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Many-body polarization and overlap effects in the dynamic structure factor
of dense krypton gas
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Molecular-dynamics computer simulations of dense krypton gas have been carried out for p= 13.8
atoms/nm and T =297 K, with use of the best available pair potentials. The results are compared
to published experimental data at this state to discover the role of the many-body potentials of the
atoms on their dynamics. It is found that these effects produce a marked slowing down of many-

body collision processes.

I. INTRODUCTION

This is the second in a series of investigations' in which
the results of molecular-dynamics (MD) simulations,
based on pair theory and using the best available pair po-
tentials for krypton, are compared to experimental kryp-
ton data. $pecifically, the dynamic structure factors ob-
tained from simulations using the pair potentials of Azizi
and Barker et al are co. mpared to the experimentally-
determined dynamic-structure factor. This comparison
is made for dense krypton gas at a temperature of 297 K
and a density of 13.84&(10 atoms/mi, which is about
twice the critical density.

The conventional pair theory of atomic fluids assumes
that once the pair potential is known, the atoms may be
represented as rigid particles interacting with this pair po-
tential. If the latter represents the real interaction be-
tween two atoms it includes the usual nonrigidity effects
such as polarization, overlap, etc. Therefore, the approxi-
mation inherent in the pair theory, is that these effects
will be considered at the level of two-body interactions but
neglected at three-body or higher levels. We are investi-
gating how large an error this introduces in calculations
of the dynamics at the atomic level. Therefore, we try to
make our computer simulation the best estimate of the ex-
act pair theory prediction.

A qualitatively consistent and quantitatively significant
difference in simulation and experimental results is found
in the momentum transfer (fiq) range, 0.60
A ' & q & 1.30 A '. The experimental dynamic-
structure factor has a higher peak and is narrower than
that determined from the simulations. This effect initial-
ly appears at q of 1.30 A ' and increases as q is de-
creased to the minimum value accessible in the simula-
tions of 0.60 A '. There is agreement at high q. In our
earlier study, a qualitatively similar difference in experi-
mental and simulation results were observed at a q of 0.80

0

A '. In the present case the density is about 30% larger
which seemingly accounts for the more significant differ-
ence in these results.

The pair potentials of Aziz and Barker et al. closely
agree with one another. Their correctness is suggested, in-
directly, by the fact that both yield gas-phase properties
that agree nicely with experimental data. Recently,
Barocchi et al. obtained a pair potential for krypton
from experimental structure data at low densities, and
compared this to the Barker et al. " potential thus provid-
ing a direct test. Excellent agreement was found except
for a small discrepancy in the range 5—10 A.

The above comments suggest the pair potentials used in
the simulations closely agree with the true pair potential
for krypton. Hence, it is unlikely that the differences we
observe in the simulated and experimental dynamic-
structure factors result from the form of the pair potential
used in the simulations. We feel that these differences are
a result of a failure in the pair theory; that is, the neglect
of effects such as polarizability and overlap in the many-
body terms and so are not accounted for in the simulation.
These effects would involve three or inore atoms and so
involve distance ranges corresponding to q —1 A

There has been considerable discussion about the mag-
nitude and role of many-body forces in atomic fluids. For
example, in a revie~, Barker expresses the view that
"many-body interactions other than the triple-dipole
Axilrod-Teller interaction are relatively unimportant. "
Barker notes that pair plus Axilrod-Teller interactions
nicely describe pressure-volume-temperature as the third
virial coefficient of argon. However, in regard to the im-
portance of many-body forces with respect to the struc-
ture of dense krypton gas, Egelstaff and co-workers have
shown that the Axilrod-Teller interaction is relatively
unimportant while non Axilrod-Teller interactions are sig-
nificant in determining the static structure factor S(q) at
high densities for q in the range 0.3—1.0 A . Teitsma
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and Egelstaff demonstrated that the Axilrod-Teller in-
teraction did not adequately describe the third virial coef-
ficient of ${q). Egelstaff, Teitsma and Wang, and Egel-
staff et al. showed that the Axilrod-Teller term does not
generate the correct density dependence to explain the ob-
served behavior of S(q) for krypton. More detailed ex-
perimental studies are required to resolve the problems
evident in this field, and for this reason we have (in our
earlier paper and here) tried to extend these investigations
to the most sensitive data available, namely that for the
dynamic-structure factor. Papers by Schommers9'0 re-
porting MD simulations of the velocity correlation func-
tion and other dynamic properties, indicate that these data
are likely to be more sensitive to many-body terms than
even the static structure factor. Moreover, the sensitivity
is enhanced by the comparison of experimental data with
good computer simulations using reliable pair potentials
for real krypton atoms. Thus our objective is much wider
than an examination of rival claims about particular
forces. We would like to understand the physical proper-
ties that are influenced the most by many-body forces.

The simulated dynamic structure factor is determined
from a pair of independent MD simulations. In Sec. II
the simulation procedures are discussed. In Sec. III a
comparison of the MD results is given, discrepancies be-
tween these results are noted and reasons for these
discrepancies are suggested. A comparison of simulation
and experimental results is given in Sec. IV. In that sec-
tion, we report the difference between experimental and
simulation results for q ( 1.30 A ' and our interpretation
of this. We also comment on the consequences of differ-
ences in the experimental and simulated dynamic-
structure factor on the fluid structure and many-body col-
lision processes. Conclusions and suggestions for future
work are given in Sec. V.

II. MOLECULAR-DYNAMICS CALCULATIONS

Taking the Fourier transform of p(r, t} gives

pq(t) = g exp[iq rj(t)] .

The intermediate scattering function, I(q, t), is defined as
the self-correlation of pq(t), thus

I ( q, t) =—(p q(0)pq(t) )
1

1 x exp [iq [r)())—r„(0)]f ), (3)

where ( ) represents the equilibrium ensemble average.
I(q, t) is related to the dynamic-structure factor (also
called the scattering function), S(q,co), by

+oo
S(q,co) = dt exp(icot)I(q, t) .

2$'

The microscopic number density for a system of N par-
ticles with positions rj(t),j= 1,2, . . . , N, is defined as

p(r, t)= +5(r r, (t)) . —

I(q, t} is related to the van Hove correlation function
G(r, t) by

I ( q, t) = J dr exp(iq. r}G(r, t) .

The quantity G(r, t)dr gives the probability of finding a
particle within an element dr at r at time t given there
was an arbitrary reference particle at r=0, at time r =0.
Hence, G(r, t) describes the structure of a fiuid in both
space and time. In this sense equations (4) and (5) relate
S{q,c(]) and I(q, t) to the fiuid structure. We are con-
cerned with an isotropic fiuid which implies that S and I
depend upon q through its magnitude q, and G is a func-
tion of r through its magnitude r

The simulation procedure requires the use of periodic
boundary conditions which produce a spatial periodicity
in the structure of the simulated fluid and hence in
G (r, t). This periodicity restricts the nonzero q values to

2mq= (l],lz, lp ),L

where L is the box length used in the simulation and
l; =0,+1, +2, ..., with i =1,2. For a given wave vector
q, I (q, t) can be obtained via equation (3) with the particle
positions r;(t) determined from the simulation and the en-
semble average calculated as a time average. I(q, t) is ob-
tained as an average over all I(q, t) for which q is con-
sistent with restriction {6)and has magnitude in the range
[q,q+dq]. Alternately, one can obtain an expression for
I(q, t) by averaging equation (3) over all q values of mag-
nitude of q. This gives

sin[qrp(t)]
l

I(q &)=-
j]f]' .

k qr&k(t)

where

"j&{r)=
I
rj(t) —rk(Q)

I

The rzk(t) are obtained from the simulation and processed
according to equation (7) with the ensemble average calcu-
lated as a time average to give I(q, t) directly. We have
obtained I (q, t) by both of the methods described above.

The error associated with the simulation of I(q, t) gen-
erally increases with decreasing q for a given box size L.
As q decreases the number of q values consistent with re-
striction (6) decreases giving a smaller sample from which
to estimate I(q, t) and thus giving a less accurate estimate.
As seen by equation (6) the situation is improved by in-
creasing L. Also as q decreases the t value beyond which
I(q, t) can be assumed zero generally increases and this
implies a longer time interval over which the fiuid must
be simulated. However, I(q, t) can be accurately simulat-
ed only over time intervals less than the time required for
a density fiuctuation (sound wave) to travel the box length
J. Simulating over longer time intervals mill produce er-
rors in I(q, t) which arise from the spurious reappearance
of the sound wave as a result of the periodic boundary
conditions. Thus for a given L, decreasing q will eventu-
ally produce errors in I{q,t) of the above type. Again the
situation is improved by increasing L. The relationship of
the error in I(q, t) and the box size L can be che:ked
roughly in our work since we have performed a pair of in-
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dependent simulations with distinct L values from which
I(q, t) is obtained.

Series I calculations were performed at the University
of Guelph on a Floating Point Systems Array Processor,
model FPS-164, with an IBM 3081D used as a host
machine. The MD simulation was carried out for 256
particles interacting via an Aziz pair potential with di-
ameter o and well depth e/k of 3.579 A and 200 K,
respectively, and a cut-off radius of 2.5o. The fluid was
simulated in a cubical box of length L =26.6 A with
periodic boundary conditions. The particle positions re-
sulting from the simulation were processed via equation
(7) to give I(q, t) for q values of 0.6, 0.80, 1.05, 1.30, 1.55,
1.80, 2.10, 2.40, 2.70, 3.00, 3.25, and 3.50 A

Series II calculations were performed at KFA,
Karlsruhe on an IBM 3033. In this case 500 particles in-
teracting according to the pair potential of Barker et al.
with a o of 3.61 A and e/k of 199 K (with a cut-off ra-
dius of 3.6o) were simulated in a cubical box of length
L =33.1 A with periodic boundary conditions. I(q, t)
values were obtained by use of equation (3) and these
values were then averaged to give I(q, t) as previously
described. The same series of q values were used.

The pair potentials of Aziz and Barker et a1.4 are in
good agreement. Hence any differences in series I and II
estimates of I(q, t) are not expected to result from the use
of different forms of the krypton potential. Series I and
II estimates of I(q, t) were extended to t values for which
the magnitude of I(q, t) was of the order 10 3. The
I(q, t) were assumed to be zero for larger values of r and
were numerically transformed according to equation (4) to
give S(q, co).

Experimental results are in the form S(q,co),R(co)
where the asterisk represents the convolution operation
and R (co) is a resolution function which is well approxi-
mated by a Gaussian in co. Use of the convolution
theorem and equation (4} show the transform of
S(q, co},R (co) to be I (q, t)R (r) where R (r) is the
transform of R (co) and has form 'exp( —r /6, 6) with t in
units of 10 ' sec. In order to compare experimental and
simulated results, the simulated estimates of I(q, t) are
multiplied by R (t) and transformed. to give S(q,co),R (co).
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results agree quite well for small values of t with
moderate differences appearing in the range 0.5X 10
sec to 10 ' sec. Larger discrepancies occur for t &10
sec at the lower q values for which the I(q, r} remain
nonzero over a longer time interval. The curves associat-
ed with q values of 1.80 and 0.60 A ' are particularly
worth noting. For q =1.80 A ' the disagreements be-
tween series I and II results are relatively large and occur
at small values of time when compared to other q value
results. Also note the large discrepancies in the q =0.60
A case in addition to the lack of smoothness in the in-
dividual curves, especially the series I curve.

The simulations which produced series I and II results
differed in the averaging technique used to obtain I(q, t),
the box size L, and the set of initial conditions used to
generate an iterative solution of the equations of motion.
Each of these distinctions has the possibility of producing

III. COMPARISON OF MD RESULTS

The results of series I and II calculations and the agree-
ment between these results is illustrated in Figs. 1 and 2.
The original I(q, t) estimates from both series are com-
pared in Fig. 1 for q values 0.80, 1.80, 2.40, and 3.00
A '. It can be seen that in some instances there are
discrepancies in peak height or in the long-time behavior.
These will be discussed further below, where we shall ar-
gue that they are likely due to inadequate phase-space
averaging.

The quantity I(q, t)R(T)/S(q) is plotted against r in
Fig. 2 for a representative set of q values. As previously
noted, the factor R (r) is included to allow direct compar-
ison to experimental results. The normalization constant
S(q) =I(q, O) is included so as to best describe the manner
in which the correlation function I(q, t) damps to zero in
time. As seen in Fig. 2, for a given q-value series I and II
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0.0 0.5 1.0 1.5 2.0 2.5 3.0

time t (ps)
FIG. l. Examples of the original I(q, t) for series I and II.
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differences in the I (q, r) estimates. The excellent agree-
ment for the q =2.40 A ' case indicates the averaging

techniques are not affecting the results. The finite box
size is a source of error which becomes inore significant
for small q values and is hkely affecting the q =0.60 A
results as suggested by the lack of smoothness of the
curve for series I in this case. As q increases there is no
significant difference in smoothness of the individual
curves associated arith a particular q vaIue, nor is there a
consistent manner in which the curves differ from one
another as q is varied. Thus it is unlikely the box size is
appreciably affecting the series I and I results for the
larger q values.

The simulation procedure can be viewed as following,
or more correctly generating, a path of the system in

phase space, sampling particle positions along this path by
storing the r;(t) every, say, ten iterations and using these

values to obtain an estimate of I(q, t). The series I and II
calculations use different initial particle positions and
hence follow distinct phase paths. Estimates of I(q, t) ob-
tained as time averages over different phase paths should
closely agree if the individual paths adequately sample
phase space. An inadequate sampling of phase space will
produce discrepancies in the I(q, t) estimates and this is
likely the cause of the differences in the series I and II
curves at large-t values. Matters should improve by ex-
tending the lengths of the MD simulations from which
the I(q, t) estimates are obtained or by averaging results. "

As a final point in the discussion of the results shown
in Fig. 2, consider the q =1.80 A ' case which produced
the largest S(q) value and the broadest I(q, t). The value
of 1.80 A ' closely approximates 2m ld, with d being the
average distance between particles in contact. There is a
maximum in S(q) at q=1.80 A ', which produces a
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FIG. 2. I(q, t)R (t)/$(q) vs t for fixed q with S(q)=I(q,O). The dotted line represents series I results and the solid line represents
series II results. Si(q) and Sii(q) are series I and II values of S(q).
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narrow S(q,co) vs co curve, referred to as DeGennes nar-
rowing. ' This in turn produces a broad I(q, t) vs t curve.
The relatively large difference in series I and II results in
this case most likely suggests the need for more extensive
sampling of phase space for this case. A possible explana-
tion is that the fiuid structure which gives rise to the

q =1.80 A ' Fourier component of G(r, t), can decay
slowly in a variety of ways thus requiring extensive
phase-space sampling to yield accurate estimates of I{q,t)

Figure 3 shows plots of S(q,co),R (ai) vs ai for fixed q
values. The Fourier transform of I(q, t)R (t) is
S(q,co),R(~); hence, the curves of Figs. 2 and 3 are
transform pairs apart from the factor S(q). The curves of
Fig. 3 are unnormalized and thus represent an absolute
measure of the agreement between series I and II results.
However, for a given q value the agreement between these
curves is fairly predictable from the analogous curves of
Fig. 2. For example, the Figs. 2 and 3 curves for q =2.40
A ' agree quite well, while the q=1.80 A ' results

show a relatively large disagreement. Also note the oscil-
latory nature of the q =0.60 A ' curves in Fig. 3 which
result from the poor quality of the analogous curves of
Fig. 2.

IV. COMPARISON OF SIMULATION
AND EXPERIMENTAL RESULTS

Figure 4 shows a comparison between experimental and
simulation results. The quantity S(t0),R (r0) vs cu is plot-
ted for a given q value. The experimental results of Ref. 2
had been interpolated to a table of data for each of the q's
required by Glasser and Egelstaff. 'i The dots give the ex-
perirnental results; the solid line represents an equally
weighted average of series I and II calculations. For q
values of 1.55, 1.80, and 2.10 A ' the agreement between
experiment and simulatjon is quite good. For example, in
the case of q =1.80 A ' the maximum difference be-
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J. J. SALACUSE, %V. SCHOMMERS, AND P. A. EGELSTAFF 34

tween experiment and simulation is 0.18X10 ' sec (5%
of peak height) which occurs at co=1.2X 10+'2 sec
For the higher q values of 2.40, 2.70, 3.00, and 3.25 A
the simulation yields a set of curves which appeiir to be
modestly more intense than the experimental results.
Note that for these q values as well as the 2.10 A ' case,
the experimental data has been spoiled by Bragg reflec-
tions from the pressure vessel at smaB co. The data points
in question are omitted so that the cornpsrison vrith the
MD data is incomplete. In the q =3.50 A ' case only
the simulation results were obtained.

For curves centered about the origin, the more diffuse
or broad a curve is the more sharply peaked or narrow its
transform will be. Thus for example, in the q =1.80 A
case the t space or Fig. 2 curves are quite diffuse while
the co-space transforms are sharply peaked as shown in
Fig. 3. In contrast the q =2.40 A ' case shows the t-
space curves to be relatively narrow with very diffuse
transforms. In the case of the lower q values: q =1.30,
1.05, 0.80, and 0.60 A ', the simulations produce a curve
which is broader than that predicted by the experimental
results. This difference between experimental and simula-
tion results becomes more pronounced as q decreases
Hence, the experimentally deterniined S{co),A{co) will

yield an I(q, r)R (t) which is broader than that given by
simulation. This in turn suggests that the fiuid structures
which give rise to the Fourier components I(q, t) for the
indicated q values decay more slowly in reality than
predicted by our simulation results. Because the differ-
ences in Fig. 4 must be due to the failure of the rigid atom
approximation, we deduce that the missing many-body
terms slow down many-body collision processes at high
density (an example of such processes would be ring col-
lisions). Also it is notable that this effect is growing rap-
idly with density over the range from 10.6—13.8
atoms/nm' (i.e., density in Ref. 1 compared to this densi-
ty).

V. CONCLUSIONS
%e have been able to demonstrate that many-body

forces significantly affect the dynamics of dense krypton
gas. For the state examined in this work, Ram and EgeI-
staff' have shown their contribution to the thermo-
dynamic properties and their effect on the static structure
factor was shown by Egelstaff et al. However, we have
demonstrated for the first time the q and co dependence of
the dynamic-structure factor S(q, co) on these forces. In
terms of particle dynamics, many-body forces were seen
to inhibit the relaxation of longer wavelength fluid struc-
tures, i.e., many-body collision processes such as ring col-
lisions are slowed down. It is likely that shorter-ranged
polarizability or overlap effects are responsible, partly be-
cause of the q range in which the effects are observed and
partly because of the consistency of these results with the
conclusions of earlier papers discussed in the Introduc-
tion.

We have examined the difficulty in obtaining precise
molecular dynamics data and further work will involve a
better understanding of the errors associated with the
simulation of S{q,cu} and the sensitivity of S(q,co} to the
pair potential used. However, our comparison of the
simulated and experimental S(q,ai) has been shown to be
an effective method of highlighting the importance of
many-body forces in dynamic phenomena. Eventually,
this may lead to MD simulations using many-body paten-
tial functions in order to analyze dynamic phenomena.
For example, further simulations using the Axilrod-Teller
term and/or overlap terms would be worthwhile.
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