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Motion of charged particles in an axisymmetric magnetic mirror
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The basic features of the motion of charged particles in an axisymmetric mirror, when the mag-

netic field varies sinusoidaBy along lines of force, is examined and the diffusion rate for the magnet-

ic moment near the loss cone is obtained.

I. INTRODUCTION

In a sufficiently strong magnetic field a charged parti-
cle gyrates approximately around and along a magnetic
line of force and simultaneously drifts over a surface of
constant magnetic flux. For an axisymmetric magnetic
mirror the drift motion around the symmetry axis is
inessential and that reduces the degrees of freedom from
three to two. Also for axisymmetric systems, the constan-
cy of angular momentum prevents radial diffusion that
results from nonadiabatic magnetic moment changes.

The magnetic moment p changes during the particle
motion because the ratio of the gyroradius to the charac-
teristic length L of the spatial variation of the field
strength varies during the gyration period. Then the par-
ticle that is adiabatically trapped in the mirror, i.e.,
po&p, , can escape from the mirror when the adiabatic
moment p changes with time and becomes less than the
critical value p, . This nonadiabaticity can be measured
by the so-called "adiabaticity parameter" s =2v /
[LQp(1+R)] where v is the particle speed, QQ is tlie
gyrofrequency at the midplane Z=0, and R is the mirror
ratio.

The dynamics of the particle motion can be described
by a mapping. '2 According to this approach, the magnet-
ic moment abruptly changes by bitt =)()u}sing every time
the particle crosses the midplane of the mirror on which
the magnetic field has a minimum, where (() is the gyro-
phase of the particle on the midplane and f(p, ) is a func-
tion of the magnetic moment. '

Here we are interested in studying diffusion of a
charged particle in the course of its motion in the vicinity
of the separatrix corresponding to the adiabatic loss cone
(@=Is,). In Sec. II, we will describe a Poincare map,
which represents the change in the state of the particle (in
terms of variables p, (()} from one crossing of the midplane
(p, P) to the next one (p, P). We will then linearize this
mapping with respect to p and obtain the standard map-
ping which is characterized by only one parameter, the
so-called stability parameter o.. When the stability param-
eter cr is less than 0.971 639. . . there is only bounded os-
cillation of p around each resonance between the gyration
oscillation and the bouncing oscillation of the particle. If
o is larger than 0.971639.. . there occur resonance over-
laps and chaotic changes and the diffusion can be ob-
served in the o. variable.

B(s)=Bo (R +1)
2

(R —1} 2irs
cos (2.1)

where Bo is the value of B at midplane (s =0), L is the
mirror length (a constant which is a measure of the
characteristic dimension of the magnetic field inhomo-

geneity), R is the mirror ratio, and s is the particle coordi-
nate along the field lines. In the approximation @=const,
the longitudinal motion of the particle is described by the
Hamiltonian

p2
H(P„s)= +pB(s), P, = Vii

——
S& (2.2)

The orbit of Eq. (2.2}can be expressed as

ds(t) L
V~~

= =P, = ~,k cn(~y, k),
dt n'

s ( t) =—arcsin[E sn(toot, k )] .L

(2.3)

(2.&)

Here sn and cn are the Jacobi elliptic functions and

cop = v singpcosg&, K =cotgptang,I. (2.5)

where g, is the critical pitch angle for the adiabatic loss
cone given by sin f, = 1/R and Po is the pitch angle at the
initial moment t =0 at which the particle starts from the
midplane s =0 of the magnetic mirror in the s direction
(s &0). The bounce frequency co& is 2m./[the period of
s(t)] and is given by

COO'lT

2K(k) ' (2.6)

where K(k) is the complete elliptic integral of the first
kind. The gyrophase evolves as

II. POINCARE'S MAPPING
AND THE STABILITY PARAMETER

Consider a single-parameter adiabatic orbit with the
mass and charge of the particle in unity with an axisym-
metric magnetic field. For simplicity we assume that,
near the axis of symmetry, the magnetic field is approxi-
mated by
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h(h(h) h(hhh
—f Ch'8(hlh'((

=go B—(i Rt — E(A(t), k)(R —1)
(2.7)

must also find the change in the phase between one inter-
section of the median plane and the next. This change
can be written approximately as

where A(t)=arcsin[sn(cost, k)] and E(A, t) is the incom-
plete elliptic integral of the second kind. From Eq. (2.7),
the gyrofrequency averaged over a bounce period becomes

440 —=d(p) —=
~&Q)

Ng

2Q
K(k) — E(k)

6)p R

(2.15)

(Q)=RB
R K(k)

(2.8)

If we are interested in the motion of a particle in a close
vicinity of the adiabatic loss cone, then

(Q) 0 2R ~(k) (R 1}E(k)
COg Q)0 7T R

(2.9)

where E(k) is the complete elliptic integral of the second
kind.

The ratio of (Q ) to the bounce frequency then becomes

(k')'=1 —k1=
Pm —Pc

P Pc

where p~ is the value of (u as s =0. For k'&&1 we can
approximate elliptic functions as

r

IC(k')=in —, , E(k')=1
where for a particle
have Bo Qc. ——

The rate of change

of unit mass, charge and c= 1, we

of the magnetic moment is

2
dp,

dt BR, 2

2
Vii Vi cjB

slnC( —
1 sin24

2B s
(2.10)

where R, is the radius of a magnetic line of force and 4
is the perturbation phase, which is related to the Larmor
phase ()I( by the approximate relations

and we can rewrite Eq. (2.15) as

L~o
d(p)=

vp v'R —1 vZ~
r

ln

Pm —Pc

2(R —1)
R

r sin4=rzsinP . (2.11)

bp =g(p)sin(1)0

with

(2.12)

g(p)= — r, (2 (uQ)O'~ expc 0
F

(2.13)

Here rs is the distance from the Larmor center to the
symmetry axis of the field. Equation (2.10} is exact and
assumes no change in particle position. It holds, in par-
ticular, for trajectories which enclose the symmetry axis
of the field (rz &pi, pi is the Larmor radius).

To find b,p, , the change in the magnetic moment, we in-

tegrate (2.10) over a half period of the bounce frequency.
By integrating (2.10), we obtain the following expression
for the change in the magnetic moment:

@=i +Pe)»nk

0=((}+d(}»
(2.17)

where d(j(t ) is given by (2.16), g by (2.13), and we omit the
subscript 0 from the gyrophase ((}0. Equation (2.17) is the
Poincare mapping, which describes the change in the state
of the particle [in terms of the variables (P,P) from one
crossing of the midplane (p, P} to the next one (p, P)].

If we expand d(p) around some value p, as

(P —(Mi)
d(p) =d(pi)+(p —pi)d'(pi)+, d "(pi),

(2.16)
Thus the motion of a particle in close vicinity of the
separatrix (i.e., the adiabatic loss cone for the case of the
magnetic mirror) can be described approximately by

n. sin/0 v'R —1 (R +1)F(1(ho, k')

+ E(po, k')
(R +1)

2R (R —1)—sin o
(R +1)

(2.14)

and define the new action variable

i=d(pi)+(p —pi )d'((M 1),
we obtain the so-called "standard mapping"

I=I+o sing,

4'=4+1
where we assume that

~
(p —AM()'d "(pi)/21

~
«I .

(2.18)

According to Eq. (2.12), the change in the magnetic mo-
ment over half a bounce period b,p depends on the Lar-
mor phase ()}, at the time at which the median plane is in-
tersected. For a complete description of the motion we

(2.19)

The standard mapping has only one parameter cr, the so-
called "stability parameter"' given by

o =gd'(p, 1 )=- 2m.A g
((ui —y,, )



BRIEF REPORTS

RL(np)'"
A=

2v 2m'&R —1 p,

1 2 R 1 1

(R+1) v'R —1 v2/ senti(,
(2.20)

Dp —— ——Dog,
((&p)')

2I,
(2.26)

where t is the number of iterations, Dp W——jyg /4' is the
quasilinear diffusion rate, and X is the correction factor.
Equation (2.26) is valid only if 0 )4. Near the chaos bor-
der"

2

p —pq = (alii f—sin f~ )
0

1X(o)= 1 ——
CT

(2.27)

2

sim/r, cosf, hf . (2.21)
Qo

Substituting g(p) from Eq. (2.13) into Eq. (2.19) and tak-
ing p, i

——pp (initial value), we get, by using (2.20) and
(2.21),

Integral surfaces in an axially symmetric field of a
magnetic dipole were studied in detail by Stormer in con-
nection with the analysis of cosmic-ray motion in the
Earth's magnetic field. Similar calculations for a magnet-
ic mirror are described by Artsimovich. The conduction
of absolute confinement may be written in the form

Q V
exp

g2

where c, is an adiabaticity parameter, and

(2.22) V' . , 1
rs/Rsi Rs~—: »n 4p-

Op R
(2.28)

3 R 1 ~c 1

2 (R+1)~ (R —1) L bPp
' (2.23)

-1 —2
&S~ ~ &S~:

slil Qp—
1

R
(2.29)

Pre Pc Pc

where b,g=g f„we can w—rite the rotation number by
Eq. (2.16), viz. ,

d(p) 8 sing~cosg~ 2(R
r(p) = =A ln

2m'
(2.25)

The local diffusion rate is given by

where b,fp —gp g, .—Usi—ng the approximate relation

8 sing, cosP,
(2.24)

2 "go

(R+1) L

where Rs, is the Stormer radius, es, is the adiabaticity pa-
rameter at the Stormer cutoff, and rsp is the displacement
of the guiding center from the mirror axis at the initial
moment t=0 at which the particle starts from the mid-

plane. The Stormer cutoff comes from a constraint im-

posed by canonical momentum conservation for axis
encircling particles. The domain of phase space in which
a particle is confined due to exact integrals of motion is
usually called the Stormer zone.
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FIG. 1. Plot of stability parameter o. vs adiabacity parameter c
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Near the Starmer cutoff'

rs(p)
X(p)= z

rgp

where

no
@st

2 Pj. —Pg p

(2.30)

(2.31)

is the value of p, at the Stormer cutoff. Since both correc-
tion factors approach zero as o~ 1 ar p, ~ps„respective-
ly, the diffusion rate changes considerably even if
p, o —p, «po. In the latter case a better value for particle
diffusion for p=po to p=p, would be the average dif-
fusion rate. Here we are approximating /=const over the
interval ppgp gp, . By averaging over p space, we get

(2.32)
D bp, Dp

Substituting (2.26) into the equation (2.32) and using the
relation (2.19) we get

(2.33)

2

1n 1—1 St E

D ~2 est
(2.34)

III. DISCUSSION AND CONCLUSION

We choose values of the parameters R=1.5, rso/L
=O.OS, y =0.331S, and

cosfo 0 55——0((.cosg, ) -=0.5773) .

Substituting these values into (2.23) and (2.33), we get

0.=1.6718 and est'-4. 39 .

In Table I we give the values of the diffusion coefficient
obtained by using the above formulas for values of the
adiabaticity parameter near the Stormer radius, namely
e '=4.4, 4.6, and 5.0 and for values of the adiabaticity
parameter ranging from e '= l2 to 19.

In Fig. 1 we plot a graph of o versus e ' for those
values of e ' corresponding to o & 1. There is a region of

for o »1, (D) approaches the quasthnear limit Dp.
The averager diffusion near the Stormer cutoff is given

by

1 1 IIorso (pc —JMst)g In
Do (po —p. ) 2 (po —pst)

TABLE I. The border of particle-motion stability in an ax-
isymmetric magnetic mirror.

4.5
4.6
5.0

12.00
13.00
14.00
14.50
15.00
16.00
17.00
18.00
19.00
19.5845

7.62
7.78
7.94
4.50
3.79
3.15
2.88
2.14
1.74
1.41
1.09
0.9906
0.9716. . .

lnDO

—3.10
—3.10
—3.20
—4.70
—5.10
—5.25
—5.45
—5.55
—5.90
—6.15
—6.40

lnD„

—3.60
—3.52
—3.48
—4.80
—5.23
—5.41
—5.63
—5.82
—6.27
—6.68
—7.48

ACKNO%I. EDGMENTS

I would like to acknowledge Dr. B. V. Chirikov for
continuous encouragement and useful discussions during
my visit to the Institute of Nuclear Physics, Novosibirsk,
under the exchange program between the U.S.S.R.
Academy of Sciences and Indian National Science
Academy. I am also thankful to Dr. G. Rowlands for
useful comments.

absolute confinement or perfect trapping (Starmer zone)
for e '&4.39 in which particles cannot reach the loss
cone and escape in spite of diffusion inside the trap (if
cr&tr„). For s '=19.584. . . corresponding to o=cr„
=0.971635. . . there is no diffusion at all for the initial

p =pp.
In this paper we have studied the nonadiabatic escape

of charged particles fram an axisymmetric magnetic trap,
when the magnetic field varies sinusoidally along lines of
force, by using Chirikovs diffusion model. For the
motion of a particle in a magnetic mirror the adiabatic
loss cone is a separatrix and a domain of chaotic motion
always exists near the adiabatic loss cone. In Table I we
have given the values of averaged diffusion coefficient for
values of adiabaticity parameter e '=4.5, 4.6, and 5 near
the Stormer radius (which corresponds to e ' =est

'

4.39) and for values of adiabaticity parameter ranging
from 12 & e ' & l9. There is a region of absolute confine-
ment (Stormer zone) in which the particle is trapped in a
magnetic mirror (e ' & 4.39).
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