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Simulations of Eden clusters with more than 10 sites by the use of a Cray Research Cray-2

supercomputer show that the thickness of the surface layer of round two-dimensional clusters, aver-

aged over all directions, increases as the radius for sizes above 50000000 sites. In simulations of
flat surfaces, on the other hand, the thickness increases as the square root of the height for strip
widths above 500. The initial growth of such strips is not described by one single power law and

asymptotically has a "dynamic" exponent close to T, i.e., it increases as predicted theoretically with

(height)'~ . In the range covered, our three-dimensional flat-surface thickness is not consistent with

a logarithmic law, and also in four dimensions the thickness does not approach a constant. Round
ctusters with more than 109 sites on the square lattice confirm the expected behavior due to anisotro-

py. Higher dimensions up to d = 12 were also studied.

I. INTRODUCTION

Growth models of various kinds have been investigated
actively during the last years. ' The simplest of them
seems to be the Eden model. Here we start from one oc-
cupied site at the origin, and at every step occupy one oth-
er site. This site is selected randomly from the set of sites
which have at least one nearest neighbor on the lattice oc-
cupied in one of the previous time steps. In this way one
forms one single cluster and can study its properties as a
function of s, the "mass" or number of occupied sites in
that cluster. We call the unoccupiml neighbors of occu-
pied cluster sites the perimeter sites or surface of this
cluster.

The simplicity of this process allows every unoccupied
neighbor again and again the chance to become occupied.
Thus every fixed site of the lattice will finally become oc-
cupied, if we only wait long enough. Therefore in the in-
terior of the cluster there are no holes left, all sites are oc-
cupied. On the other hand, there are no small isolated
clusters existing separately from the main cluster. Thus
apart from a narrow surface layer, we have a fully com-
pact structure, with the mass s increasing as s cc (radius)"
and the perimeter P as P ac (radius) ' in d dimensions. '

More interesting is the structure of the surface layer, in
particular its thickness W defined through

as the rms fluctuation of the distance r of the perimeter
sites from the origin of the cluster growth. Early work
claimed this thickness to be proportional to the cluster ra-
dius but was based on an incorrect data analysis. Plischke
and Racz first found W to vary as (radius)o but then
interpreted the systematic decrease of this exponent with
cluster size as an indication for an asymptotically loga-
rithmic behavior. Julhen and Botet gave, for fiat sur-
faces of width L, a thickness proportional to L '~ in two
dimensions, with possibly a logarithmic variation of 8' in

three dimensions and a saturation to a constant value in
four. Later, large Eden clusters were shown to feel the
anisotropy of the lattice, ' and the exponent for the sur-
face thickness as a function of radius was seen to increase
for large clusters from its minimum near 0.36 towards —,

and then further up, the last value being 0.72 for clusters
with 10 sites on the square lattice. On the other hand,
the same authorss found WocL'~2 for flat surface on
strips of widths L up to 724 in two dimensions. This
discrepancy ~as speculated as being due to the anisotropy:
Averaged over all directions the distance of the perimeter
sites from the origin fiuctuatm by an amount proportional
to the radius, thus W ~s '~, if the perimeter sites do not
form a circle but a more amsotropic structure in the direc-
tion of a diamond shape. Averaged only over one direc-
tion, as done in a simulation of flat surfaces, a better de-
fined surface thickness is found which increases more
weakly than the cluster radius, in agreement with
mathematical proofs. " However, the anisotropy found in
Refs. 7—9 is very weak, and thus for the maximum mass
s =2, Ref. 8 could not yet observe the expected asymp-
totic behavior, surface thickness ~ radius, dominated by
the anisotropy. One aim of our paper is to go to larger
cluster sizes and to check whether this theoretical expecta-
tion is fulfilled. We also want to extend the simulation of
fiat surfaces in three and four dimensions to larger sys-
tems to check if there are surprises hidden beyond previ-
ous system sizes.

For the simulation of flat surfaces, many stud-
ies ' ' ' have also been made for the "dynamic" as-
pect: How does, as a function of height h over the initial-
ly occupied substrate, the surface thickness W increase for
fixed strip width L. In such simulations the height h can
also be interpreted as a time. The scaling assumption'

W=L f(hiL')

means that the scaling function f approaches a constant
for large arguments, giving Wc& L' for flat surfaces "in
equilibrium, " as discussed above. For small arguments of
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f, on the other hand, W increases as h~ independent of
strip width L, with P=x/z from standard scaling argu-
ments. ' Two-dimensional numerical ' ' or analytical'
estimates give z= —', and thus P= —,

' if we believe the
square-root law x = —,

' for the surface thickness at very

large heights.
This widespread belief that z is not unity means that

geometrically the Eden clusters violate similarity: a strip
of width L =100 and height h =1000 will be in "equili-
brium, " i.e., the surface thickness W no longer increases
appreciably with height h. On the other hand, a strip
with L = 10000 and h = 100000 will still be in the regime
where the scaling function f(h/L') has a value appreci-
ably below its value at infinity, and the surface is not yet
in "equilibrium. " This lack of geometric similarity for
z ~ 1 not only means that computer simulations are very
time consuming for large L but also' that the surface
thickness W of a round cluster of radius L does not scale
with the same exponent as W for fiat surfaces of hnear di-
mension L. We want therefore to check whether the
trends indicating z= —, are continued if we use larger
strips, and also what is happening for large systems in
three and four dimensions. A summary is given in Ref.
16.

Our next section describes the simulation methods on
the new Cray Research Cray-2 supercomputer, Sec. III
our analysis of the results, and Sec. IV our conclusions.

II. COMPUTATIONAL TECHNIQUE

Our work was done on a Cray-2 supercomputer, which
is the largest general-purpose machine presently available
for basic research. Its MOS (metal-oxide-semiconductor)
main memory contains 268435456 64-bit (binary digit)
words, it has four independent processors, its FORTRAN

compiler performs automatic vectorization not only of
trivial statements, and its scalar operations are also fast.
Its main drawback for our Monte Carlo simulation seems
to be the rather slow access to the main memory, and the
not yet perfect code optimization by the Cray FQRTRAN

compiler. Some of our computations were made on a pro-
totype machine with "only" 16777216 words and a single
processor. During our work a new compiler became avail-
able which corrected an error in the earher compilers af-
fecting our single-bit storage of the lattice used in some
computations.

Most of the calculations were done with the standard
method used, e.g., in Refs. 8 and 9: A large lattice stores
the information about which sites have never been
touched by the process, and a separate list keeps the coor-
dinates of the perimeter sites. Thus a lattice point could
be stored in a single bit, whereas the perimeter list con-
tains large integers. For every step of the growth process,
one selects randomly a member from the perimeter list of
momentary length P, occupies it by removing it from the
perimeter list, stores the coordinate of the Pth perimeter
site in that element of the list where the newly occupied
site was stored before, and decreases P by 1. Then for
each of the 2d neighbors of the newly occupied site (in d
dimensions) one checks if it has been touched before; if
yes one proceeds to the next neighbor, if no one marks it

in the lattice as touched, increases P by 1, and adds this
site to the perimeter list.

To simulate flat surfaces we started with a whole line
{plane in three dimensions) occupied, instead of a single
site for round clusters. For these calculations we saved
memory by storing only the growth zone in the computer,
as was done already in Ref. 9. Thus when the last added
site was close to the upper boundary of the computer
memory used, we looked for the perimeter site with the
smallest coordinate, determined in which line {ofa two-
dimensional strip; planes in three dimensions) this empty
site lies, and shift the whole structure towards smaller
coordinates such that this empty site then lies in the first
line. Typically the number of lines over which the perim-
eter sites are spread is one order of magnitude larger than
the thickness W defined above. This spread could be used
as another definition of a surface thickness, W'. The
fluctuations of W' are much bigger than those of W and
no precise data can be extracted. The shifting in the com-
puter memory is very fast since it is handled efficiently by
the automatic vectorization. Because of large memories
available it occurs only very seldom and uses a negligible
fraction of the total CPU (central processing unit) time
spent.

Because of these memory savings, we stored for "fiat"
simulations our lattice as one site per full 64-bit word.
For round clusters, where memory shifting was not ap-
plied, we used mainly storage in single bits, as in Refs. 8
and 9. Then we gained a factor 64 in memory for a loss
of about 30% in speed. This slowing down is much weak-
er than the factor 3 lost on the Control Data Corporation
CDC-176 of Refs. 8 and 9 since the supercomputer has
64-bit words, whereas the CDC-176 has 60-bit words.
Finding the connections between bit addresses and word
addresses thus involved only fast shifting by 6 bits (factor
64), and no slow divisions and multiplications with 60.

The Eden growth process, as described above, is a re-
cursive process, i.e., occupying one site depends upon pre-
viously occupied sites. It cannot be vectorized easily.
One could simulate many growth processes simultaneous-
ly but that would be still quite comphcated and use lots of
memory (64 times as much). We therefore developed a
modified algorithm to vectorize the growth of a single
cluster. Cray supercomputers prefer, in contrast to a
CDC Cyber-205, a vector length of 64 elements. 64 dif-
ferent perimeter sites were selected "simultaneously" (in
the sense of vectorization) to be occupied. Of course,
sometimes one will select twice the same site to be occu-
pied and thus make an error. However, the probability of
this error occurring is smaller the larger the perimeter P
is, and since we are interested here in the limit of cluster
size and thus P going to infinity, this systematic error
goes to zero. When the neighbors are investigated as
described above, we may again make errors of the order of
64/P, since one site might be neighbor for two of the 64
just™occupied sites. Vectorization requires all 64 growth
processes to be simulated in a similar fashion, thus our
perimeter hsts contained pointers to some ghost lattice of
typically several thousand occupied sites (one additional
line or plane of sites). These ghost pointers were inserted
whenever a site was occupied and thus removed froin the
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list, or found not to be a fresh perimeter for the newly oc-
cupied sites. In principle it would have been sufficient to
have all these pointers referring to one single occupied
site, e.g., site L in the zeroth line of the strip. But then
this element in the computer memory would be investigat-
ed very frequently, and those 64 investigators would
hinder themselves (memory bank confbcts), thus slowing
doom the speed. As an analogy, 64 detectives assigned
randomly to 1000 different cases will confiict with each
other much more rarely than if they all try to solve the
same case. In regular intervals, though not necessarily
after each group of 64 growth steps, we had to remove the
ghost sites from our perimeter lists. We did not attempt
to combine vectorization with single bit handling; because
of the absence of a suitable vector shift instruction, such
vectorization is not possible for Cray machines but would
be possible on the Cyber 205. Figure 1 shows, for three-
dimensional flat surfaces, how the thickness calculated
with the ve:torized program approaches, as expected, the
correct thickness (from the normal program) if the system
size increases.

The computing time for the nonvectorizable algorithm
for fiat surfaces, with memory shifting and storage of
each lattice point in a full word, was nearly 6 @sec per site
added, slightly faster than the corresponding algorithm on
the "normal" CDC-176 computer. This can be under-
stood since the execution time is bound by random-access
memory references, the memory being about equally fast
on both machines. With storage in single bits the super-
computer was twice as fast as the CDC-176. The vector-
izable algorithm was, if written in FORTRAN, twice as
slow as the nonvectorizable version since random elements
of the memory had to be read and stored. The FoRTRAN
compiler currently does not compile these memory refer-

ences into gather and scatter machine instructions (which
do exist in the hardware). Writing its innermost two
loops in assembler code, we increased the speed of the vec-
torized algorithm to less than 0.8 @sec per step, i.e.,
gained a factor of 15. However, some of these steps added
no sites since a ghost site was selected instead, and thus
the effective speed was only about half as large (1.6 psec
per site). Thus the speed gain of assembler-coded vectori-
zation is less useful than the ratio of 0.8 to 6 @sec first
suggests. Nevertheless, because of an overall speed gain
of a factor of 4, many calculations for larger sizes were
done using the vectorized version: most remaining calcu-
lations employed the single-bit storage technique. (These
speeds hold in two dimensions; for higher dimensions the
calculation is 20—40% slower. )

In summary, the advantage of this supercomputer with
its present software for our problem was its large
memory, not so much its speed. %e thus concentrated on
simulating one or a few large systems, instead of hundreds
or thousands of intermediate sizes. ' In this way we
dramatically reduce the finite-size effect disturbing previ-
ous investigations.

III. RESULTS

A. Round clusters

Figure 2 shows the surface thickness W of our round
clusters containing up to 2M=1073741824 sites, 256
times more than the largest round clusters simulated for
Ref. 8. (The quadrants of Ref. 8 correspond to clusters
up to 2 sites but do not have the same surface thickness
W as the round clusters because of quadrant boundary ef-
fects. We now found also their effective exponents to be
somewhat different from those of the full clusters. ) Table
I gives our results for the convenience of future research-
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FIG. 1. Ratio of surface thickness as determined from vec-
torized program, to "true" surface thickness from scalar pro-
gram, in three dimensions, vs reciprocal number of sites of flat
surface. Vectorization is correct only if this ratio approaches
unity.

FIG. 2. Surface thickness 8' for round clusters as a function
of number s of sites in the cluster {square lattice). The circles
give fV for the corresponding flat surfaces in equilibrium. The
inset shows the ratio of thickness to radius.
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TABLE I. Surface thickness 8' averaged over the whole cir-
cumference of round clusters on the square lattice, as function
of cluster size (a "megasite" 1048576 occupied lattice sites).
(Averages over 1 to 4 runs. )

"Megasites"

thus confirming the exponent —,
' found earlier ' for L

near 512: No change in the trend here. Thus asymptoti-
cally the thickness of flat surfaces seems to grow as
0.42L ' on the square lattice. Again, Table II gives de-
tails of our results; purely empirically we can flt most of
these data and those of Ref. 6 on

4
8

16
32
64

128
256
512

1024

10.0+0.4
11.2+0.5
13.6+0.7
16.9+0.9
21.1+0.9
24.5%0.7
31.8+0.8
45.2%2.7
66.1x2.5
92.5+2. 1

125.2

a=0.42L'/'(1+18m —31a.'/'+ . ), (5)

but we do not assert that this fit gives a reliable estimate
of the correction exponents.

The thickness of the surface layer in a simple cubic lat-
tice for three dimensions and a hypercubic lattice for four
dimensions is plotted in Fig. 3 in the form of W versus
log2(L), with L up to 1024 in three and 128 in four di-
mensions, for fiat surfaces of linear dimension L with
again the orientation in a lattice direction. We see that
the four-dimensional thickness increases first faster, then

ers. We see a complex behavior but starting from about
50000000 sites (i.e., above the previous limits) the thick-
ness seems roughly proportional to the square root of the
cluster mass s, i.e., proportional to the cluster radius. The
inset shows the ratio of thickness to cluster radius; for the
largest clusters the radius, defined as the average distance
of the perimeter sites from the origin, is 18488 lattice
constants. From the last deciide in cluster sizes we deter-
mine the surface thickness as

512
1024
2048
4096
8192

9.38+0.02
13.6 +0.2
18.9 +1.3
26.1 +0.5
38.7 +0.5

TABLE IL Equilibrium surface thickness W for flat surfaces
of linear extent L in d dimensions (of which one can be regard-
ed as time).

Thickness

IV=0.002 65s ' (3)

We have also looked at the anisotropy of the clusters as in
Ref. 8 and found again that the perimeter sites on the lat-
tice axes are slightly farther away from the origin than
those along the lattice diagonal, the degree of anisotropy
being 2'~/o, the same as in Ref. 8 for their largest clusters.
This weak anisotropy explains why we needed clusters
containing more than 50000000 sites to see the asymptot-
ic behavior: The thickness W of flat surfaces, to be dis-
cussed below, is for clusters below 50000000 sites larger
or about equal to the W of round clusters, if we identify
cluster radius and strip width L. This identification was
questioned in Refs. 13 and 14 but seems to work neverthe-
less. Figure 2 shows these values too, and the two data
sets separate near 50OOOOOO sites. Thus, as speculated in
Ref. 8 without direct evidence, the surface thickness of
very large clusters is dominated by the anisotropy of the
cluster shape, whereas the more intrinsic surface thick-
ness, as measured on flat surfaces, is smaller asymptoti-
cally. Thus in the limit of extremely large clusters, the
surface thickness is neghgibly small compared to the clus-
ter radius but the clusters are not exactly circular. This
result is compatible with mathematical theorems" about
the perimeter distribution.

8. Rectangular clusters

For flat surfaces oriented along the lattice direction we
found in the square lattice for strip widths L between 512
and 8l92,

pr I 0.511+0.025

2
3
4
6
8

16
24
32
48
64
96

128
192
256
384
512
768

1024

2
3

6

12
16
24
32
48
64
96

128

1.96+0.01
2.60%0.04
2.90+0.03
3.21%0.03
3.41+0.02
3.75+0.01
3.95+0.01
4.09+0.01
4.32+0.02
4.52+0.02
4.82+0.03
5.12+0.03
5.49+0.10
6.07+0.10
6.68+0.10
7,17+0.15
7.21+0.4
8.8 %0.3

2.43+0.16
3.60+0.15
4.07+0.14
4.42+0.14
4.45 %0.17
4.81+0.12
4.75+0.02
4.90+0.03
5.00+0.01
5.08+0.01
5.20+0.03
5.3 +0.1

5.5 +0.1
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FIG. 3. Squared equilibrium width vs system size in three
and four dimensions. Simple arguments would give a straight
line in three dimensions, and a constant in four.

C. Nonequilibrium results

The Eden process is a nonequilibrium process.
Nevertheless the above properties of the surface thickness
over Aat substrates can be regarded asymptotically as
equilibrium properties if we imagine an observer to rise
together with the rising surface and if we go to large
enough heights. In this sense the height h =t over the

slower with L than the three-dimensional one. Thus it is
at first sight plausible that the four-dimensional thickness
approaches a constant and that in three dimensions it in-
creases logarithmically. This result would agree with ear-
lier hopes from much smaller L. However, the last points
for the largest systems do no longer follow that trend but
are above the trend, strongly in three and slightly in four
dimensions. Perhaps also in four dimensions the surface
is becoming "rough, "i.e., has a thickness going to infinity
in infinite systems. Our systems are not large enough to
allow a quiuititative analysis; they merely shatter the hope
that four-dimensional Eden clusters are simple in their
structure already for small sizes.

These hopes were based on simple capillary-wave
theory which predicts a constant width for dimensionality
above three. In three dimensions it predicts a squared
width proportional to logz(L). We see from Fig. 3 already
that the behavior is more complicated, at least in the size
range covered here. We leave it to the reader to speculate,
with the help of Table D, about the asymptotic variation
of the thickness in three and four dimensions; the statisti-
cal errors increase with increasing system size and make
such speculations rather unreliable.

Since in three dimensions for L =1024 we used about
210 megawords of Cray-2 memory in a 9-h run, it will not
be easy to go to much larger sizes within reasonable com-
puter time. The data of Juihen and Botet fitted much
better the expected logarithmic law since they were re-
stricted to sizes smaller than those for which we obtained
the upturn in our data. We see here again how new ad-
vances in computational power give qualitatively different
results from previous attempts.

We verified the computational credibility of the width
for the largest systems by using two different, indepen-
dently developed computer programs, and also using two
different types of random-number generators.
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FIG. 4. Dynamic exponent P=d(In&)fd(Inh) vs time h in

square and triangular lattice.

original substrate is a measure of the time, and instead of
talking about d-dimensional Eden clusters one has d —1

space and one time dimension. In this well-known inter-
pretation, the behavior of fiat surfaces for "small" height
corresponds to the approach towards equilibrium. Small
here means that the heights have to be much larger than
the lattice constant but much smaller than the asymptotic
limit of the thickness for "time" going to infinity at fixed
system width I.. In particular one can ask with what
power of the time does the surface thickness increase in
this intermediate region, i.e., what is the value of the ex-
ponent P in

IV 0:h ~, 1 && W(h) && W( oo ) .

Previous work in two dimensions found P near —,
'

[often
expressed as z=ll(2P) near —, in dynamical scaling'i]
but Hirsch and Wolf pointed out that from numerical
data, —,

'
is only a lower bound for P. Kardar et al. '

found z= —, in two dimensions from a general field

theory of surfaces.
Figure 4 shows a rich behavior of the effective exponent

P=d inHVd 1nh as a function of h, including partial oc-
cupation of the first layer with h «1. Even more com-
plicated than the recent results of Family' in a different
model we see here a maximum, a minimum, and an in-
between near saddle point. Somewhat surprisingly, for
the triangular lattice the behavior is much simpler. We
hope that theoretical work will explain the behavior at
short times by a perturbative treatment. However, the
crucial feature in two dimensions is the asymptotic in-
crease of the effective exponent P for large times: Our
last data points are near —,

' but the slope of the curve is

positive. Table III gives the effective exponents P as func-
tion of height, from several runs for L = 1048 576. Figure
5 tries to answer the question if P rises to a value above —,

'

(z & —,'). We see that the ratio W/h'f seems to approach
a constant which moreover is reassuringly close to unity.

This approach to a constant does not yet prove P= —,
'

since finite-size effects have to be taken into account: For
a fixed width L, the effective exponent P must go to zero
for sufficiently long times since then the thickness W
reaches its equilibrium value. This equilibrium value is
extrapolated to be about 430 in our case, from the results
of Sec. IIIB. Finite-size effects therefore always force P
to have a maximum as function of time; as pointed out by
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TASI.E III. Zecrease for long times of the dynamic exponent

P on the sqnsrc lsttlcc with L= 1 048 576, found from N 1n-

dependent runs. Statistical errors are of the order of 0.01. For
1.=262 144 the results from N =8 runs are given in

parentheses, with about the same errors.

Time interval

O. 20—

0.15—

128—256
256—512
512-1024

1024—2048
2648—4096
4096—8192

0.275
0.282
0.311
0.319
0.324
0.326

(0.288)
(0.294)
(0.315)
(0.317)
(0.333)
(0.316)

0.05—

O d=3, L=2048

+ d=s L =128+ t

J ~ o=a, L=&zs

Hirsch and Wolf, the numerical estimates are thus only
lower bounds for P. Our largest thicknesses observed here
were about 20, which is not many orders of magnitude
smaller than 430. Thus, we made also runs with smaller
sizes L=262144 and L=65536 and found there, within
their larger scattering, the exponent P again to be about
—,'. For L =8192, on the other hand, it was significantly
lower. Thus we think our data for L=1048 526, limited
to heights (times) less than 10', are not yet inQuenced
measurably by the finite L value and thus show our data
to be consistent with the theoretical prediction of Kardar
et al. '3 Of course, it is possible that for even larger times
another maximum is found and that P then falls again.

In thr'ee and four dimensions our analogous studies
were much more cotnplicated. The reason is simple: In
all dimensions at the end of the simulations the surface
thickness IV is of the order of ten lattice constants. In
two dimensions, for L =10s this value is much smaller
than the equilibrium thickness near 400. The same num-
ber of sites in the substrate plane corresponds to L = 1000
in three and L = 100 in four dimensions. Then also the
asymptotic thickness is of order 10 and thus no longer

x d =4, L=64

X
I l I I l

'l6 M 64 128 256 512

FIG. 6. Dynamic exponent P for intermediate times in three
and four dimensions.

much larger than the time-dependent width. Necessarily
the effectives p approaches zero if the thickness ap-
proaches its asymptotic limit. Thus our data for three
and four dimensions seem reliable only for rather short
times; we used our largest systems here by storing only the
growth zone, and its lattice sites in single bits. (L =8192
in three «nd L =256 in four dimensions. ) We see from
Fig. 6 that the behavior is qualitatively similar to two di-
mensions for heights (times) up to about 500. The effec-
tive exponent sharply decreases with increasing height be-

tween 4 and 100. Then for the largest systems it increased
again. Thus we have again a minimum as in two dimen-
sions, the value at the minimum being even lower for
d =3 and d =4 than for d =2. Longer times would have
cost too much computer time but presumably would have
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FIG. 5. Variation of' thickness 8' divided by the theoretical-
ly predicted power of time h, with time or, in the inset, with
(time) ', for the square lattice.

FIG. 7. Short-time variation of dynamic exponent P with

time in three and more dimensions (left). Right scale shows the
corresponding variation of the perimeter, normaHzed by the
number of si5% in the Aat surface.
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not been very helpful since then finite-size effects would

take over. Thus we do not know whether after the
minimum the three- and four-dimensional exponent P
rises to its two-dimensional value —, (as speculated for
1=3 in Ref. 13), or whether it approaches another value.
The only reliable information seems that for heights up to
a few hundred, before finite-size effects dominate, the
three- and four-dimensional flat surfaces behave similar to
the two-dimensional ones.

For short times (partially filled planes) this conclusion
is confirmed by Fig. 7. Again the effective exponent P
starts for very short times at P= —,

'
(this value can easily

be shown to be exact for t going to zero), reaches a max-
imum, falls down to a value slightly below —,', and rises

again slightly. This increase is stronger for d =3 and 4
than for d =2; in the latter case the behavior was nearly
that of a saddle point. Figure 7 also gives information on
the approach to equilibrium for the perimeter.

D. High dimensions

Since already in four dimensions we had difficulties in
establishing that the asymptotic behavior is not that of
smaller systems (last points in Fig. 3), in higher dimen-
sions we would be unable to find such effects reliably.
Also the upturn in the dynamic exponent P was just visi-
ble in four dimensions (Fig. 6) and cannot be expected to
be tested reliably for higher d. Thus we concentrated on
very short times for higher d =10 and d =12, using
L =4. (For L =2 we got similar results; thus in this re-

gion finite-size effects are not important. ) We see in Fig.
7 a behavior similar to that in lower dimensions.

For somewhat larger times, the exponent P in ten di-
mensions for L =4 drops sharply to zero; it is about 0.19,
0.04, and 0.02 in the time intervals 32—64, 64—128, and
128—256, respectively. For this small I. value one cannot
expect to see an upturn in P for longer times even if there
is one,

reached its asymptotic value much earlier, as noted al-
ready in Ref. 9; roughly it has reached equilibrium when
the effective exponent P falls off to its ininimum (Fig. 7).
Thus we think that there are two reasons why the surface
thickness is much larger than unity: In the first time
period, the perimeter grows from its initial size to its
equilibrium size several times larger. As a result the
width increases, roughly with the square root of the
height (time), from zero to some intrinsic width. It stays
there (at about 4 lattice constants in two dimensions, at
about 5 in four dimensions, and in between in three) dur-
ing the second time interval mentioned above, as Fig. 8 il-
lustrates. During that time the growth exponent P is
therefore close to zero. Later, in the third period, fluctua-
tions of this intrinsic surface make the total surface thick-
ness dependent on the system size, as predicted by
capillary-wave theory. In two dimensions we saw that in
this third "fluctuation" regime the thickness increases as
(time)'~ whereas in three and four dimensions we only
observed the beginning of this third phase, and for higher
dimensions we could not even see that. For sufficiently
large times at a fixed system size L, the surface thickness
W will again reach a plateau, the equilibrium thickness of
Sec. III B. For d =2, 3, and 4, the third phase, the grow-
ing of the surface thickness due to fluctuations in the "in-
trinsic" surface, starts after a height of the order of 102

(provided the system is large enough). Thus the asymp-
totic behavior can only be seen if the observed thickness is
larger than the intrinsic thickness of 4—5 lattice con-
stants.

In two dimensions we could easily reach larger
thicknesses and thus draw conclusions about the asymp-
totic behavior. In higher dimensions our thicknesses were
always below 10, and such conclusions are unreliable.
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IV. DISCUSSION

For two-dimensional round clusters we found roughly
what we expected: a surface thickness proportional to the
cluster radius since the cluster is anisotropic. As long as
the cluster is of moderate size, this effect is not yet visible
in the surface thickness which is then dominated by that
of a corresponding flat surface, and therefore the asymp-
totic behavior sets in only at 10 sites. How can we inter-
pret the complicated behavior found here for flat sur-
faces?

If we ignore the small maxima and minima for short
times, which we observed for d =2—12, we may approxi-
mate the dynamic exponent P in that region up to heights
(times) of a few lattice constants by its theoretical value
P= —,

' for short times. Then we can distinguish between

three time regions. First P stays at its short-time value,
then it falls off sharply, and after about 10 layers filled it
increases slowly. For d =2 this increase stopped at P= —,',
for d above 4 we could not see this increase due to our fi-
nite system size. The perimeter, on the other hand, i.e.,
the total number of empty neighbors of occupied sites,

UJ
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FIG. 8. Variation of thickness 8 with time h in various di-
mensions, indicating the initial build-up of the intrinsic surface
thickness, followed by the much slower increase due to long-
wavelength fluctuations.
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Earlier work has only seen the intrinsic surface, not the
fluctuation regime.

We now also have an explanation for the equilibrium
behavior of Fig. 3. For small system sizes, the equilibri-
um thickness is of the order of the intrinsic thickness, i.e.,
about 5. Only if the linear dimension I. is larger than
about 10 do we see if surface fluctuations push the thick-
ness to larger values. Thus in a plot' of thickness versus
I. the curves for d =2, 3, and 4 all go through about the
same point L =100, %=5; only for larger L the new
growth is seen. Equilibrium asymptotic behavior can thus
only be observed for hnear dimensions L far above 100.
We saw it in d =2, found it hampered by statistical flu-
ctuation in d =3, and just saw its beginning in d =4.
Equilibrium studies in higher dimensions thus also are ex-
pected to require much more than 100 occupied sites, a
challenge for future supercomputers.

In summary, large-scale computations were made to
look for the asymptotic properties of the seemingly so-
simple Eden model. In two dimensions we confirmed the
trend visible before that the thickness of a fiat surface in-
creases as the square root of its linear dimension. For
round clusters we found for the first time what was specu-
lated before, that the surface width, averaged over all

directions, varies proportional to the radius. The asymp-
totic dynamic exponent z= 1/(2P) for d =2 seems to
agree with both a theory' and previous numerical results
for much smaller systems. For small and intermediate
times, maxima and minima are seen in the variation of the
effective dynamic exponent. In higher dimensions we
found that earlier trends are not continued if we go to
larger system sizes, and we offered an explanation that
linear dimensions I. above 100 are needed to study the
fully developed equilibrium of the surface fluctuations.

From the computational point of view we found appli-
cations for the huge memory of the Cray-2 but would
have liked to have also a corresponding increase in speed,
which was lacking in our simulations. The Eden model is
simple to define but very difficult to study numerically in
its asymptotic regime. Also its Monte Carlo simulation
cannot easily be vectorized for the Cray-2, and thus this
study utilized mainly its huge memory, not its vector
speed.
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