3 is obtained
as we change B in Egs. (1) according to the values given in
the caption of Fig. 3. Experimentally, we have observed
narrow regions with higher-order subharmonics (f/4 and
f/8) plus f/3 windows beyond chaos. In order to have a
better understanding of the chaotic scenario, we have
solved numerically Egs. (1). An accurate localization of
the bifurcation points was done by studying the stability of
the phase space orbits in terms of their Floquet multipliers.
More specifically, the multipliers were evaluated by deter-
mining the Poincaré sections with the Henon method,'¢
and finding the zero of the associated recursive relation by
the Newton method. In Table II we give the bifurcation
diagram, which shows clear evidence of a Feigenbaum
scenario with a Feigenbaum converging ratio in fair agree-
ment with the asymptotic value.

In conclusion, we have shown theoretically and experi-
mentally that the introduction of negative feedback pro-
vides a third dynamical degree of freedom sufficient to
yield self-pulsing and chaotic behavior when the damping
constant B of the feedback loop is of the same order as the
population decay rate. As S is moved far away from this
range of values, we expect the possibility of adiabatic elim-
ination of one of the three variables of Eq. (1), and hence
the cutoff of chaotic regimes. Such a further investigation
is actually under way.
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