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Two-dimensional oscillatory convection in a binary Quid mixture in an infinite-plane porous layer

heated from below is studied. Small-amplitude nonhnear solutions in the form of standing and trav-

eling waves are found and their relative stability is estabhshed. Stable traveling waves are preferred

near onset. The interaction of the two types of wave with steady overturning convection is also

studied. As the Rayleigh number is increased the period of each type of wave approaches infinity,

standing waves as —ln(R, —R) and traveling waves as 1/(R, —R), ~here R, is the critical Ray-

leigh number at which the transition to finite amplitude overturning convection occurs. This transi-

tion is hysteretic. The presence of modulated traveling ~aves {i.e., waves with two distinct frequen-

cies) is also predicted. These predictions are made on the basis of analyses of multiple bifurcations

in the presence of O(2) symmetry. This symmetry is present in two-dimensional problems with

periodic boundary conditions and a reflection symmetry in a vertical plane. The relevance of the re-

sults to recent experiments on binary fIuids, both in bulk mixtures and in a porous medium, is dis-

cussed.

I. INTRODUCTION

Binary fluid mixtures offer a suitable system in which
complicated dynamical phenomena near multiple bifurca-
tions can be studied. ' Two recent experiments have been

remarkably successful. Rehberg and Ahlersi have ob-

served the approach to a heteroclinic orbit near a
codimension-two bifurcation in their study of oscillato-
ry convection in a He -He mixture in a porous medium
heated from below. In an experiment on a water-alcohol
mixture, Walden et al. observed a traveling roll pattern,
the possibility of which was independently suggested by
Knobloch et al. Both experiments investigated oscillato-
ry convection in a binary fluid mixture. The pattern ob-
served in the first experiment apparently consists of sta-
tionary rolls whose velocity reverses cyclically, and may
be thought of as a standing wave, i.e., as a superposition
of two traveling waves of equal amphtude, one traveling
to the left and the other to the right. The uniformly drift-
ing roll pattern observed in the second experiment can
similarly be thought of as a right-traveling wave; left-
traveling waves can be obtained for other initial condi-
tions.

In this paper we treat the traveling and standing-wave
patterns in a unified way. Analytical progress can be
made for mixtures confined in a horizontally infinite
plane layer, and we use this idealization to establish a
number of properties of both types of wave. We focus at-
tention on convection in binary mixtures in a porous
medium, since the results of the analysis carry over to
bulk mixtures via a trivial modification. We begin by
studying separately small amplitude standing and travel-
ing waves near the critical Rayleigh number for the onset
of oscillations. This analysis cannot determine the rela-
tive stability of these two solutions, i.e., the stability of
one with respect to perturbations in the form of the other.

The general theory that we develop answers questions of
this type. The theory makes full use of the symmetries
that characterize the system and clearly indicates the ex-
tent to which the multiplicity of possible solutions and
their stability are determined by these symmetries. In the
present problem we study two-dimensional spatially
periodic solutions, with no distinction between left and
right. In this case the group of symmetries is the group
Og) of rotations and reflections of a circle. The theory
determines the structure of the amplitude equations near
the bifurcation and the results of the earlier calculation
can be used to infer the coefflcients of the nonlinear terms
in these equations. In this way a complete description of
the behavior near bifurcation is established. The results
show that in an idealized model of the system standing
waves are typically unstable near the onset of convection,
and that traveling waves should be observed.

We then study the interaction of both types of wave
with steady overturning convection by considering the
neighborhood of a particular codimension-two bifurcation
in the presence of O(2) symmetry. The analysis gives a
complete description of the possible nonlinear interactions
between these three types of solution at small amplitude, '
and predicts for the system under consideration a hys-
teretic transition from each type of wave to nonlinear
overturning convection, as the Rayleigh number is in-
creased. As the critical Rayleigh number for each transi-
tion is approached, the frequency of the wave goes to
zero. However, both the rates at which this occurs and
the critical Rayleigh numbers depend on the wave type.
The theory also predicts a Rayleigh-number interval in
which stable modulated waves exist.

This paper is organized as follows. In Sec. II the basic
equations are introduced, followed by a summary of their
linear-stability properties in Sec. III. In Sec. IV we study
small-amphtude standing and traveling waves near the bi-
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furcation to oscillation, and in Sec. V we develop the am-
plitude equation that describes the interaction of the two
types of waves with steady overturliiilg convectloil by coil-
sidering the neighborhood of a particular codimension-
two bifurcation. In Sec. VI explicit consideration of the
symmetries is introduced, and general amplitude equa-
tions for steady-state, Hopf, and the codimension-two bi-
furcations are derived. Analysis of these equations in
conjunction with the coefficients deduced from Secs. IV
and V establishes a number of explicit predictions which
are summarized in Sec. VII.

II. FORMULATION OF THE PROBLEM

In a binary fluid heated from below, the solute may dif-
fuse to the cooler plate (the ordinary Soret effect) or to the
warmer plate (the negative Soret effect). In the latter case
a stabilizing molecular-weight gradient will be set up in
response to a destabilizing temperature gradient, and will
lead to a competition characteristic of all doubly diffusive
systems. One consequence is the possibility of oscillatory
convection. In fluid mixtures the Dufour effect' is negli-
gible, and the equations describing convection in a porous
medium then are

terms in (2.3) will not be required. Thus any function
f(u u) such that f(0)=0, f'(0) =1 will yield identical re-
sults.

In order to write the equations of motion in a con-
venient form for a study of two-dimensional convection,
we introduce the stream function P(x,z, t) such that
u=(u, w)=( —tP„i}j„),and measure time in units of the
thermal diffusion time across a layer of depth h, velocities
in units of v/Ii, and distances in units of the temperature
difference ET=Ah across the layer, assumed to be fixed,
and the concentration in units of the concentration differ-
ence induced by the Soret effect, bC= —(kr/T)&T.
Eliminating the pressure, we obtain

V' f, +crV itr=crRQ a[(ff—„)„+(fP,),], (2.4a)

8, —V 8=/„—J($,8), (2.4

rV'$ =—(1 +S)g„+[1—r(1+S}t V'8 J(P,P—),
(2.4c)

where the five dimensionless parameters are given by

agAhE kT P DR= - S=
fCV T cK K

1
u, +a'uf—(

~

u
~

)=— Vp'+(aT' ——PC')gz —u, —
p K

(2.1a}

v h0'= 6'

K
0 =EKQ

(2.5)

Tg +ll ' V T —2 LD =KV T

C,'+u VC'+ Aw=DV C'+ DV' T',kr kr

(2.1b)

(2.1c)

(2.6)

V u=0. (2.1d)

f=u.u+0( oui ) . (2.3)

Since in what follows we shall be interested in bifurca-
tions from the conduction state (2.2), the higher-order

In writing Eqs. (2.1) we have employed the Boussinesq ap-
proximation, and modeled dissipation by a Darcy friction
term with a coefficient v/K, where v is the kinematic
viscosity. The quantity e is the porosity. The primed
variables represent departures of the temperature T, con-
centration C, and pressure p from the conduction profiles
set up in response to an applied temperature gradient
—Az. Thus the basic state whose stability is of interest is
given by

(2.2)

The coefficients a and D are the thermal and solutal dif-
fusivities, kr is the Soret coefficient (kr &0), and
a= —(Bp/BT)zc, P=(Bp/BC)~z. All these quantities
are assumed to be constant. The nonlinearity in the equa-
tion of motion represents a correction to the Darcy fric-
tion term and describes the increase in the friction that re-
sults from decreasing spatial scales of the motion in the
interstices of the medium with increasing Reynolds num-
ber. The amplitude a' of this term is small. ' Assuming
that its functional form is differentiable at the origin, "we
may write

Q=g~ =8=/ =0 on z =0, 1, (2.7)

corresponding to stress-free boundaries, and fixed tem-
perature and concentration at the top and bottom. %e
shall seek spatially periodic solutions of horizontal period
d =2ir/k. Owing to the structure of the advective term in
the Navier-Stokes equation, the results for convection in
bulk mixtures' corresponding to those derived in Secs.
III—V below can be recovered by setting a =0, and re-
placing R with R/p and cr with per, where p=n +k .
This changes the critical wavelength of the modes that
first become unstable, but does not otherwise modify the
calculations.

III. LINEAR THEORY

To study the stability of the conduction solution
/=8=/=0 we linearize the equations and look for solu-
tions growing as exp(spt}. The conduction solution loses
stability to overturning convection (s =0) at'

Here 8, X denote dim ensionless T', C', and
J(g,h )

—=g~h, —g, Ii„. Note that the "separation" constant
S is negative. ' The effective Prandtl number o is gen-
erally large in porous media, and we shall in Sec. V take
the limit cr~ ao. In addition we shall assume throughout
that Oga gg l.

We solve Eqs. (2A) in a horizontally infinite plane-
parallel layer subject to idealized boundary conditions2
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R, =P'
k' [~+(I+~)S]

and to oscillatory convection (s = +igloo) at'

p' (1+r)(p+~)(~p+o)
ok2 [p+o(1+S)]

with the oscillation frequency coo given by
T

cTk 7 + ( 1 +r)S
pi cr+ (1+~)p

(3.1)

(3.2)

(3.3)

Thus the bifurcation to oscillatory convection precedes
the bifurcation to steady convection. The codimension-
two bifurcation that will be of interest occurs when coo

vanishes, i.e., whenz

p
2

R,=,[o+~(1+~)(o+p)],ok'
(3.4)—H(o+p)

o +~(1+~)(o+p )

At this point the linear stability problem has tue zero
eigenvalues, and we speak of a multiple bifurcation. Note
that (S,

~
& —,'.

In what follows the results

R =Ro+eR )+e2R2+ .

M =670+6CO~+5 QP2+
2

4=~4i+e'6+e'6+

(4.la)

(4.1b)

(4.1c)

g i ——Ree '"~'sin(kx )sin( mz ) (4.2a)

8i ——Re . e' &'cos( kx) si n(nz)
p(1+i~, )

p (o'+ l coop )
Pi ——Re- e' "'cos(kx}sin(mz) .

kcrRO

(4.2b)

(4.2c)

At O(e ) the condition that time-periodic solutions exist
is always satisfied, and we therefore take

R] =co) =0 . {4.3}

and so on. The quantities Rj,coj. (j & 1) are determined by
the requirement that the solutions we find are periodic in
time. When this is done, the expansion (4.la} determines
the amplitude of such solutions as a function of R —Ro.
Substituting (4.1) into Eqs. (2.4) and equating powers of e
yields a sequence of problems. At O(e) we recover the
linear problem with Ro and coo given by (3.2) and (3.3),
and

( I+a)(o'+p )[I r( 1+S—)]
p+~(I+S)

—S(1+v)(o'+rp }
p+o(1+S}

will be useful.

IV. SMALL-AMPLITUDE THEORY

(3.5a)

(3.5b)

This is, of course, because the bifurcation is a Hopf bifur-
cation. The quantity P2 is found to be proportional to tt i,
so that by choosing e to be the amplitude of Pi we may
take gz ——0. The nonlinear terms required for Hz, $2 are
most conveniently calculated using complex notation and
replacing Rea Reb by Re[2 o(b+b')] or Re[—,

' (a
+a')b], where required. ' We obtain

In this section we study the small-amplitude nonlinear
solutions near the bifurcation points RO, R, . Near the
point RD both standing- and traveling-wave solutions are
readily found, and we compute them by looking for solu-
tions of the appropriate type. This type of approach does
not, however, show that no other solutions exist near Ro,
nor does it address the stability of one type of solution rel-
ative to infinitesimal perturbations of the other type.
These issues are addressed by the theory developed in Sec.
VI. Steady overturning convection is found near the point
R, .

A. Standing vraves

We seek nonlinear osciBatory solutions of Eqs. (2.4) and
(2.7) with frequency co using a perturbation expansion of
the form'

km 1
82 ———Re z

4p 1 + l d)g

2icyp&—+
2ino+

sin(2irz },

+Re[1—r{1+S)]
4p 1 +ECOO

1 ~ 2l Cilpf

X + sin(2mz ), {4.4b)
GENT (2l Cdo+CO)(2l COO+ COT)

where co=4/lp, 0 ~co &4. At O(e ), we have the prob-
lem

(4.4a)

'r 1 e 2l 6)pt

Pz ———Re (rr+pi coo) + sin(2mz )«Ro roe 2~coo+cgw

p'~~A i+~R24 i

—pi~2~i —~(4i (}z) +
pi cozPi J(gi, g—i)—

V 8, +oV 0

~x a, —v' 0

—(1+S)B» —[1—61+S)]V' 8, rV—
O(o)

0
0

(4.5)

On the right side there mill now be terms which lie in the kernel of the operator on the left. The condition that such
resonant terms are absent determines Rz, a&2. We restrict (4.5) to the resonant terms, and multiply from the left by the
row vector



OSCILLATORY CONVECTION IN BINARY MIXTURES 1541

MT= [ p—z(&+&~o)(1+i~o) p—k&Ro[1 —&(I+S))pkoRo(1+icoo) I (4.6)

The left side then vanishes, and hence the required condition is that M (the right-hand side) equals zero. This condition
can be written in the form

P 2~mzp+
16

(o+p+&p+pi~o)+Ok Rz[&+(1+~}S+(1+S)i~o]
k2

2

~'k' (a'+ ~p )(1—~coo)[G(1+~)+ (2+co)icool
(cr+pi coo)(1+icoo)

2l Q)o+ N'7 2l coo+ co
+O(a) . (4.7)

This complex equation determines both Rz,roz, and
reduces to the results of Ref. 14 in the limit cr~aa. To
derive it is helpful to work in terms of coo rather than

Ro,S. For this the expressions (3.2} and (3.5) are useful.
The computation of Rz determines when the bifurca-

tion to standing waves is subcritical (Rz ~0) and when it
is supercritical (Rz &0). In the former case the solutions
are unstable with respect to infinitesimal standing-wave
perturbations, while in the latter case they are stable.
Both possibilities occur as parameters are varied, though
near the codimension-two bifurcation the branch is always
supercritical. ' The stability with respect to perturbations
in the form of traveling waves is deferred to Sec. VI.

B. Traveling waves

%e seek small-amplitude nonlinear waves traveling to
the right of the form g(x,z, t ) =P(g,z ), etc. , where
g=x pct, an—d c is the phase velocity or drift speed of the
wave. Since the wave is nonlinear, c depends on the am-
plitude of the wave. In terms of the variable g Eqs. (2.4)
become

pcV gg crV g+o—RP~ a[r}~(u P——g)+d, (u P, )], (4.8a)

pc8g+V 8+/A J($,8), —— (4.8b)

pcf&+rVzg+(1+S)/&+ [1 ~(1+S))V28=—J(g,P),
(4.8c)

subject to the boundary conditions (2.7). We solve these
equations by a perturbation expansion of the form (4.1),
with the phase velocity given by

c=colk . (4.9)

Substituting these expressions into (4.8) and equating coef-
ficients of O(e), we once again recover the linear-
eigenvalue problem with Ro,coo=kco given by (3.2) and
(3.3), and

ti, =Ree'"&sin(mz),

8&
——Re (0 —pikco)e' 4in(nz),

—P . ik

ikoRo

((}&——Re— e' ~sin(mz) .
ik 1

P 1 —lkco

(4.10a)

(4.10b}

(4.10c)

At O(e ), we again find that the requirement that solu-
tions be periodic in g imposes no constraint on R ~,c &, and
hence take

Rt ——ci ——0. (4.11)

By choosing e to be the amplitude of f~, we can take

$2
—0, and then

82 ——ReA sin(2mz), (t}2
——Re8 sin(2mz), (4.12)

where

k

87TP 1 —lkco
(4.13)

p .
k

1 r(1+S) k—
0' —lkco +

8mo Roe 1 ikco 8—npr

Finally, at O(e ), we seek spatially periodic solutions of
the problem

—pcoV By+0'V

—Bg

—(1+S)Bg

0 —CTR o8g g/j3

—PcoBg —V 2 0 83

—[1—~(1+S)]V' pc,a, ~V2—

pczV'4ie+ ~R20 ig
—a [~g(& flic)+ ~.(& i 4i. )]

pcz~ig J(fi ez)—
Pczkls J( Pl 02)

(4.14)

Restricting (4.14) to the resonant terms yields the problem

T

P ikco —P~ koRo p ikczf&+ikoRzp—&+agp~

ik p—(1 ikco )—0
—(1+S)ik p[1—r(1+S)] p(r ikco)—

pikc28&+ ik(A+A )g—
&

pikczp, + ik(B+8)g, —
(4.15)
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Q =(9k'+2/k'+9~')/16,
and we have written

($3,83,((}3)=Re($3,83,$3)e'"~sin(nz) .

(4.16)

V. THE CODIMENSION-T%'0 BIFURCATION

In this section we study the interaction of standing and
traveling waves with steady overturning convection. The
analysis is carried out for large Prandtl numbers o, for
which the equations of motion reduce to'

If we multiply this equation from the left by the row vec-
tor

M =[p (1 i—kco)(r i—kco),
—p[1—r(1+S)]ikoR,ikoR p(1 ikc—) } (4.17)

the left side again vanishes. In order that the right side
also vanish, R2 and c2 must satisfy the condition

O=RQ„—V g,
8, =tP, +V 8 J($—,8),
P, =(I+S)P.+rV'/+[I r(1—+S)]V'8 J(8—,$),

(5.1a)

(5.1b)

(5.1c}
subject to the boundary conditions (2.7). We focus atten-
tion on the codimension-two bifurcation which occurs at2

p(2cuc2p+ —,
' }(o+p+ rp tkco—p )

+trR z [r+(1+r)S (1+—S)ikco]

2

R,=, (1+i+2), S,=ki 1+r+v
(5.2)

which has the solution

(r ikco—)(1 ikc—o)Q, (4.18)Qp

k

ap Q (I+~)(tr+P)+P(r +k co)
R2 —— +O(a ),

tt k' p+0+OS
(4.19}

+O(a) .
16pc()

C2=—

Observe that the phase velocity of the wave decreases with
amplitude (c2 &0), and that R2 &0. Thus the branch of
traveling waves bifurcates supercritically, and we con-
clude that near Ro the traveling waves are stable with
respect to infinitesimal perturbations that are themselves
periodic waves traveling in the same direction. On the
other hand, no conclusion can be drawn about the stability
of these waves with respect to waves traveling in the op-
posite direction. This problem is answered in Sec. IV on
the basis of more general considerations.

Note that if a=0, i.e., there is no nonlinearity in the
equation of motion, then the bifurcation to traveling
waves is degenerate, and no conclusion about the bifurcat-
ing solutions can be drawn at this order. This is a fami-
liar feature from studies of traveling waves in thermosolu-
tal convection and Soret-driven convection in bulk mix-
tures. "'6 As a result the above expansion is formally
valid only for e«(a/o)'/; when a =0 a higher-order
calculation becomes necessary. '

+e U2(t', e)sin(2mz)+O(e3)],

8=Re[ewi(t', e}e' sin(mz)

+e w2(t', e)sin(2nz)+O(e )],
((}= Re[ezi(t', e)e'~sin(nz)

+e z2(t', e)sin(2mz)+O(e )] .

(5.3a)

(5.3b)

(5.3c)

Here (ut', ),e(wt', ),ez;(t', ),ei =1,2, . . . , are complex
amplitudes depending on both t' and e The spatia. l part
of the expansion follows directly from the analysis below,
but is written explicitly in (5.3) to save space. In the cal-
culation that follows we retain the complex notation (cf.
Sec. IV A). We substitute into Eqs. (5.1) and equate terms
of like spatial structure:

O=R, ikzi+pui+e 5ttikR, zi, (5.4a)

0=4+ u2, (5.4b)

and study the solutions of (5.1) as a function of the small
parameters R —R„S—S, denoting the departure from
the multiple-bifurcation point.

The method we use is an extension of the iterative pro-
cedure employed in the first study of this kind. 4's In the
present problem it leads directly to the normal form of the
amplitude equation. We introduce a small parameter e
such that R —R„S—S, are both O(e ), and write
(R —R, )/R, =e 5tt, (S—S, )/S, =e 5s. Since the fre-
quency of oscillation is then of O(e) we define a slow
time t'=apt, and write

Q=Re[eu i (t', e}e' sin(nz )

C. Steady overturning convection

For completeness we give here the corresponding result
for steady overturning convection near R, . Settmig the
time derivatives equal to zero, and expanding as in Eqs.
(4.1) we obtain

[1+(1+~ ')S]
Since S &S, for oscillations, we conclude that when oscil-
lations are present, R2 &0, and the bifurcation to steady
convection is always subcritical. These solutions are un-
stable Dear Re

t ~ ik~
epw i =iku i ptu i + —e (U i w 2 +U i w2 —w i U 22

—w i Up ) +0(E), '

'11k& 2epw2 ———4m w2+ (u i wi —Ui w i )+O(e ),

epz i
——(1+S,)iku i uzi —p [1—6 1+S—, )]w i

+e 5sSciku&+e pw5sScwi

e (u, z2+u, z2 )+O(e ),ikm 4

(5.4c)

(5.4d)

(5.4e)
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epzz ———4ir ez2 —4n. [1 —r(l+S, )]w2

2R, ~
ui

~

'+O(e ), (5.4f) 1+ 2

N

u", =[r6R —(1+v)r 5s]ui+e(5„—r'5s)u',

k 2 ek 1+~
+8 ~" ~"-16

8p 16p

where the prime denotes derivatives with respect to the
slow time t'. Using the fact that e is small, we observe
that Eqs. (5.4a)„(5.4c), (5.4d), and (5.4f) imply

Ek d
ui

I
+oui"+O(e )

8p dt' (5.11}

ik
wi = ui +Kg(t, e),

p

iu2=
~

ui
~

+Eli(t', e),
8&p

zi ——. ui+Ek(t', e),p
~kA,

z2 el(t', ——e),

(5.5a)

(5.5b)

(5.5c)

(5.5d)

Finally, we observe that this equation implies

u i' ——[r5s —( I+r)r 5s]ui+
~
u,

~
ui +0(e),

8p

(5.12)

and so we can eliminate u"' from (5.11). We then obtain
the amplitude equation in the normal form

u"=pu+evu'+[3
~

u
~

+eC(uu" +u'u')]u+O(e )

wz —— &oh+ —(uig —uig )+O(&),ikrt
4p

(5.6)

where the functions g, ii, k, and l are O(1) at leading or-
der. These functions can be calculated in powers of e by a
simple iterative procedure. %'e illustrate the method by
computing h. Substituting (5.5a) into (5.4d), we find

with

k kC=-
8p

'
16p

2
1 +

N

(5.13)

(5.14}

where to:4n /p—Simil. arly, from (5.4c), we obtain at
leading order that

wi = —g+O(t) (5.7)

li =, 1+—,
i u,

i

'+O(e) .mk 2 d

4p ~tu tu dt
(5.8)

Similarly,

Substituting for w'i and w2 from (5.5a) and (5.5b) and
eliminating g we find

p=r5g —(1+~)r 5s, v=(1+~)5x —25s . (5.15)

In Sec. VI we obtain the structure of the generic normal
form describing this bifurcation on the basis of symmetry
arguments, and describe the nature of the solutions, and
the appropriate bifurcation diagram corresponding to
varying 5tt (i.e., the Rayleigh number) for fixed 5s (i.e.,
the separation constant}. Here we content ourselves to
note that when U is real the analysis we have done de-
scribes the codimension-two bifurcation with Z(2) reflec-
tional symmetry that describes the interaction of standing
waves and stationary convection. In this case Eqs.
(5.13)—(5.15) reduce to those obtained in Ref. 2.

[1 r(1+5,)]-l= — it+0(e) . (5.9)
VI. AMPLITUDE EQUATIONS

AND NORMAL FORMS

The function g has to be calculated to higher order and
makes use of (5.8) and (5.9). The result is

lk, 6'lk „6'lk
ui+ ui —

2 ui I ui
I

p p 8p

haik

2 d+ 2
1+

16p 2 g dt'

2-

, u,
~
u,

~

2 — ui" +O(e ) . (5.10)
8 2 dpi

Vhth the above results we know z~, w& and z2 in terms
of ui to sufficiently high order in e. Substituting the re-
sulting expressions into Eqs. (5.4e) we find that the O(e')
and O(e ) terms cancel. This is because with the chosen
R„S, the linear problem has two zero eigenvalues. The
remaining terms can be written, after canceling e
throughout, in the form

In this section we study the two bifurcations considered
in Secs. IV and V, the codimension-one Hopf bifurcation
and the codimension-two Takens-Bogdanov bifurcation,
from a general point of view. For problems with periodic
boundary conditions on a line the translations introduce
an additional symmetry that is absent in the standard
treatment of these bifurcations. It is this new syminetry
that is responsible for the wealth of new phenomena ob-
served near these bifurcations.

A. Symmetry considerations

Consider a continuous translationally invariant system
on a line, with no distinction between left and right, and
seek spatially periodic solutions with period d=2m/k
near a parameter value at which a mode of wave number
k loses stability with one real eigenvalue crossing into the
right half plane. Near this bifurcation the problem is
described by a single complex amplitude u(t) of the
linearized vertical velocity w (x, t), defined by
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w(x, z, t)=(ue' +u'e ' )sin(mz) . (6.1) 16)p

SO(2): u~e' 'v, (6.2)

i.e., a rotation of the amplitude u, while invariance with
respect to reflections in x =0 induces the action

Z(2): u~u' . (6.3)

Then invariance with respect to horizontal translations by
an amount I: x ~x +1 (modd) induces the action

0 —Ecop N
J

(6.7)

and u, w are the complex amplitudes of the two waves.
Because the amplitudes are complex, each eigenvalue
occurs twice, and there are therefore four eigenvalues on
the imaginary axis siinultaneously; the center manifold is
therefore four dimensional.

The translation and reflection symmetries induce the
following action of O(2) on the amplitudes u, w:

Hence the dynamical equation for the amplitude u must
be equivariant with respect to the representation (6.2) and
(6.3) of the group SO(2)&&Z(2)=O(2), i.e., the group of
rotations and reflections of a circle.

SO(2): (u, w)~e' '(u, w),

Z(2): (u, w)~(w', u*) .

(6.8a)

(6.8b)

B. Steady-state bifurcation arith 0{2)symmetry

Since the only quantity that transforms like u is u itself,
it follows that any smooth equivariant vector field has to
be of the form oi =

I
v

I

'+
I

w
I

' o2 vw ~3 (6.9)

As before the aim of the theory is to construct amplitude
equations which are equivariant under the representation
(6.8) of O(2). We begin by observing that there are three
independent invariants of (6.8):

v =g(cr, A)u, , (6.4) The most general smooth equivariant vector field is then
of the form

r'=g(r, A, )r, jo=O. (6.5)

Hence the bifurcation is a pitchfork. Note that at A, =O,
there are in fact two zero eigenvalues, and that the finite-
aniplitude solutions break both the Z(2) and SO(2) sym-
metries.

C. Hopf bifurcation with 0{2)symmetry

At the point Ro the general solution of the linear prob-
lem is a linear superposition of left- and right-traveling
waves. We shaH write it in the form

w(x, z, t)=[(u+w)e' +(u'+w')e ' ]sin(irz),

where

(6.6)

where g is a C invariant function, i.e., a function of the
only invariant o—=

I
u

I
of the representation (6.2) of

SO(2), as well as of the bifurcation parameter A, cc R —R, .
In order for (6.4) to be ~uivariant under (6.3), the func-
tion g must be real. Equation (6.4) can be written in
terms of real variables r, p defined by u =re'r, with the
result

U g1 g2

g2 81
(6.10)

where gj gj(oi——,o2, cr&), j=1,2, are C" complex func-
tions. This is therefore the form of the system after
reduction to the four-dimensional center manifold at
R=RO. The equations can be further simplified by
smooth near-identity nonlinear equivariant coordinate
changes of the form

u v hi h2
+ (6.11)g l8 Q2 $1 N

v =i~ou+~
I

u
I
'u+&

I
w

I
'v+Cv'w'+8

I
u

I
'w

+E
I

w
I

w+Fw u'+0(5), (6.12)

and carry out a coordinate change of the form

where hj =hj(oi, oz, os), j=1,2, are C" complex func-
tions that vanish at the origin.

%e indicate explicitly the necessary coordinate changes
for the cubic terms in (6.10). To this order we have

&
I

v
I
'u+&

I
w

I
'u+)'u'w'+&

I
u

I
'w+&

I
w

I

'w+nw'u'

,
&'

I
w

I

'w+&'
I

v
I
'w+1"w'u'+&'

I
w

I
'u+&'

I
u

I
'u+n*u'w*, (6.13)

where the complex coefficients a, . . . , i) are to be chosen to achieve maximum simplification of (6.12). In terms of u, w

Eq. (6.12) becomes

u =i coo(u 2yu 'w '—+25
I

u
I
'w+ 2e

I
w

I
'w+ 4i)w 'v *)

+~
I

v I'u+&
I
w I'u+Cv'w'+D

I
v I'w+E

I
w I'w+Fw'v "+&(5»

showing that the last four terms in (6.12) can be eliminated by a suitable coordinate change. Dropping the tildes, we see
that (6.10) can be written in the form

v icoo+3 fv I +Bfw
f

N 0 —icoo+8'
f

u
I

'+A'
I

w
I

' +0(5), (6.14)
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with an unfolding which we write in the form

u =vt:~+ &~+&
I

w
I
'+b(

I

v
I

'+
I

w
I
')1

+O(5)+A,O(3)

w=wl~ —i~+~"
I

v
I

'+b*(
I

v I'+
I

w
I

'}I

+O(5)+ A,O(3),

(6.15a)

(6.15b)

by a suitable coordinate change of the form (6.11). Ob-
serve that in this form the equations are independent of
the phases, i.e., they are invariant under phases changes
t~t+ 8/cov. This symmetry induces the action

(u, w)~(e' u, e ' w), (6.17)

which we shall call S(1) to distinguish it from the SO(2)
translational symmetry. If the presence of this symmetry
is assumed at the outset, then by appropriately coupling
spatial translations with phase shifts, we obtain the new
symmetries

(v, w)~(e ' v, w), ( ,uw)~( ,ue 'ew) . (6.18)

For example, the first symmetry states that displacing a
right traveling wave a distance I to the left and then al-
lowing it to evolve in time for the time kl/cuv leaves it un-

changed. Since the invariants of (6.18) are the functions
lv I, lw I, we see that an assumed invariance with

respect to phase would lead to the Poincare-Birkhoff nor-
mal form (6.16). However, the phase-shift symmetry is
only a symmetry of the normal form, and is not an exact
symmetry of the physical system. As a result there will
be terms in the tail of the Taylor series that break this
symmetry. Under certain conditions these terms can be-
come important.

The general theory described above enables us to draw
important conclusions. %e begin by studying the solu-
tions of Eqs. (6.15) truncated at third order, which we
write as the four real equations

xi ——x&(A, +a„x2+b,A ),
xi =x2(A, +a„x i +b„A ),
g) =QP+QI.x 2 +6(A

2 . 2
y2 ———co —a;x )

—6; A

(6.19a}

(6.19b)

(6.19c)

(6.19d)

where (u, w) =xj.exp(i q&j), j= 1,2, and subscripts r, i denote
real and imaginary parts, respectively. The total ampli-
tude A is defined by

=x(+x2,2 2 2 (6.20)

and is proportional to X—1, where N is the Nusselt num-

where A, ~R —Ao, co —coo ——O(k), and a and b are com-
plex constants to be determined from the equations of
motion. These are the amplitude equations in normal
form to third order in the amplitude.

The above procedure generalizes to all orders in pertur-
bation theory, with the result that (6.10) can be written in
the Poincari-Birkhoff normal form

u g(~i lwl ) o u
(6.16)

R =80—(a„+2b, )x

R =Ro —bx
(6.21)

+2b ~0r r

FIG. 1. Bifurcation diagrams in the (a„b,} plane for the
Hopf bifurcation with O(2} symmetry, showing the amplitude 3
of standing (S%}and traveling (T%'} waves, as a function of the
Rayleigh number. Continuous lines indicate stable solutions,
dashed lines unstable ones.

ber. As explained above the phases decouple from the
amplitude equations (6.19a) and (6.19b). These equations
possess four stationary solutions of the form (xi,x2): the
conduction solution (0,0), the left- and right-traveling
waves (x,0), (O,x) and the standing wave (x,x). There are
no limit cycles in (x &,x2). The amplitude A and stability
properties of these solutions as a function of the bifurca-
tion parameter X are summarized in Table I, and exhibited
in the form of bifurcation diagrams in the (a„,b„) plane in
Fig. 1. Observe that two solution branches bifurcate
from A, =O; this is made possible by the doubling of the
eigenvalues due to the O(2) symmetry. Stable solutions
are found near the bifurcation only when both branches
bifurcate supercritically, and the stable solution is the one
with the higher Nusselt number. This conclusion is in-
dependent of the nature of the boundary conditions, pro-
vided these preserve the symmetry properties.

The primary solution branches can be classified by their
symmetries. Since the normal form has the symmetry
SO(2) XZ(2) XS(1), it is possible to have spatiotemporal
symmetries. The standing waves break the SO(2} transla-
tional symmetry, but respix:t the reflection and phase-shift
symmetries. The traveling waves break the Z(2) reflec-
tional symmetry, but are invariant under translations fol-
lowed by appropriate phase shifts [i.e., under the twisted
subgroup of SO(2) XS(1)]. '

The results obtained in Sec. IV are of course special
cases of the general theory described above. However, we
can use these results to obtain the coefficients a„,b, for
convection in binary mixtures in a porous medium, and
then use the theory to deduce the relative stability of
standing and traveling waves near the bifurcation. If we
take A, =R —Ro, then from Table I we conclude that
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TABLE I. Solution branches as a function of the bifurcation parameter A..

Solution

N,O)

(x,O)

(x,x)

Eqllatlcll

A =0
A, +b,A =0

A, +( 2a, +b, )32=0

Eigen values

A, A

—2A, , —Aa, /b,
—2A, ,Au, /(2 a, +b„)

where x is the amplitude of the left-traveling wave com-
ponent of w(x, z, t). On comparing with the results of
Sec. IV, we conclude that, depending on the parameters,
the coefficient a„can take either sign, and that b, is small
and negative. Thus when a„)0 there are no stable solu-
tions near bifurcation, but when a„(0 stable traveling
waves should be observed near bifurcation. This is the
case for S (S,. Since b„ is small in magnitude the stand-
ing waves are stable only in a very narrow parameter re-
gime.

The amplitude equations (6.15) can also be derived
directly from the governing equations using a procedure
similar to that used in Sec. V.

0 1 v

0 0 w
(6.22}

However, because the eigenvalues are real (note that there
are four zero eigenvalues), the appropriate representation
of the O(2) group is

D. The Takens-Bogdanov bifurcation
with O(2) symmetry

The interaction of standing and traveling waves with
steady states in the nonlinear regime can be studied by un-
folding the codimension-two bifurcation which occurs at
R=R„S=S,. Since the Hopf bifurcation with O(2)
symmetry will occur in the unfolding we must introduce
two complex amplitudes (u, w) as in (6.6), in terms of
which the linearized problem at 8 =R„S=S, takes the
orm

ai= lu I
+2= lw I

o'i= uw' +u* w. (6.24)

g3 g4
(6.25)

where by (6.23b) the functions gj =gj (cr, ,o 2, cr3),
j=1,2,3,4, are smooth real functions of the three invari-
ants.

If we expand the functions gj (cri,o2, oi), j= 1,2,3,4, in a
Taylor series about the origin, and demand that the linear
problem be of the form (6.22), then to third order we ob-
tain the equations

u =w+(a,
I

u
I
'+bi

I
w

I
')u+c, u'w'

+(ai I
u

I
+bi I

w
I

)w+czu'w +O(5),
w=(a3

I
u

I
+bi I

iu
I

)u+c3u w'

+(a
I

u
I

+b4
I

w
I

')w+c u'w +O(5),

(6.26a)

(6.26b)

where aj. ,b~, c~, j=1,2,3,4, are real coefficients. This is
the form of the amplitude equations on the four-
dimensional (real) center manifold. As we did for the
Hopf bifurcation, we can simplify these equations by a
smooth O(2)-equivariant coordinate change of the form

u hi h2 u

+ h, h~ w
j

(6.27)

where hj, j=1,2,3,4, are smooth real functions vanishing
at the origin. To simplify the third-order terms in (6.26),
we expand (6.27) in the form

The most general smooth equivalent vector field is then
given by

gj g2 v

( u, w )~e' '(u, w ),
(u, w)~(u', w'),

(6.23a)

(6.23b)

as in our discussion of the steady-state bifurcation. To
construct amplitude equations for (u, w) reflecting the in-
variance of the problem under spatial translations and re-
flections, we first write down the three basic invariants
under (6.23):

u =u+(a,
I

u
I
'+Pi

I
w

I
)u+yiu'w'

+(a21 V
I +~i I

w
I

)u+y2u'w +O(5),
w=w+«i

I
u

I +4 I
w

I )u+y3v w'

+(a4lu
I +P&l w

I
)iu+y4u'w +O(5),

and write (6.26) in terms of the new variables:

(6.28a)

(6.28b)

+( i+ i) I I +(a2 2ai+a4&
I

V
I
'w+(bi a2+~3 2y—i} I

w
I
'u—+(» Pi+P4 y2& I

w —
I

'w-
+(ci —ai+y3)u ~w *+(cz—a2+.y4}w u '+O(5),

w=a3
I

V I'v+«4 —2 i) I
V I'w+(b3 a~ 2yi) I

w —I'u+—(b4 A y~) I
—w I'—w+«3 —a~»'w'

+(c4—a4)w u '+O(5) .

(6.29)
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It is convenient to choose the real coefficients aj, P~, yj,
j= 1,2,3,4, to eliminate all the cubic terms in (6.29a). We
can also eliminate the fourth and sixth terms in (6.291).
This leaves four terms in (6.291) which cannot be removed

by a transformation of the form (6.28). Hence to third or-
der, we are left with the dynamical system

(6.30a)

&(g = '~s

where

A =9), 8=bi —02+2ci —2c4 y

C=c3+Q), D=Q4+0) —c3,

(6.301)

(6.31)

FIG. 2. The (D,M) plane for A &0 splits into 8 regions in
which the amplitude equation (6.34) exhibits qualitatively dif-
ferent dynamics. The equation is degenerate on the boundaries
separating the different regions. The convection system studied
falls into region II

and the tildes on ( U, w) have been dropped.
In order to study the dynamics near this codimension-

two bifurcation, we need to unfold the normal form (6.30).
Without loss of generality, we add small linear equivari-
ant terms to (6.301):

(6.32a}

u) =VU+~+l~ IU I'+& Iu I'+«Uui'+&'}1&

+D )U /iiu . (6.321)

(6.33}

With this scaling the amplitude equation (6.32) becomes

u"=(p, +2 i
u

i
)v+e[vu'+C(uv" +u'U')U

+D
~

v
)

u']+0(» ), (6.34)

Here p„v are the two unfolding parameters, and are
linearly related to R —R„S—S,. Equations (6.32) are
the desired amplitude equations near this codimension-
two bifurcation. As in Sec. V, we can measure the prox-
imity to the bifurcation in terms of a small parameter e,
and introduce a slow time r'=et, and scale U and the un-

folding parameters according to

3) is divided into a number of regions in which different
types of solutions are found. The plane is traversed by the
line

rv ( I+—r) }M=2(1+7+r )5s, (6.35)

corresponding to increasing the Rayleigh number R for
fixed 5s&0. By following this line from left to right a
succession of transitions is seen to occur, and is represent-
ed in the bifurcation diagram shown in Fig. 4. Both trav-
eling (TW) and standing (SW) waves bifurcate supercriti-
cally, with the larger-amplitude TW branch initially
stable. As R is increased a secondary Hopf bifurcation
takes place producing a stable branch of modulated (MW)
waves (i.e., waves with two independent frequencies). The
MW branch terminates on the TW branch in a global bi-
furcation at R, , at which the new frequency vanishes.
The unstable TW branch terminates at R, on the
branch of steady overturning convection (SS}which bifur-
cates subcritically from R, ; as R approaches R, the fre-
quency of the travehng waves approaches zero as
(R, —R). This is in contrast to the (unstable) SW
branch which also terminates on the SS branch, but

the priine denoting differentiation with respect to the slow
time t'. Note that the coefficient 8 does not enter at lead-
ing order in e. To this order the solutions therefore de-
pend on the choice of the three coefficients A, C,D and
the unfolding parameters p, v. This is in contrast to the
Z(2)-equivariant problem, in which the solutions depend
on two coefficients only.

A complete discussion of the dynamics described by the
normal form (6.34} is given in Ref. 8. Here we use these
results to make specific predictions for convection in

binary fluid mixtures in a porous medium. The results of
Sec. V give the coefficients A, C in the normal form; in
addition, from Sec. IV we deduce that D &0 and is of or-
der ajar. In this case the normal form (6.34) is nondegen-
erate, and the analysis of Ref. 8 applies. We show in Fig.
2 the (D,M) plane for A &0, where M=2C+D=2C.
The plane divides into eight regions in which different bi-
furcation diagrams are found. Since D,M ~ O„and
0&D/M «1, the convection problem we are investigat-
ing lies in region II . The corresponding (p, v} plane (Fig.

FIG. 3. The solutions of the amplitude equation (6.34) in re-

gion II as a function of the unfolding parameters p, v showing
the regions where the different types of solution (SS, SW, TW,
M%) are located, and their stability. Codimension-one bifurca-
tions occur along the lines separating the different regions. The
broken line indicates the succession of transitions as the Ray-
leigh number R is increased, for fixed S &S, [Eq. (6.35}j.
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FIG. 4. The bifurcation diagram showing the Nusselt num-
ber as a function of the Rayleigh number 8, for fixed S ~S,.

with frequencgvanishing as —1/ln(R, —R). Note that
R, and R, differ in general. Thus for the present
idealized system the initial Hopf bifurcation leads to
stable traveling waves, followed by a secondary bifurca-
tion which produces modulated waves. These waves
disappear at R, , where an abrupt (hysteretic} transition
to large amplitude overturning convection takes place.
This new solution is outside the domain of validity of the
bifurcation analysis.

VII. DISCUSSION

In this paper we have studied oscillatory convection in
a binary mixture in a porous medium heated from below
to illustrate both the techniques and the richness of
behavior that can be exhibited by such systems. The
theory described here emphasizes the role played by the
symmetries of the system, the O(2) symmetry induced by
horizontal translations mod(2m/k) and reflections in a
vertical plane, and shows clearly how the structure of the
amplitude equations and hence the dynamics of the sys-
tem, is determined by the symmetry. Thus the structure
of the amplitude equations will not change when the
boundary conditions are changed, provided the sym-
metries remain unaffected. A number of conclusions
that are independent of the boundary conditions can
therefore be drawn. For example, if both SW and TW
branches bifurcate supercritically, the one with the larger
Nusselt number will be stable. %e have seen that the
symmetry produces multiple branches in cases where a
single branch would be present in the absence of symme-
try, and allows one to classify the bifurcating solutions in
terms of their symmetries. We have shown now the am-
plitude equations can be put into normal form by means
of near-identity coordinate changes, and how the normal
form can be extracted from the partial differential equa-
tions. The perturbation methods described are the sirn-
plest and most direct methods for deriving the amplitude
equations. The results obtained are justified by the gen-
eral theory. The general theory also makes apparent any
degeneracies in the amplitude equations, since it describes
their generic structure.

The theory enabled us to make specific predictions for
the system under consideration. However, the imposition
of realistic no-slip no-solute-flux boundary conditions at
top and bottom is expected to affect the values of the
coefficients in the normal form of the amplitude equa-

tions. Thus conclusions based on the relative sizes of the
coefficients computed using idealized boundary conditions
are not a reliable guide to the experiments. However, it is
possible to extract from the present analysis those features
that might be expected to be robust and observable in the
experiments. ' These are summarized below.

(i) When standing waves are present the Nusselt number
oscillates with frequency 2', where co is the frequency of
the basic oscillation. %%en traveling waves are present,
the Nusselt number is constant except for small-amplitude
modulation, also at the frequency 2', due to the presence
of the sidewalls. This constant Nusselt number is unrelat-
ed to the Nusselt number for stable steady overturning
convection at the same Rayleigh number. In the experi-
ment, this modulation is observed at the 1% level. In
small-aspect-ratio experiments in which the pattern is not
visualized some care should therefore be taken to distin-
guish standing waves from (spatially} modulated traveling
waves. This can be done as in (ii) below.

(ii) The branch of standing waves terminates in a
heteroclinic orbit joining two unstable steady states at
R, . As R, is approached, the frequency of the oscilla-
tion vanishes as —1/ln(R, —R ). This qualitative
behavior is seen in Ref. 3.

(iii) The branch of traveling waves terminates in a
steady-state bifurcation and the frequency of the waves
vanishes as (R, —R). Evidence for this qualitative
behavior is given in Ref. 6.

(iv) The transition to steady overturning convection is
hysteretic.

(v) Bifurcation from traveling to modulated (i.e., two
frequency) waves can occur. s

(vi) Chaos via the Sil'nikov mechanism can occur on
the SW branch, and is associated with a heteroclinic orbit
of saddle-focus type.

(vii} Chaos on the TW branch near Ro is most likely to
occur near parameter values for which the Hopf bifurca-
tion at Ro is doubly degenerate, and could appear after
two successive Hopf bifurcations produced triply periodic
waves.

These observations are robust for two-dimensional
translationally invariant systems in which Ro, R„and R
are all of the same order of magnitude. We expect, on the
basis of experimental and theoretical considerations,
that much of the phenomena associated with the traveling
waves will persist in the presence of sidewalls, and we
have listed these above. An exception is provided by the
modulated waves in which the translation invariance
prohibits frequency locking. In the presence of side-
walls we expect such waves to exhibit locking. In addi-
tion, if substantially three-dimensional motions take place,
different dynamical phenomena should be observed. Fur-
ther. experiments will undoubtedly test these suggestions
in the near future.
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